
The Eurasia Proceedings of Science, Technology,

Engineering & Mathematics (EPSTEM)

ISSN: 2602-3199

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License,

permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the Conference

© 2021 Published by ISRES Publishing: www.isres.org

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2021

Volume 12, Pages 85-94

ICRETS 2021: International Conference on Research in Engineering, Technology and Science

IMSD: Interactive Methods for Finding Similar or Diverse Answer Sets

Asmaa AFEEFI

An-Najah National University

Abstract: Answer set programming (ASP) is a modeling language in knowledge representation, rooted in

Logic Programming and Nonmonotonic Reasoning, which has been gaining increasing attention during the last

years. In recent years, many of the researchers developed integrated development environments (IDE) for ASP

programs including editors and debuggers. Other researchers focused on analyzing the answer sets, they

introduced offline and online methods to find specific solutions of a given problem in answer set programming

in different approaches such as phylogeny reconstruction. However, with an enormous number of answer sets

could be available, the user is not interested in all of them. Thus, a navigation of the search space could be a

solution to help the user to access the specific answer sets. To this end, we aim at finding similar/diverse

solutions of the answer sets with a new method. The intuition behind this navigation is to make the search faster

than other methods and explore information that is related to the user’s query. Afterward, we implement a tool

performing the above approach in order to simplify the search task and show the applicability and effectiveness

of our method. We conclude by testing the performance of the proposed tool into a real-world example of ASP

programs.

Keywords: Answer set programming, Navigation approach, Diversity, Similarity

Introduction

It is worth finding solutions of the answer sets which are similar/diverse to each other. For instance, in

planning, it might be useful to compute a set of similar plans. Therefore, when the execution of the plan fails,

one can switch to a very similar one. Towards this goal, we represent a problem at hand by a logic program,

such that its answer sets correspond to solutions. These solutions characterize the solutions of the original

problem, and then, use an answer set solver to find such solutions. In the last few years, many solvers are

developed, such as, Clasp (in conjunction with Gringo), DLV, Clingo (Gebser et al., 2014), and SMODELS

(Computing the Stable Model Semantics, n.d.).

On one hand, the researchers have turned their attention to develop different integrated development

environment (IDE) for ASP programs including editors and debuggers (e.g., APE (Fandinno et al., 2019),

iGROM, SeaLion (Busoniu et al., 2013)), and like the online development environment for answer set

programming (Marcopoulos et al., 2017). On the other hand, some of them have developed tools to visualize

the answer sets and their relations by means of a directed graph, such as, ARVi tool (Ambroz et al., 2013).

Despite these improvements, there is a lack of attention to analyze the answer sets themselves. In some

particular problems, a massive amount of answer sets could be available. However, the user is not interested in

all of them. In (Afeefi, 2019) we implemented different navigation approaches, such as, one case of finding

diverse/similar solutions to help the user to access the specific answer sets. To this end, we are looking into

another two cases for finding diverse/similar solutions. The intuition behind this navigation method is to make

the search faster and explore information that is related to the user’s query.

http://www.isres.org/

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

86

Related Work

Analysis of answer-set programming (ASP) is one wide field that is increasingly growing in the last few years.

At first, several tools have been designed to support the user in developing ASP applications, and the

visualization aspects of these tools focus on the representation of single answer set. Eiter et al introduce

offline and online methods to find similar or diverse solutions of a given problem in answer set programming

in phylogeny reconstruction (Eiter et al., 2009). They study two kinds of computational problems related to

finding similar/diverse solutions of a given problem, in the context of ASP: one problem asks for a set of

solutions that are - similar (resp -diverse), the other one asks for a solution that is -close (-distant) to a

given set of solutions.

On the other hand, different tools for developing ASP programs have been proposed including editors and

debuggers. Koziarkiewics implemented iGROM (IGROM Download | SourceForge.Net, n.d.) which is an IDE

for ASP programs specifically those written in DLV (and its frontends) and Smodels. It provides some

features, such as syntax highlighting for DLV and its dialects, error detection for DLV and dialects.

