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Abstract: Multi-objective optimization (MOO) is an optimization involving minimization or maximization of 

several objective functions more than the conventional one objective optimization, which is useful in many 

fields. Many of the current methodologies addresses challenges and solutions that attempt to solve 

simultaneously several Objectives with multiple constraints subjoined to each. Often MOO are generally 

subjected to linear inequality, equality and or bounded constraint that prevent all objectives from being 

optimized at once. This paper reviews some recent articles in area of MOO and presents deep analysis of 

Random and Uniform Entry-Exit time of objectives. It further breaks down process into sub-process and then 

provide some new concepts for solving problems in MOO, which comes due to periodical objectives that do not 

stay for the entire duration of process lifetime, unlike permanent objectives which are optimized once for the 

entire process duration. A methodology based on partial optimization that optimizes each objective iteratively 

and weight convergence method that optimizes sub-group of objectives are given. Furthermore, another method 

is introduced which involve objective classification, ranking, estimation and prediction where objectives are 

classified based on their properties, and ranked using a given criteria and in addition estimated for an optimal 

weight point (pareto optimal point) if it certifies a coveted optimal weight point. Then finally predicted to find 

how far it deviates from the estimated optimal weight point. A Sample Mathematical Tri-Objectives and Real-

world Optimization was analyzed using partial method, ranking and classification method, the result showed 

that an objective can be added or removed without affecting previous or existing optimal solutions. Therefore, 

suitable for handling time governed MOO. Although this paper presents concepts work only, it’s practical 

application are beyond the scope of this paper, however base on analysis and examples presented, the concept is 

worthy of igniting further research and application. 

 

Keywords: Optimization, Multi-objective optimization, Decision-making, Time 

 

 

Introduction  

 

To introduce Multi-Objective Optimization, individual terms are first defined. So, what is Optimization? 

Optimization is defined as finding or making the best effective use of situation or resources available. An 

Objective is simply defined as a goal or aims.  Then, Constraint is simply limitation or restriction. Therefore, 

Overall Multi-Objective Optimization can be defined as an approach for seeking best resources to attain desire 

goals whether in the present of constraint(s) or not. 

 

Optimization of process is of paramount eminence in many fields such as Science, Engineering, Technology and 

many more. Its application ranges from biological process Optimal Control, Chemical industrial control to 

physical process control, Data Science and many more. Optimization succor in abridging cost and wastage of 

resources and minimizes time for process execution within given constraints to meet desire objectives as 

illustrated in many articles presented by Vinter et el (2010), (Lewis et el (2012), Khalil et el (1996) and 

Kwakernaak et el (1972). Take for example a case in a flight or marine vessel, which is required to maximize 

the amount of load (goods) it carries meanwhile minimizing it weight and size. Some common approach is to 

minimize the amount of fuel it uses, as reduction in fuel use is directly proportional to decrease in overall weight 

of a vessel and ultimately the size of the fuel tank. Nevertheless, how does one reduce fuel without affecting the 

http://www.isres.org/
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distance to be cover by the vessel? Some engineers would use the shortest path/rout possible for navigation; 

others might use the approach of redesigning an energy efficient engine to ensure minimum consumption and 

minimum wastage of fuel as presented by Kumar et el (2012) and Xiao et el (2018) during navigation. All these 

are targeting at minimizing cost and wastage of resources such as fuel. 

 

Another example, in chemical industrial setting, where the objective is to maximize the product of reaction. 

Some engineers would device a methodology by maximizing rate of reaction but some reactions are 

endothermic which requires too much input energy to run the reaction process fully and efficiently. So how does 

one minimize energy inputs required to run such endothermic reaction meanwhile maximizing product of the 

reaction?  All these are some of the notable situations that require good optimization strategy. 

 

A simple System often consists of a single objective and perhaps a single constraint and they are linear 

normally. However, a system start getting complicated when it’s non-linear and in addition, when there are more 

than one or many constraints and many or multiple objectives to be solve simultaneously. Such systems are 

quite not straightforward to optimize due to their Complexity. 

 

In MOO, Objectives can have influence over other Objective, this makes it difficult to solve such problem. I.e., 

the influence can be either negative or positive. A negative influence is when solving Objective results in 

degrading the optimal solution of at least one or more of the other remaining Objectives in MOO. Therefore, 

this means, to obtain the best optimal solution of such objective, the remaining objective may have poor optimal 

solution or even worst solution or vice versa. 

