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Abstract: The first part of this paper describes an algorithm for estimating the fundamental frequency F0 of a 

speech signal, using an autocorrelation algorithm. After that, it was shown that, due to the discrete structure of 

the autocorrelation function, the accuracy of the fundamental frequency estimate largely depends on the 

sampling period TS. Then, in order to increase the accuracy of the estimation, an interpolation of the correlation 

function is performed. Interpolation is performed using a one parameter (1P) Keys interpolation kernel. The 

second part of the paper presents an experiment in which the optimization of the 1P Keys kernel parameter was 

performed. The experiment was performed on test Sine and Speech signals, in the conditions of ambient 

disturbances (N8 Babble noise, SNR = 5 to -10 dB).  MSE was used as a measure of the accuracy of the 

fundamental frequency estimate. Kernel parameter optimization was performed on the basis of the MSE 

minimum. The results are presented graphically and tabularly. Finally, a comparative analysis of the results was 

performed. Based on the comparative analysis, the window function, in which the smallest estimation error was 

achieved for all ambient noise conditions, was chosen.  

Keywords: Fundamental frequency, Parametric convolution, Convolution kernel, Speech signal. 

Introduction 

For several decades, digital speech signal processing has been actual in multimedia systems. Algorithms have 

been developed for: a) speaker recognition, b) semantic speech recognition, c) speaker health analysis, d) 

language recognition, e) speech extraction from the background noise, f) dereverberations, d) echo suppression, 

h) speech signal quality corrections, etc. (Qiu et al., 2000). Increasing intelligibility requires increasing the

quality of the speech signal (Rao et al., 2000). One way to increase speech intelligibility is by applying an 

algorithm to reduce dissonant frequencies (Milivojevic et al., 2009). Many speech signal processing algorithms 

require an estimate of the fundamental frequency of the speech, as well as the dominant harmonics. Algorithms 

for estimating the fundamental frequency are based on the processing of the speech signal in: a) the time 

domain, b) the spectral domain and c) the cepstrum domain (Kacha et al., 2004). 

Estimation of the fundamental frequency in the spectral domain is based on the application of the DFT and peak 

peaks in the spectrum (Pang et al., 2000). The spectrum, calculated using DFT, is discrete. The accuracy of the 

fundamental frequency estimate is directly dependent on the length of the DFT. However, in reality the 

http://www.isres.org/
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fundamental frequency can be located between the spectral components (Milivojevic et al., 2013). In this case, 

the estimation is performed using interpolations. Interpolation with convolutional kernel is often applied (Keys, 

1981). Third-order interpolation kernel, due to their numerically low complexity, allow high estimation speeds 

(Meijering, 2003). 

The time domain estimation algorithms are based on the analysis of time waveforms. If the waveform of the 

signal is periodic, then the period can be observed and F0 can be estimated on its basis. The TD algorithms 

intensively uses autocorrelation functions (Rabiner et al., 1978) to detect the pitch period. In (De Cheveigné et 

al., 2002), an algorithm, called the YIN algorithm, where the estimation is performed using the autocorrelation 

function (ACF), was proposed. 

The ACF of a discrete periodic signal is a discrete and a periodic function (Milivojevic et al., 2017). The ACF 

components have a time interval witch equal to the sampling time periods, TS, of the signal. Determining the 

period of the discrete signal implies locating the first, dominant peak, at the ACF. Then the fundamental 

frequency is equal to the reciprocal of the time shift of the peaks in relation to the beginning of the ACF. Here, 

the problem of estimating of the fundamental frequency arises when the actual dominant peak of ACF is not 

located on an integer product of TS, but somewhere between two adjacent components with the highest energy. 

In this case, estimation of the position is performed by selecting the position of the peak and, thus, a significant 

estimation error F0 occurs. The estimation error reduction can be done by applying an interpolation algorithm 

(Milivojevic et al., 2021). 

This paper presents an algorithm for estimating the fundamental frequency in the time domain. The algorithm is 

based on the application of autocorrelation function and interpolation using the interpolation 1P Keys kernel 

(Milivojevic et al., 2017). After that, an experiment, in which the effect of window functions on the accuracy of 

the fundamental frequency estimate was analyzed, is described. First, the Sine test signal and the Speech test 

signal are processed using window functions. Then, effect of changing of the kernel parameter, α, on the 

estimation error, was analyzed. Mean square error, MSE, is used as the estimation error. By minimizing the 

estimate error MSE, the optimal value of the kernel parameter, αopt, is calculated. Analyzes were performed for 

Test signals with superimposed acoustic interference (N8 Babble noise). The Test signals with SNR = -5 to 5 dB 

was formed. The results are presented in tables and graphs. Finally, a comparative analysis was performed. 