In (Sureshkumar et al., 2007) Sureshkumar et al. implement an Integrated Development Environment (IDE) for

ASP, the AnsProlog* Programming Environment (APE). It offers many features, like syntax highlighting,

automatic syntax checking, integration of editor; LPARSE and SMODELs, and display dependency graph of

program.

Recently, Oetsch et al. in (Busoniu et al., 2013) design an IDE for ASP (SeaLion) as a plug-in for Eclipse

platform. This tool provides source-code editors for the languages of Gringo and DLV. It offers functionalities,

like syntax highlighting, syntax checking, code completion, visual program outline, and refactoring

functionality.

Ambroz et al. (Ambroz et al., 2013) present a new tool, ARVis. The main purpose of ARVis is to visualize

answer sets and their relations by means of a directed graph. The general idea for this tool is passing the

answer sets of a first user-specified ASP encoding to a second user-specified encoding which specified the

relations between them. Obviously, ARVis is not designed to obtain a high performance since a potential

exponential number of answer sets of the first program has to be processed by the second one.

As discussed above, some approaches are much more focused on editing and debugging ASP programs. Others

are developed for a certain problem. To the best of our knowledge there does not exist a tool yet that is capable

of navigating the space of answer sets for general problems.

Computing Similar/Diverse Solutions

Towards this goal, we study finding similar/diverse solutions in answer set programming. The computation of

similar and diverse solutions is symmetric. Thus, we focus on finding the diverse solutions. This section

introduces Preliminaries, a preprocessing and so-called (modified) interactive method to compute the diversity

of solutions.

Preliminaries

We introduce the graph structures used to internally represent the answer sets. Then, we continue with

Hamming and Jaccard distances which are the measures for similarity/diversity of the solutions.

1) Graph: Graphs are common fundamental data structures in knowledge representation. We use graphs to

represent a set of objects and the relationship between pairs of objects. A graph is defined as the structure

 representing a set of vertices (also called nodes) and a set of edges . There are two

types of graphs, directed and undirected. In our work, we consider an undirected graph. All the edges in the

undirected graph are bidirectional. A complete graph is a simple undirected graph in which every pair of

distinct nodes is connected by a unique edge. The complete graph on n nodes has edges.

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

87

Given a graph , each edge in of might be associated with a real number, then called its weight. together

with these weights on its edges, is called a weighted graph. We therefore exploit this property to express the

weight of the edges by a distance, e.g., Hamming distance or Jaccard distance. In this work, the answer sets are

internally represented as the nodes of the graph. The edges are labeled by Hamming or Jaccard distances

between pairs of nodes.

2) Clique: A clique in a graph is a complete subgraph in , that means, it is a subset of the vertices such

that each two vertices in are joined by an edge in . A maximal clique is a clique with the maximum number

of vertices; no more vertices can be added. In this work, we are interested to find a maximal clique to obtain a

largest complete subgraph. To demonstrate, if the user needs answer sets that differ in atoms, we need to

find a maximal clique with size or greater than that differ in atoms. Reporting the maximal cliques of a

graph is a major problem arising in graph structures. The output of maximal clique enumeration algorithm may

be exponentially sized, so that an algorithm with provably good running time w.r.t. the input size is not

possible. However, any algorithm reporting all maximal cliques should be output sensitive.

There is a comprehensive bibliography of clique enumeration algorithms. For instance, Bron-Kerbosch (BK)

algorithm (Bron & Kerbosch, 1973) and new algorithms with an alternative strategy based on matrix

multiplication (Makino & Uno, 2004). Recently, all papers acknowledged BK algorithm as the best one in

practice (Baum, 2004). We choose herein BK algorithm to find diverse/similar answer sets. In (Bron &

Kerbosch, 1973), Bron and Kerbosch report two algorithms, version 1 and version 2. Version 2 is an

optimization of version 1 based on pivots or fixed points. In this work, we implement Bron-Kerbosch (version

2) algorithm to find maximal cliques of the graph whose nodes are the answer sets.

3) Hamming Distance: Hamming distance is used to measure similarity and diversity between two sequences.