 

This is often referrers to as non-dominated, non-inferior, Pareto efficient, or Pareto optimal if not any of the 

objective values can be upgraded without devaluing some of the other objective values. Most challenges in 

multi-objective optimization often referred to as multi-criteria programming are generally subjected to linear 

inequality, equality and or bounded constraint(s) that prevent all objectives from being simultaneously solve for 

instance a case where number of objectives are more than that of controllable variable or, perturbation that 

generates uncertainties. Many scholars have put several approaches and model for finding optimal weight point 

of multi-objective optimization in place.  The methods address several challenges in multi-objective 

optimization and their application in many fields such as science, finance, engineering and many more. For 

instance, in field of electricity in electrical power balance where trade-off between voltage and electrical grid 

requirement Wang et el (2013) and where demand of electricity and electricity generation needs to be balance 

by considering constraints bonded to it.  

 

The challenges involve in multi-objective optimization is finding an optimal weight point solution thought there 

may exist multiple solution for a given multi-objective optimization problem, however the problem is finding 

such solution which is not simple such as that of a single objective optimization. The following functions are 

use throughout the entire text to give the general problem definition see (1) extracted from article by Blank et el 

(2020). 

 

min 𝑓𝑘(𝑋)                    𝑘 = 1,… . , 𝐾 

𝑠. 𝑡   𝑔𝑗(𝑋) ≤ 0,            𝑗 = 1, … . , 𝐽                                                               (1) 

 ℎ𝑚(𝑋) = 0,            𝑚 = 1,… . ,𝑀 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈,      𝑖 = 1, … . . , 𝑁 

 

Where the following are defined in MOO with total variable 𝑁, and total Objectives as 𝐾. In addition, total 

constraints are defined a as 𝐽 for inequality, 𝑀 for equality. In addition, lower 𝐿 and upper boundaries 𝑈 for 

each variable 𝑥𝑖
𝐿 , 𝑥𝑖

𝑈 are define too. 

 

Optimization can be express as minimization of an objective function or maximization of Objective function. 

However, in most cases such as in (1), it is often express as minimization as many objectives are model in term 

of cost or time. Therefore, minimizing cost and or time mean an optimal performance, which is less costly, or 

time wasting. For some model of Objective function, may require maximization of Objective function such as 

maximizing products, maximizing profit etc. 

 

 

Literature Review 

 

Here are some of the notable multi-objective optimization methods and their application in many fields such as 

Science, Engineering, Economics, Data Science and many more. In addition, to currently and often use standard 
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approach by setting a fix optimal weight point among multiple objectives. This paper is a polished and extended 

version of an article which initially appeared in preprint Okello (2020), which presented some of review in 

Multi-Objective Optimization field. MOO approaches are categories into four major categories as describe by 

Sayin et el (1999) and Miettinen (2008) as below i.e. No preferences, Priori method (lexicographical 

programming, Goal programming, Utility programming), Posteriori Method and Interactive Method. 

 

In the literature review here, in addition to theoretical manuscripts, discussion about some selected application 

of Multi-Objective Optimization such as in Data Science, Engineering, and Economics etc. A paper by Stefan et 

el (2020), introduces an approach based on transformation of multi-stage optimal control model (OCM) with 

random switching time. They separated the problem into two sub-domains i.e., optimal control with random 

time horizon and Multi-Stage Optimal Control Model (OCM). 

 

In their model and reformulation as deterministic (OCM), they assume that switching time divides the time 

horizon that is define as stage 1 and stage 2 or even more by random variable 𝜏 out of sample space Ω = [0,∞].  
They further applied reformulation problem introduced in by Boukas et el (1990) about deterministic Optimal 

Control Model with infinite time horizon and they got the results (2) and (3) and there is probability at some 

point that the switch has not occurred as they pointed out. 