Based on the results of the comparative analysis, a window function suitable for implementation for real-time 

operation was selected. 

Estimation F0 Using Autocorrelation Function 

Correlation is a measure of the similarity of two signals. It is defined as the similarity of one signal at time k and 

another at time k + m. In this case, the correlation function is cross correlation. The autocorrelation function is a 

measure of the similarity of the same signal at time k and at time k + m. For a discrete signal x(n), whose length 

is N, an autocorrelation function is defined by (Milivojevic et al., 2021): 

      0,1,2,...m  ,
1

1

0

 




N

n

corr mnxnx
N

mr (1) 

On Figure 1.a the Speech test signal x(n) is shown. Its spectrum is shown in Figure 1.b and autocorrelation 

function rcorr is shown on Figure 1.c. The waveform of x can be complex and unsuitable for determining periods. 

The autocorrelation function rcorr is more suitable for calculating the signals period. On Figure 1.b the position 

of fundamental frequency is denoted by F0. On Figure 1.c the position of the maximum of the autocorrelation 

function is denoted by Nmax. The signal period is T0 = Nmax * TS, where TS is the sampling frequency of the time 

continuous signal x(t). The fundamental frequency of the signal x(n) is F0 = 1 / T0 = 1 / (Nmax * TS). Determining 

the position of the maximum component of the autocorrelation function is realized by the Peak-Picking 

algorithm. 

After determining the autocorrelation function and locating the peak, it is possible to accurately estimate the 

fundamental frequency only for signals whose fundamental frequency is F0 = 1 / (k * TS) for k = 1, 2, 3, ... For 

signals, whose fundamental frequency F0 is in the interval (k + 1) * TS) < F0 <1 / (k * TS), the estimation is 

performed by rounding and, thus, causes an estimation error. The calculation of F0 is realized using the Nearest 

Neighbor method. 
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a) b) c) 

Figure 1. Speech test signal: a) time form, b) amplitude characteristic, c) autocorrelation function. 

On Figure 2.a shows the actual F0 of the signal x sampled with FS = 8 kHz in the range (125 - 140.625) Hz, 

which corresponds to the components k = 57 - 64 of the autocorrelation function (symbol ‘-’). Using the Peak-

Picking algorithm, the values of F0 for node k = 57 - 64 (symbol ‘o’) were calculated. The estimated values of 

the fundamental frequency, F0NN, determined by applying the Nearest Neighbor method in the interval k = 57 - 

64 are shown by the symbol ‘--’. The estimation error, e(f), is shown on Figure 2.b. 

a) b) 

Figure 2. a) Fundamental frequency F0 trajectory between (57-64) autocorrelation components, value F0NN 

estimated by rounding and value F0node in nodes k, and b) estimation error e caused by Nearest Neighbor 

method. 

Reducing the fundamental frequency estimation error, e(f), can be done by applying interpolation. By 

interpolation, based on the position of the maximum value of the autocorrelation function, Nmax, a series of m = 

{Nmax -1, Nmax, Nmax + 1, Nmax + 2} is formed and the position of the maximum is interpolated and, based on it, 

the fundamental frequency is calculated. 

Algorithm for Fundamental Frequency Estimation  

The algorithm for estimation of the fundamental frequency (Estimation_algorithm) is applied over the i-th block 

xI of the signal x, and consists of the following steps (Milivojevic et al., 2021): 

Input: xI - frame of discrete signal x. N - frame length. F0 -real fundamental frequency. TS - sampling period. 

Output: Fe - estimated fundamental frequency. MSE - estimation error. 

Step 1: The xI signal is modified by the window function w: 

IW I x x w , (2) 

Step 2: Determine the autocorrelation function rX 

Step 3: Using the Peak-Picking algorithm, the position of the maximum of the autocorrelation function, Nmax, is 

calculated. 
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Step 4: By applying parametric interpolation with the interpolation kernel rPCC, the continuous function RX is 

determined. 

Step 5: By differentiating the function RX and equalizing with zero, the position of the maximum between the 

two nmax samples is determined. The real position of the maximum is NM = Nmax + nmax. 