It is limited to cases when two sequences have the same length. The Hamming distance is defined to be the

number of positions at which the corresponding symbols are different. The sequences may be strings or binary

vectors (Fakecineaste : How to Calculate the Hamming Code, n.d.). Similarly, for answer sets, the length of

two answer sets (number of atoms) should be the same. Each answer set is represented as a vector of boolean

values. We compare the first contents of the two indexes in each vector. If they are the same, record a "0",

otherwise, record a "1" for that index.

4) Jaccard Distance: A very simple and often effective approach to measure the similarity and dissimilarity

between non-empty finite sample sets is the Jaccard index. The Jaccard index (Deng et al., 2012), also known

as Jaccard coefficient is used to compare the similarity and diversity of non-empty finite sample sets. The

Jaccard coefficient is defined as the size of the intersection divided by the size of the union of the sample sets.

The Jaccard distance is complementary to Jaccard coefficient and is obtained by subtracting the Jaccard

coefficient from 1. Similarly, we can define the Jaccard distance by dividing the difference of the sizes of the

union and the intersection of two sets by the size of the union.

The Jaccard coefficient measures the similarity between the non-empty finite sample sets, but the Jaccard

distance measures the dissimilarity between the non-empty finite sample sets. For the answer sets, we use this

measure when we have different lengths of the answer sets.

Preprocessing

In the preprocessing method, we compute all the answer sets of an ASP program by running an ASP solver.

The answer sets are stored with their cardinality in a database. At the same time, we get and store the set of all

ground atoms of the answer sets in a text file. After that, we create a hash mapping data structure which maps

each ground atom in the file to an integer number. From the set of all ground atoms, we can check whether is in

an answer set or not in order to build the boolean vector for computing distance purpose. We build a complete

undirected graph whose nodes correspond to the answer sets and edges

 are labeled by a function that maps each to a natural

number (the distance), such that, . The distances between the corresponding answer sets

are calculated by Jaccard or Hamming distance. Additionally, we store the value of maximum (resp.,

minimum) distance, denoted by (resp.,) between the answer sets for computing diversity/similarity.

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

88

Interactive Method (IM)

We study various problems to find similar/diverse answer sets of the given ASP program. As in illustration, the

user can specify the number of the answer sets that differ in a certain number of atoms. More precisely, if the

user needs different answers and specifies a relational operator (e.g.,) and atoms then, the result should

be different in atoms. There are two distances we use for edges in this work. Hamming distance for the

answer sets with the same length, and the Jaccard distance for the answer sets with different lengths. After we

build a complete undirected graph in the preprocessing method, we check whether there exists a complete

subgraph (or a clique) of size n in whose distance is specified by the user. In this work, we find a maximal

clique to obtain the largest complete subgraph (Makino & Uno, 2004). In detail, if the user needs answer sets

that differ in atoms, a maximal clique will be found with size greater than or equal to . Each node in the

maximal clique corresponds to an answer set, so it represents exactly one answer set.

Definition. Let and be sets. The set corresponds to the set , denoted by , where

 and , such that

where .

We are mainly interested in two cases of problems related to the computation of a diverse/similar answer sets:

Case 1 (-Most Diverse Answer Sets (resp., -Most Similar Answer Sets))

Instance. Given a complete graph 〉 whose nodes (answer sets) of an ASP program

where a non-negative integer , and the value of the maximum distance .

Question. Does there exist a set with the cardinality where a complete subgraph (clique)

and , and the distance of the set , denoted by is

maximum (resp., minimum) distance between each pair of its elements such that

where

To demonstrate, given a complete undirected graph whose nodes are the answer sets and the edges are labeled

by the distance between pairs of the nodes. The user specifies an integer number and the value of maximum

distance (and for minimum distance) are stored during the preprocessing method; is the number of

the answer sets that differ in atoms. A clique of the size at most with distance equal to dmax is picked

from . The motivation for finding the clique with distance is to find corresponding answer sets which are

different in atoms. Algorithm 1 shows Case 1 of the interactive method.

As an illustration, we find -most diverse answer sets (resp., -most similar answer sets) by calculating the

maximum (minimum) value of the distance and check whether there exists a maximal clique with this distance.

If there is no maximal clique, the distance will be decreased by 1 (resp., increased by 1) until the maximal clique

is found (Figure 1).