 

max𝑢(𝑡) ∫ 𝑒−𝜌𝑡𝓏1(𝑡)
∞

𝑡0
[𝑔1(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝜂(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑉∗(𝑥(𝑡), 𝑡)]𝑑𝑡                     (2) 

𝑠. 𝑡          �̇� = 𝑓1(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑡0 

                    𝓏1(𝑡) = −𝜂(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝓏1(𝑡0)  ̇  
 

with 

𝑉∗((𝑡), 𝑡) =
max
𝑢(𝑡) ∫ 𝑒−𝜌(𝑠−𝑡)𝑔2(𝑥(𝑠), 𝑢(𝑠), 𝑠, 𝑥(𝑡), 𝑡)𝑑𝑠

∞

𝑡
  

𝑠. 𝑡 �̇�(𝑠) = 𝑓2(𝑥(𝑠), 𝑢(𝑠), 𝑠, 𝑥(𝑡), 𝑡)        𝑥(𝑡) lim𝑡′↗𝑡 𝜑((𝑡
′))                                      (3) 

 

A case study by Białaszewski et el (2016) showed their method base on genetic gender approach for solving 

multi-objective optimization challenges of detection observers. In their method, the previous knowledge about a 

single gender of all included solutions is use for making difference among groups of objectives.  The knowledge 

is from fitness of a single person and used during current parental crossover in evolutionary multi-objective 

optimization process. 

 

An approach by Fazlollah et el (2015) on multi-objective optimization model for sizing and operation 

optimization district heating system with heat storage tanks. The model includes process design and energy 

integration method for optimizing the temperature interval, the volume and the operation strategy of thermal 

storage tanks. 

 

The application of multi-objective optimization in water distribution system by Shokoohi et el (2017), they use 

Ant-Colony-Optimization for the optimization algorithm which concern with water quality base objectives in 

Water Distribution System design alongside other common objectives. 

 

A multi-objectives decision support system developed for rehabilitation planning of public infrastructure by 

Farran et el (2015). Their method provides decision makers a collection of optimal rehabilitation tradeoff over a 

preferred analysis period. They handled two main objective’s function cost and performance at once, together 

with the collection of attached constraints. The mechanism is based on a fitness-oriented method where 

challenges information is taken into account. To further analyze, cost and performance all together, a 

normalization method of all objectives is attained through time-value concept for both cost and condition states. 

Their proposed methodology is based on life-cycle costing approach using a dynamic markov chain to constitute 

the degeneration methodology and optimal rehabilitation profile is found using algorithm. 

 

A study by Paul et el (2018) on Multi-Objective Bayesian Optimization (MOBO) problem presented a 

framework for taking user choices in (MOBO). They called the improvement approach as Expected Weighted 

Hypervolume Improvement (EWHI). They defined the hyper-volume of the dominated region based on 

continuous unlike Lebesgue. Sampling approximation method was also used for EWHI computation as the 

EWHI take a form of integral in which no close form expression exists in general case. 

 

They demonstrated this on a Bi-Objective Optimization problem (4) where there is preference over one 

Objective and in addition, there is preference over a certain region. 
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{
𝑓1(𝑥1, 𝑥2) =

1

15
𝑒−

𝑥1
15 .

1[0,150](𝑥1)

150
.
1[0,60](𝑥2)

60

𝑓2(𝑥1, 𝑥2) =
1

2
(𝜑(𝑥, 𝜇1, ) + 𝜑(𝑥, 𝜇2, 𝐶))

                                                       (4) 

 

Where 𝜑(𝑥, 𝜇1, )  denotes Gaussian probability density function, for means and covariant matrix are denoted as 

𝜇 and 𝐶 respectively evaluated at 𝑥. According to them, 𝑓1(𝑥) is entirely based on user preference. 

 

Blank (2020) presented some work in Multi-Objective Optimization in Python, which solve challenges that 

most framework in Python programming Language does not address such issue. They developed pymoo, a 

multi-Objective Optimization framework in Python. They implemented their framework that can be modified by 

user by inputting custom operators. Furthermore, sample test Challenges are presented too where gradients can 

be retrieved by automatic differentiation out of the box.  

 

Here are some of the common methods often use in solving Multi-Objective Optimization problems, 

 

𝜀 − 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑀𝑒𝑡ℎ𝑜𝑑:  In the constraint method, one of the Objective is optimized but the remaining of the 

objectives are set as the constraints within the user preference see (5) extension from (1) 

 

𝑚𝑖𝑛 𝑓𝑞(𝑋) ≤ 𝜀𝜇 ,        𝑘 = 1,… . , 𝐾 , 𝑘 ≠ 𝑞 

𝑠. 𝑡   𝑔𝑗(𝑋) ≤ 0,            𝑗 = 1, … . , 𝐽                                                               (5) 

 ℎ𝑚(𝑋) = 0,            𝑚 = 1,… . ,𝑀 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈,      𝑖 = 1, … . . , 𝑁 

 

The method can be used in either convex or non-convex MOO problems. However, there is need to take care 

while choosing 𝜀 − 𝑣𝑒𝑐𝑡𝑜𝑟 to ensure that it is within the range of minimum and maximum values of the 

individual objective function. 