Step 6: The estimated fundamental frequency is: 

  max max1e SF N n T   , (3) 

Step 7: The mean square error of the fundamental frequency estimate is: 

2

0( )eMSE F F  . (4) 

In the continuation of this paper, an experiment is described in the framework of which the efficiency of the 

fundamental frequency estimation algorithm at Sine and Speech signal was tested. 

Experimental Results and Comparative Analysis 

Experiment 

An experiment with the aim of determining the efficiency of the fundamental frequency estimation by a 

correlation algorithm, was performed. Increasing the accuracy of the assessment was achieved by applying 

window functions for processing the Test signal in the time domain. After that, a further increase in accuracy 

was achieved with the application of the interpolation algorithms. MSE was used as a measure to analyze the 

accuracy of the assessment. Using the Test Algorithm, which is explained later in this section, the trajectories of 

the MSE estimation error were calculated. By minimizing the estimate error, the optimal parameters of the 

parametric cubic interpolation kernel are determined. Kernel parameters are specified for some standard, time-

symmetric, window functions. All analyzes were performed in the presence of background acoustic interference. 

Test signals were created with FS = 8 kHz and with windows with length N = 256, which assures the analysis of 

frame that last 32 ms. The results presented further in this paper relate to F0 = 125-140.625 Hz (frequencies 

between the eighth and ninth DFT components). Number of frequencies in the specified range for which the 

estimation is done is M = 100. The Sine test signal is with K=10 harmonics. All further analyzes will relate to a) 

Hamming, b) Hanning, c) Blackman, d) Rectangular, e) Kaiser and f) Triangular window. N8 Babble noise 

(SNR = {5, 2.5, 0, -2.5, -5, -7.5, -10} dB) was used as acoustic interference (Figure 3.b). The 1P Keys 

interpolation kernel (Keys, 1981) was used, which was defined as 
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,  (5) 

where α is the kernel parameter. The time form of the 1P Keys kernel, for some values of the parameter α, is 

shown in Figure 3.a. 

a) b) 

Figure 3. a) 1P Keys window, b) Babble noise N8. 



International Conference on Technology, Engineering and Science (IConTES), November 04-07, 2021, Antalya/Turkey

157 

Test Algorithm 

The Test algorithm was implemented in the following steps: 

Input: xI - frame of discrete signal x. N - frame length. F0_real - real fundamental frequency. TS - sampling period. 

(αmin, αmax) parameter limits, α - step, w - window function, 

Output:  MSEmin. αopt. 

FOR α = αmin: α: αmax 

FOR SNR = SNRmin: Step: SNRmax 

Step 1: Create a Test Signal with SNR: 

Ib I bx x k x   ,  (6) 

Step 3: Estimation of the fundamental frequency (algorithm described earlier in the previous section) 

[Fe, MSEs] = Estimation_algorithm (xIb, α, N, w, Ts) 

END 

  sMSE MSE  , (7) 

END 

Step 4: Determining minimum of the estimate error: 

 min minMSE MSE . (8) 

Step 5: Determining the optimal kernel parameter: 

 argminopt MSE


  , (9) 

Test Signal 

PCC algorithm for the fundamental frequency estimation will be applied to: a) Sine test signal, and b) Speech 

test signal. Simulation Sine signal for testing of PCC algorithm is defined in (Pang et al., 2000): 
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1 0
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 

 

  
    
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 ,    (10) 

where F0 is fundamental frequency, i and ai are phase and amplitude of the i-th harmonic, respectively, K is 

the number of harmonics, and M is the number of points between the two samples in spectrum. The Sine test 

signal is shown on Figure 4.: a) time form, b) amplitude characteristic and c) autocorrelation function. The real 

Speech test signal is obtained by recording of a speaker in the real acoustic ambient. The Speech test signal is 

shown on Figure 1.: a) time form, b) amplitude characteristic and c) autocorrelation function. 

a) b) c) 

Figure 4. Sine test signal: a) time form, b) amplitude characteristic, c) autocorrelation function. 

Results 

Using the Test algorithm, described in the previous section, MSE trajectories for all tested window functions 

were calculated. The MSE trajectories for the rectangular window are shown on: a) Figure 5.a (Sine test signal) 

and b) Figure 5.b (Speech test signal). The minimum values of MSE and the optimal kernel parameters, for the 

Sine test signal and the Speech test signal, are shown in Table 1. The trajectories of the minimum MSE for SNR 
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= -5 to 5 dB are shown on: a) Figure 6.a (Hamming), a) Figure 6.b (Hann), a) Figure 6.c (Blackman), a) Figure 

6.d (Rectangular), a) Figure 6.e (Kaiser) and a) Figure 6.f (Triangular).

a) b) 

Figure 5. MSE for Rectangular window: a) Sine test signal, b) Speech test signal. 