Notations. We shall denote the graph Given a node denotes the neighbors of ,

i.e.

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

89

Figure 1.Algorithms

Case 2 Modified Interactive Method (MIM)

Instead of building a graph of all the answer sets (nodes) in the preprocessing method and then a

clique is picked with specific distance value in the interactive method, we can build a complete subgraph (clique)

with only the edges with the specific distance value that the user specifies. Our intuition behind building a clique

during the interactive method which is so-called modified interactive method is to present only to the user the

answer sets () he is interested in. Thus, we save the memory since the complete graph is not built in the

preprocessing method. Additionally, the execution time is reduced of the preprocessing method. Algorithm 4

shows the modified interactive method case.

The inputs of the above algorithm are the answer sets () that the user specifies, the two non-negative integer

numbers and ; is the number of the answer sets that differ in atoms, and a relational operator with

. At first, a complete undirected graph is built from whose nodes are and the

edges are labeled by the distance between pairs of nodes. Then, the IMAlgo algorithm is invoked with specific

arguments, such as, the complete graph , and the relational operator , to find the maximal clique and

return a set of at most answer sets whose distance is . The interactive method and the modified

interactive method are different only in the inputs.

NAVAS Tool

In this section, we describe the graphical user interface of Navigation Approaches for Answer Sets (NavAS) and

explain step by step how to use the tool.

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

90

Description

The start window of NavAS tool is as depicted in Figure 2.

Figure 2. NavAS user interface

The starting point is to select a file with an .lp extension by the open button which is at the left top corner.

Clicking on this button brings up a dialog box allowing to browse for the data file on the local file system. Once

the user clicks on the open button, the answer sets as a result of running the Clingo solver, are displayed in a

scrollable text area in the tab view in the right top corner.

Diversity Box

The box contains many components to find the diversity between the solutions. (see Figure 3). To illustrate,

there are three components available on this box:

 No. Answers. NavAS allows the user to type the number of solutions that he wants to show.

 No. Atoms. The number of atoms that the solutions are different in.

The working scenario of the box is as following: "Show me the answer sets (No. Answers) that are different in

one of of (No. Atoms)."

Figure 3. Diversity box

There is a length option which is applied when the solutions have different number of ground instances. The user

can decide which answer set he wants as a pivot to find the diversity by either typing the full answer set or a part

of it. To the right of the diversity box is the box for finding the most similar and diverse answer sets. The number

of answer sets specifies by the user (No. Answers).

Evaluation

In this section, we make an evaluation of the performance of the NavAS tool. We consider a pizza configuration.

We discuss the experiment of result on this example. We ran the experiment on an Intel machine with processor

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

91

2.30 GHz Intel Core i5 and memory 4 GB 665.1 MHz DDR3.

Pizza Example

This example is implemented in ASP to generate different pizza configurations. The input of the ASP program

are the toppings with their categories to specify the type of pizza and the price of each of them. To accomplish

this task, several rules and constraints on toppings have to be satisfied. Thus, a different number of toppings

provide many different configurations of pizza.We consider herein a sample of the code to explain the facts of

the program as input. In the following, we give a listing of some facts of the program (Figure 4).

Figure 4. Facts of the program

We have a topping bacon which is indicated under meat category, and its price is price(bacon,110). The

same thing for other facts. We add many facts to the pizza program to increase the search space (Figure 5).

Figure 5. Code for increase the search space

Usually there are too many answer sets of pizza example computed by an ASP solver. The user needs to

compare these answer sets, by analyzing the similar/diverse ones with respect to some distance measure. To this

end, we use the tool on this example to evaluate the performance of it. For similarity and diversity, we do

experiment for testing the computation time of finding diverse/similar solutions. We measure the execution time

of the preprocessing and the interactive method. We take five samples for each value and compute the average of

them.

We consider several parameters to assess the performance of the tool with respect to finding similar/diverse

answer sets:

(1) number of answer sets, (2) preprocessing method, (3) (modified) interactive method. Table 1, 2, 3, and 4

report the time of the case of interactive and modified interactive method with different values of (number of

different atoms), , respectively, and the number of solutions (the maximum size of the maximal

cliques corresponding to the value of).