 

Weighted Sum Methods: in this method, all the objectives in the MOO, or set of Objectives are first scalarize 

into a single objective by summing each objective pre-multiplied by user defines or supplied weight.  See (6) 

 

𝑚𝑖𝑛𝑚𝑖𝑧𝑒  𝐹(𝑥) = ∑𝑤𝑘𝑓𝑘(𝑥)

𝐾

𝑘=1

 

𝑠. 𝑡   𝑔𝑗(𝑋) ≤ 0,            𝑗 = 1, … . , 𝐽                                                               (6) 

 ℎ𝑚(𝑋) = 0,            𝑚 = 1,… . ,𝑀 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈,      𝑖 = 1, … . . , 𝑁 

 

Weighted Metric Method: This is another method just like weighted sum method, this one adds up all the 

multiple Objective based on weighted distance metric of any solution from the ideal solution 𝓏∗ see (7) for the 

expression of such condition. 

 

𝑙𝑝(𝑥) = (∑𝑤𝑘|𝑓𝑘(𝑥) − 𝓏𝑘
∗|𝑝

𝐾

𝑘=1

)

1
𝑝

 

𝑠. 𝑡   𝑔𝑗(𝑋) ≤ 0,            𝑗 = 1, … . , 𝐽                                                               (7) 

 ℎ𝑚(𝑋) = 0,            𝑚 = 1,… . ,𝑀 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈,      𝑖 = 1, … . . , 𝑁 

 

Several applications of multi-objective optimization problem have been extensively using in many fields for 

example in large scale clustering presented in article by Zhang et al (2016) and Wang et el (2018) and in some 

of the field like the one presented on the paper by Taboada et el (2012). 

 

In conclusion, many scholars propose several methods; however, some method might be feasible for one or 

more situations while in another situation it might not be perfectly feasible. 

 

 

Multi-Objective Optimization Proposed Concepts 
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This portion discusses, analyzes and presents some of the challenges and solution involve in multi-objective 

optimization, which do not appear in single objectives optimization, and then it gives ways forward in solving 

those problems. 

 

First is to classify objectives base on how long they take in a process lifetime during process execution. It is 

classified into two categories as describe here below. 

 

 

Permanent/Long-Term Objectives 

 

Permanent or long-term objective is defined as the one that stay or is needed from the starts of a process 

execution up to the end of process execution that does not result in redesigning the optimal weight point since 

the optimal weight point remains the same. For instance, if a given process starts at time (𝑡0)  and ends at time 

(𝑡𝑛)  , permanent objectives also start at time (𝑡0)  and ends at time (𝑡𝑛) as the process. 

 

 

Periodical/Short-Term Objectives 

 

Unlike in Permanent or Long-term objective in multi-objective optimization, a temporal objective is the one that 

is needed only for a particular period or for a short while, less than the time for process execution and not 

throughout the entire process. Periodical objectives can pop in or out at any moment during process execution 

time, these could be due to perturbation or any other factor which may cause it, for example consider the 

objectives function given below (8) in MOO  

 

min(𝑓1(𝑥), 𝑓2(𝑥)…𝑓𝑘(𝑥))                                                                           (8) 

 

Where integers,  𝑘 ≥ 2 are the number of objectives. Out of total objective 𝑓𝑘(𝑥), one or more might be very 

crucial from the start of the process or in the middle or even towards the end of process execution but not 

throughout the entire process execution and somewhere somehow, the periodical objective will be no longer 

relevant once it is not needed. 

 

This periodical objective which switches on and off, may results in the entire multi-objectives optimization 

solution being solve again and again, with and without the periodical objective, when in and out of the process 

execution as the optimal weight point of multi-objectives varies and are not the same when one includes or 

remove a given objective from many objectives. 