Table 1. Optimal parameters and estimates error for testing windows 

Window 
SNR 

(dB) 

Sine test signal Speech test signal 

αopt MSE MSENN αopt MSE MSENN 

Hamming 

5 -0.1250 0.2864 4.4057 -0.1250 0.3133 4.9651 

2.5 -0.1250 0.2908 4.2141 -0.1250 0.3056 4.6656 

0 -0.1250 0.3222 3.8738 -0.1250 0.3355 4.2339 

-2.5 -0.1250 0.4444 3.4930 -0.1250 0.4677 3.6422 

-5 -1.3400 0.5433 2.6137 -1.3400 0.8381 2.8477 

-7.5 -0.5300 11.1040 13.7504 -10.250 7.6133 7.0663 

-10 -10.250 77.2945 69.7670 -0.5300 44.6659 56.9970 

sineMSE = 

12.8979 

sin_NNMSE = 

14.5882 

speechMSE = 

7.7913 

sp_NNMSE = 

12.0597 

Hann 

5 -0.1250 0.2907 4.4057 -0.1250 0.3226 4.9627 

2.5 -0.1250 0.2961 4.2141 -0.1250 0.3196 4.6747 

0 -0.1250 0.3322 3.8738 -0.1250 0.3662 4.3238 

-2.5 -0.1250 0.4557 3.4182 -0.1250 0.5101 3.6668 

-5 -1.3400 0.6204 2.5644 -1.3400 1.7657 3.5394 

-7.5 -0.5300 12.6568 15.4588 -10.250 7.8694 7.2064 

-10 -0.5300 51.3111 70.2882 -0.5300 44.8402 59.4322 

sineMSE = 

9.4233 

sin_NNMSE = 

14.8890 

speechMSE = 

7.9991 

sp_NNMSE = 

12.5437 

Blackman 

5 -0.1250 0.2883 4.3133 -0.1250 0.3206 4.8683 

2.5 -0.1250 0.2932 4.0458 -0.1250 0.3380 4.5908 

0 -0.1250 0.3688 3.9673 -0.1250 0.3935 4.1463 

-2.5 -0.5300 0.5326 3.3815 -0.1250 0.5787 3.6113 

-5 -1.3400 0.6519 3.8943 -0.9350 3.1323 3.9570 

-7.5 -0.5300 16.1659 19.8547 -10.250 16.3176 14.9718 

-10 -0.5300 48.0547 71.8709 -0.5300 37.3017 58.8938 

sineMSE = 

9.4793 

sin_NNMSE = 

15.9040 

speechMSE = 

8.3403 

sp_NNMSE = 

13.5770 

Rectangular 

5 -0.1250 0.2871 4.5004 -0.1250 0.2815 4.5866 

2.5 -0.1250 0.2950 4.4080 -0.1250 0.2840 4.5866 

0 -0.1250 0.3177 4.2426 -0.1250 0.2883 4.5090 

-2.5 -0.1250 0.3784 3.9317 -0.1250 0.3640 4.3959 

-5 -0.5300 0.5379 3.3755 -0.1250 0.5064 3.9829 

-7.5 -1.3400 0.8136 2.8734 -1.3400 3.8830 5.4915 

-10 -1.3400 1.9469 2.8648 -0.5300 6.4847 7.3310 
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sineMSE = 