From Table 1 and 2, we note that the execution time for the preprocessing method is quite high because of the

storing and building a complete undirected graph We can see that the execution time for the number of answer

sets 2000 is higher than 1000. For the number of atoms that the answer sets are different, we note that the

execution time for is higher than the execution time for . In fact, this depends on the

configurations of the answer sets of a problem, the distance between them, and the ordering of the answer sets in

the complete graph .

price(bacon,110).

has_category(bacon,meat).

price(chicken,120).

has_category(chicken,meat).

price(peas,140).

has_category(peas,veg).

Answer: 1

on(dough) on(tomato_sauce)

on(mozzarella) on(oregano) on(bacon)

on(broccoli) on(caper) total(870)

normal

Answer: 2

on(dough) on(tomato_sauce)

on(mozzarella) on(oregano) vegetarian

on(caper) on(basil) total(750)

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

92

From Table 3 and 4, we note that the execution time for the preprocessing method is less than the execution time

for the preprocessing method in the previous tables. The preprocessing method herein is only used to store the

answer sets. The graph is built during the modified interactive method with a specific answer sets that the user

specifies.

Table 1. Time execution for for pizza example

ANSWER SETS (AS) PREPROCESSIN
G

(MINUTES)

INTERACTIVE METHOD CASE1
(MINUTES)

1000 (137KB) 0.5441 0.0046
2000 (278KB) 1.3237 0.0150

Table 2: Time execution for for pizza example

Answer Sets (AS) Preprocessing
(minutes)

Interactive Method
Case 1 (minutes)

1000 (137KB) 0.5441 0.0107
2000 (278KB) 1.3237 0.0505

Table 3: Time execution for and for pizza example

Answer Sets (AS) Preprocessing
(minutes)

Modified Interactive Method
Case 2 (minutes)

1000 (137KB) 0.4669 0.0525
2000 (278KB) 0.7868 0.4039

Table 4: Time execution for (and) for pizza example

Answer Sets (AS) Preprocessing
(minutes)

Modified Interactive Method
Case 2 (minutes)

1000 (137KB) 0.4669 0.0454
2000 (278KB) 0.7868 0.4073

In general, we note that the execution time for the modified interactive method case is higher than the execution

time for the interactive method in the previous tables, because the time needed to build the graph is included

in the execution time for the modified interactive method.

Conclusion

There is a large number of the answer sets available of an ASP program, all of them are not of the user’s interest.

Thus, a navigation of the search space could be a solution to help the user to access a specific answer sets. We

studied finding similar/diverse solutions of the answer sets. We offered scenarios to find similar/diverse

solutions. To this purpose, we introduced preprocessing and interactive methods and applied some distance

measures. Regarding practical use, we presented NavAS, a tool for navigating the answer sets for general ASP

programs. Finally, we made an evaluation of the performance of NavAS tool with Pizza example. We recorded

the execution time for finding diverse/similar answer sets.

Scientific Ethics Declaration

The author declares that the scientific ethical and legal responsibility of this article published in EPSTEM

journal belongs to the author.

References

Afeefi, A. (2019, April). NavAS: Navigation Approaches for Answer Sets. In 2019 IEEE Jordan International

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

93

Joint Conference on Electrical Engineering and Information Technology (JEEIT) (pp. 79-84). IEEE.

https://doi.org/10.1109/JEEIT.2019.8717370

Ambroz, T., Charwat, G., Jusits, A., Wallner, J. P., & Woltran, S. (2013, September). ARVis: Visualizing

relations between answer sets. In International Conference on Logic Programming and Nonmonotonic

Reasoning (pp. 73-78). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40564-8_8

Baum, D. (2004). Finding All Maximal Cliques of a Family of Induced Subgraphs., 1–15.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.358

Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques in an undirected graph,

Community. ACM, 16(9), 575-577. https://doi.org/10.1145/362342.362367

Busoniu, P. A., Oetsch, J., Pührer, J., Skočovský, P., & Tompits, H. (2013). SeaLion: An eclipse-based IDE for

answer-set programming with advanced debugging support. Theory and Practice of Logic

Programming, 13(4–5). https://doi.org/10.1017/S1471068413000410

Computing the Stable Model Semantics. (n.d.). Retrieved June 30, 2021, from

http://www.tcs.hut.fi/Software/smodels/

Das, A., Sanei-Mehri, S.-V., & Tirthapura, S. (2020). Shared-memory parallel maximal Clique Enumeration

from static and dynamic graphs. ACM Transactions on Parallel Computing, 7(1), 1–28.