 

For example, the optimal weight feasible range 𝑥∗ of  𝑊1 ≠ 𝑊2 of the equation in multi-objective (9) and (10) 

are not the same because of the absent of the objective, in other word, 𝑊1 is not an optimal weight point of 

equation (10) whose optimal weight point is 𝑊2 and 𝑤 ≔ [𝑓(𝑥∗), 𝑥∗] 
 

𝑊1 ≔ min(𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥), 𝑓5(𝑥))                                                       (9) 

 

The MOO (9) contains five objectives functions that need to be minimize. 

 

𝑊2 ≔ min(𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥), 𝑓5(𝑥), 𝑓6(𝑥))                                              (10) 

 

In addition, the MOO (10) contains six objectives’ functions not the same as equation (9) however all the five 

objectives are the same with additional objective. 

 

These gives challenge of redesigning another new optimal weight point, which is optimal for the remaining 

objectives, which are only relevant during execution excluding the objective that is no longer needed, or 

including the additional objectives as in equation (10). 

 

 

Random Entry-Exit Time 

 

Here Objectives are Indexed and ranked base on time in multi-objective optimization when dealing with short-

term/periodical objectives and long-term objectives/permanent objectives mixed altogether within a process 

lifetime. It is very crucial to index objectives based on time they either enter (𝑡𝑖) or exit (𝑡𝑖
′) a process for all 

the objectives involve for easy ranking, classification, and solving using partial optimization technique 
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presented here. Given time series for entry time 𝑇 = {𝑡0, 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}  and exit time 

as 𝑇′ = {𝑡0
′, 𝑡1

′, 𝑡2
′, … , 𝑡𝑛

′}. 
 

 

Random Entry Time 

 

In this case, all objectives are assumed to ends at the same time a process terminates however, their entry time 

into the process varies randomly. Given example of objectives function from (10) are index based on time 

objectives enter in a process but first their time of entry is estimated. 

 

Supposed the following estimated time for objectives in (10) are recorded, such that 𝑓1(𝑥) enter at  𝑡0  , 𝑓2(𝑥) 
enter at 𝑡6,  𝑓3(𝑥) enter at 𝑡3,  𝑓4(𝑥) enter at the same time as  𝑓2(𝑥), and  𝑓5(𝑥) enter at  (𝑡7)  
 

Indexing the five objectives as below: 

 

(𝑓1(𝑥))𝑡0
, (𝑓2(𝑥))𝑡6

, (𝑓3(𝑥))𝑡3
, (𝑓4(𝑥))𝑡6

, (𝑓5(𝑥))𝑡7
                                                (11) 

 

Rearranging (11) in ascending order of entry time such that objective that enter first is rank first and given high 

priority, and those that enter last are given last priority or ranked last. However, for two or more objectives with 

same time of entry are ranks using any other criteria such as dependency on other conditions to give them high 

priority. If no such or any other condition exist, those objective with same entry time can be put at any order see 

condition (12) after rearranging.  

 

(𝑓1(𝑥))𝑡0
, (𝑓3(𝑥))𝑡3

, (𝑓4(𝑥))𝑡6
, (𝑓2(𝑥))𝑡6

, (𝑓5(𝑥))𝑡7
                                          (12) 

 

 In (12), 𝑓4(𝑥) enter at the same time as  𝑓2(𝑥), however it is rank first than 𝑓2(𝑥)  as it is assumed that 𝑓2(𝑥)  is 
dependent on 𝑓4(𝑥). Incase such condition do not exist, and then their order of ranking won’t be an issue. 

 

 

Random Exit Time 

 

Here, all objectives are assumed to enter at the same time when process execution begins however, their exit 

time out of the process varies. Given example of objectives function from (12) are indexed base on time 

objectives exit a process but first their time of exit out of the process is estimated. 

 

Supposed the following estimated exit time for objectives in (12) are noted, such that 𝑓1(𝑥) exit at  𝑡′2  , 𝑓2(𝑥) 
exit at 𝑡6

′ ,  𝑓3(𝑥) exit at 𝑡′3,  𝑓4(𝑥) exit at the same time as  𝑓2(𝑥), and  𝑓5(𝑥) exit at 𝑡′7 

 

Indexing the five objectives as below: 

 

(𝑓1(𝑥))𝑡′2  
, (𝑓2(𝑥)) 𝑡′6  

, (𝑓3(𝑥))𝑡′3  
, (𝑓4(𝑥))𝑡′6  

, (𝑓5(𝑥))𝑡′7
                                    (13) 

 

Rearranging (13) in descending order of exit time such that objective that exit first is rank last and given low 

priority, and those which exit last are given high priority or ranked first. However, for two or more objective 

with same time of exit are ranked using any other criteria such as dependency on other conditions, to give them 

high priority. If no such or any other condition exist, those objectives with same exit time can be put at any 

order see condition (14) after rearranging.  