0.6538 

sin_NNMSE = 

3.7423 

speechMSE = 

1.7274 

sp_NNMSE = 

4.9834 

Kaiser 

5 -0.1250 0.2912 4.4997 -0.1250 0.3203 5.0716 

2.5 -0.1250 0.2936 4.3133 -0.1250 0.3210 4.8728 

0 -0.1250 0.3294 4.1271 -0.1250 0.3167 4.3127 

-2.5 -0.1250 0.4128 3.5589 -0.1250 0.4489 3.8147 

-5 -1.3400 0.5505 2.8017 -1.3400 0.7412 2.9532 

-7.5 -0.5300 7.9480 10.5746 -0.5300 3.2700 6.2004 

-10 -0.5300 61.2133 68.1588 -0.5300 45.0961 52.9036 

sineMSE = 

10.1484 

sin_NNMSE = 

14.0049 

speechMSE = 

7.2163 

sp_NNMSE = 

11.4470 

Triangular 

5 -0.1250 0.2926 4.4997 -0.1250 0.3069 4.9651 

2.5 -0.1250 0.2945 4.3133 -0.1250 0.3397 4.9627 

0 -0.1250 0.3206 4.0458 -0.1250 0.3369 4.4027 

-2.5 -0.1250 0.4157 3.4930 -0.1250 0.4516 3.8106 

-5 -1.3400 0.5510 2.7381 -1.3400 0.7809 3.0417 

-7.5 -0.5300 8.8860 11.3704 -10.250 6.7040 6.4624 

-10 -0.5300 64.5430 68.4134 -0.5300 41.9750 53.4811 

sineMSE = 

10.7576 

sin_NNMSE = 

14.1248 

speechMSE = 

7.2707 

sp_NNMSE = 

11.5895 

a) b) c) 

d) e f) 

Figure 6. MSE estimation errors, for superimposed noise N8 Babble, for: a) Hamming, b) Hann, c) Blackman, 

e) Rectangular, e) Kaiser and f) Triangular window.

Analysis of Results 

Based on the results shown in Table 1 and graphically on Figure 5-6, it is concluded that: 

a) Sine test signal:
sineMSE is the lowest when applying the rectangular window (

sineMSE = 0.6538). Compared 

to the application of other window functions the accuracy is higher: 
sineMSE  / 

rectMSE  = 12.8979 / 0.6538 = 

19.7276 (Hamming), 9.4233 / 0.6538 = 14.4131 (Hann), 9.4793 / 0.6538 = 14.4988 (Blackman), 10.1484 / 

0.6538 = 15.5222 (Kaiser) and 10.7576 / 0.6538 = 16.4540 (Triangular) times. Compared to the estimation of 

the fundamental frequency without interpolation, when applying interpolation, the accuracy is higher sin_NNMSE

/ 
sineMSE  = 3.7423 / 0.6538 = 5.7239 times. 
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b) Speech test signal: speechMSE is the lowest when applying the rectangular window ( speechMSE = 1.7274). 

Compared to the application of other window functions the accuracy is higher: speechMSE  / 
rectMSE  = 7.7913 / 

1.7274 = 4.5104 (Hamming), 7.9991 / 1.7274 = 4.6307 (Hann), 8.3403 / 1.7274 = 4.8282 (Blackman), 7.2163 / 

1.7274 = 4.1776 (Kaiser) and 7.2707 / 1.7274 = 4.2090 (Triangular) times. Compared to the estimation of the 

fundamental frequency without interpolation, when applying interpolation, the accuracy is higher 
sp_NNMSE  / 

speechMSE  = 4.9834 / 1.7274 = 2.8849 times. 

c) The accuracy of estimate of the fundamental frequency with the Speech test signal compared to the estimates

fwith the Sine test signal, using the rectangular window, is speechMSE  / 
sineMSE = 1.7274 / 0.6538 = 2.6421 

times lower. 

d) The optimal value of the kernel parameter with 1P Keys kernel is αopt = _ Sine _opt opt Speech   = -0.4432. 

With the fact that the numerical complexity of the 1P Keys kernel is small, and as such, it is suitable for real-

time operation. The optimal choice is the implementation of the rectangular window and the kernel parameter α 

= αopt = -0.4432. 

Conclusion 

This paper describes an algorithm for estimating the fundamental frequency of a Speech signal in the time 

domain. The estimation algorithm is based on autocorrelation. The increase in precision was achieved by 

applying parametric interpolation with a 1P Keys interpolation core. Through experimentation, it has been 

shown that an additional increase in estimation accuracy can be achieved by processing Speech signals with 

window functions. MSE was used as a measure of precision. A detailed analysis of the experimental results 

showed that the rectangular window function was optimal. The error of estimating the fundamental frequency 

by autocorrelation is higher in relation to the error of estimating by interpolation: a) sin_NNMSE  /  
sineMSE  = 

3.7423 / 0.6538 = 5.7239 (Sine test signal) and b) / sin_NNMSE  / 
sineMSE  = 4.9834 / 1.7274 = 2.8849 times. For 

the Rectangular window, the optimal value of the kernel parameter is αopt = -0.4432. These results recommend 

the application of the correlation algorithm and interpolation with the 1P Keys core in real-time systems. 
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