Deng, F., Siersdorfer, S., & Zerr, S. (2012). Efficient Jaccard-based diversity analysis of large document

collections. ACM International Conference Proceeding Series.

https://doi.org/10.1145/2396761.2398445

Eiter, T., Erdem, E., Erdoǧan, H., & Fink, M. (2009). Finding similar or diverse solutions in answer set

programming. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 5649 LNCS. https://doi.org/10.1007/978-3-642-

02846-5_29

Erdem, E., Gelfond, M., & Leone, N. (2016). Applications of answer set programming. AI Magazine, 37(3), 53–

68.

Everardo, F., & Osorio, M. (2020). Towards an answer set programming methodology for constructing programs

following a semi-automatic approach – extended and revised version. Electronic Notes in Theoretical

Computer Science, 354, 29–44.

Fakecineaste : How to Calculate the Hamming Code. (n.d.). Retrieved June 30, 2021, from

http://fakecineaste.blogspot.com/2012/11/how-to-calculate-hamming-code.html

Fandinno, J., & Schulz, C. (2019). Answering the “why” in answer set programming - A survey of explanation

approaches. Theory and Practice of Logic Programming, 19(2).

https://doi.org/10.1017/S1471068418000534

Febbraro, O., Reale, K., & Ricca, F. (2011). ASPIDE: Integrated development environment for answer set

programming. In Logic Programming and Nonmonotonic Reasoning (pp. 317–330). Berlin, Heidelberg:

Springer Berlin Heidelberg.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo = ASP + Control: Preliminary Report. 1.

http://arxiv.org/abs/1405.3694

Güven, Ç., & Atzmueller, M. (2019). Applying answer set programming for knowledge-based link prediction on

social interaction networks. Frontiers in Big Data, 2, 15.

iGROM download | SourceForge.net. (n.d.). Retrieved June 30, 2021, from

https://sourceforge.net/projects/igrom/

Li, Y., Shao, Z., Yu, D., Liao, X., & Jin, H. (2019). Fast maximal clique enumeration for real-world graphs. In

Database Systems for Advanced Applications (pp. 641–658). Cham: Springer International Publishing.

Makino, K., & Uno, T. (2004). New algorithms for enumerating all maximal cliques. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 3111. https://doi.org/10.1007/978-3-540-27810-8_23

Marcopoulos, E., Reotutar, C., & Zhang, Y. (2017). An Online Development Environment for Answer Set

Programming. 1. http://www.math.ttu.edu/texprep/

Niemelä, I., & Simons, P. (n.d.). Smodels: An implementation of the stable model and well-founded semantics

for normal lp”.

Son, T. C., & Balduccini, M. (2018). Answer set planning in single- and multi-agent environments. KI -

Künstliche Intelligenz, 32(2–3), 133–141.

Sureshkumar, A., De Vos, M., Brain, M., & Fitch, J. (2007). APE: An AnsProlog* environment. CEUR

Workshop Proceedings, 281.

Zhu, Y., & Truszczynski, M. (2013). On optimal solutions of answer set optimization problems. In Logic

Programming and Nonmonotonic Reasoning (pp. 556–568). Berlin, Heidelberg: Springer Berlin

Heidelberg.

International Conference on Research in Engineering, Technology and Science (ICRETS), June 10-13, 2021, Istanbul/Turkey

94

Author Information

Asmaa AFEEFI
An-Najah National University

PO. Box 7

Nablus, West Bank, Palestine

Contact e-mail: asmaafeefy@najah.edu

To cite this article:

Afeefi, A. (2021). IMSD: Interactive methods for finding similar or diverse answer sets. The Eurasia

Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 12, 85-94.