 

(𝑓7(𝑥))𝑡′2  
, (𝑓4(𝑥))𝑡′6  

, (𝑓2(𝑥))𝑡′6  
, (𝑓3(𝑥))𝑡′3  

, (𝑓1(𝑥))𝑡′2  
                                 (14) 

 

In (14), 𝑓4(𝑥) exit at the same time as  𝑓2(𝑥) however, it is ranked first than 𝑓2(𝑥)  as it is assumed that 𝑓2(𝑥)  is 
dependent of  𝑓4(𝑥). Incase such condition do not exist, then their order of ranking won’t matter. 

 

 

Mixed Random Entry-Exit Time 

 

In this scenario, it is based on the idea that in multi-objective optimization some objectives have random entry 

and exit time in that an objective can enter at any time and exit at any time before the process terminate and for 
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all objectives in a process, their entry and exit times are scatter randomly within the process. Also considering 

this process also contains permanent objectives.   It is like a combination of objective with varying entry-exit 

time. 

 

Take for instance the case below: 

 

{
 
 

 
 
𝑓1(𝑥) ⟹ enter(𝑡0) → exit(𝑡′2  )

𝑓2(𝑥) ⟹ enter(𝑡4) → exit(𝑡′6  ) 

𝑓3(𝑥) ⟹ enter(𝑡3) → exit(𝑡′3  )

𝑓4(𝑥) ⟹ enter(𝑡6) → exit(𝑡′6  )

𝑓5(𝑥) ⟹ enter(𝑡7) → exit(𝑡′7  )

 

 

For case above with different entry-exit time, there are two scenarios prior to ranking using time of entry or exit. 

 

We consider Exit time(𝑇′)  and Entry time(𝑇)  so we rank them by taking which is more important, Entry time 

or Exit time.  If we priorities Entry time (𝑇) , then we can rank them base on entry time only and ignore exit 

time(𝑇′), See (11) where it is ranked base on entry time so exit time is of less or no priority.  

 

However, for the case when exit time is of high priority, entry time is ignored. See (14).  Many approaches can 

be use more efficiently for this special case. 

 

 

Uniform Exit-Entry Time 

 

In this case, all objectives, exit at (𝑡𝑖
′)  and another enter at (𝑡𝑖) in a process at the same time; one or more time 

in a process 𝑃(𝑌) noting that 𝑡𝑖
′ = 𝑡𝑖. The question is how to handle this scenario. One of the way presented here 

is to split the process into multi-Process referred to as sub-process 𝑝(𝑦) within a process. Given 

that {𝑝1(𝑦), 𝑝2(𝑦), 𝑝3(𝑦), … , 𝑝𝑛(𝑦)} ∈ 𝑃(𝑦), 𝑦 ∈ 𝑌 and parameter (𝑦) of the process represents the objectives 

to be executed within a process 𝑦 = {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥)𝑓4(𝑥), 𝑓5(𝑥)… . 𝑓𝑘(𝑥)}. Where the objective ends, a new 

one starts. In addition, each sub-process is solved separately by using the presented methods just normally like a 

full objective within a process.  

 

However, splitting a process into a sub-process does not means terminating the entire process. The previous sub-

process terminates and the new sub-process continuous instantaneously as the previous sub-process exits. For 

example, of two sub-processes 𝑝1(𝑦) , 𝑝2(𝑦) see (15) where objectives 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥) all terminates at time 

𝑡6
′  and objectives 𝑓4(𝑥), 𝑓5(𝑥) begins at time 𝑡6 but as you know 𝑡6 = 𝑡6

′  

 

𝑃(𝑦) = {𝑝1(𝑦) {

𝑓1(𝑥) ⟹ 𝑒𝑛𝑡𝑒𝑟(𝑡0) → 𝑒𝑥𝑖𝑡(𝑡′6  )

𝑓2(𝑥) ⟹ 𝑒𝑛𝑡𝑒𝑟(𝑡4) → 𝑒𝑥𝑖𝑡(𝑡′6  )

𝑓3(𝑥) ⟹ 𝑒𝑛𝑡𝑒𝑟(𝑡3) → 𝑒𝑥𝑖𝑡(𝑡′6  )
|𝑝2(𝑦) {

𝑓4(𝑥) ⟹ 𝑒𝑛𝑡𝑒𝑟(𝑡6) → 𝑒𝑥𝑖𝑡(𝑡′8  ) 

𝑓5(𝑥) ⟹ 𝑒𝑛𝑡𝑒𝑟(𝑡6) → 𝑒𝑥𝑖𝑡(𝑡′10  )
}                (15) 

  Given that 𝑡𝑖 = 𝑡𝑖+1 

 

Now for the first sub-process can be group, index using random Entry-Exit time method for ranking and solve 

by either partial optimization or Objective Classification, ranking, Estimation and Predictive measurement 

presented here below. 

 

The second sub-process also follows the procedure for the first one and it continues for all the sub-process up to 

the last one. 

 

 

Partial Optimization Concept in Multi-Objective Optimization 
 

In response to the challenges due to the presents of periodical objective in multi-objective optimization, I 

present some concepts that is about partial optimization of many objectives in multi-objective optimization; two 

initial ideas related are presented. 

 

 

Iterative Multi-Level Approach 
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The approach is iterative in that, it involves taking two or more solvable set from multiple objectives set and 

their optimal weight 𝑊𝑞 for the sub-set solve. This solution becomes or is set as constraints of the next solvable 

set or objectives from the multiple set. It is done iteratively until all objectives are finished and the final optimal 

weight point is assumed the most optimal weight among multi-objectives, which favor the objective with the 

highest priorities.  

 

Consider objective function (16) or recall the equation from (1). 

 

𝑚𝑖𝑛(𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑘(𝑥))                                                              (16) 

Where   𝑥 ∈ 𝑋 

 

In addition, integers 𝑘 ≥ 2  are the number of objectives set 𝑋 are input variables of objective function. 

However, element 𝑥∗ ∈ 𝑋 is further defined as feasible solution or feasible decision of an objectives vector. 

 

𝑊 ≔ [𝑓(𝑥∗), 𝑥∗] ∈ ℝ𝑘                                                                             (17) 

 

Initially, first take the second objective function 𝑓2(𝑥) and set the previous (first) objective function 𝑓1(𝑥) as a 

constraint. Find the optimal weight  𝑊0 as their optimal weight between the two objectives just like the one 

presented in a paper by Yang (2012) which attempt to solve two or more objective by setting one objective as a 

constraint and another objective to be minimize. However, the difference in their method is that when solving 

many objectives, one of the objectives is optimized meanwhile the rest of the remaining objectives are set as 

constraints. For this partial optimization, an objective is optimized and their optimal weight feasible range is set 

as a constraint of the next objective to be optimized in the MOO. This is done iteratively until all objectives are 

finished. 

 

Please note (18) shows the condition is also subjected to constraints either inequality, equality and or bounded 

constraint as explained in (1). 

 

𝑊0 ≔ min(𝑓2(𝑥))                                                                              (18) 

𝑠. 𝑡   𝑓1(𝑥) ≤ 𝜀𝑞 , 𝑔𝑗(𝑋) ≤ 0,            𝑗 = 1, … . , 𝐽                                                        

 ℎ𝑚(𝑋) = 0,            𝑚 = 1,… . ,𝑀 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈,      𝑖 = 1, … . . , 𝑁 

𝑊𝑙 ≤ 𝜀1,   𝑙 = 1, … . , 𝐿 

 

Next iteration is to take objective function 𝑓3(𝑥)  and set the previous optimal weigh 𝑊0 for objectives function 

𝑓1(𝑥), 𝑓2(𝑥)  as a constraint to find optimal weight  𝑊1. See (19). 

 

We set 𝑊0 as constraints of the currently being optimized function simply to ensure that the currently being 

optimized function should not interfere with already optimized function (weight). 

 

𝑊1 ≔ min(𝑓3(𝑥))                                                                       (19) 

𝑠. 𝑡   𝑊0 ≤ 𝜀1    

 

The process continues until all the functions in multi-objectives 𝑓𝑘(𝑥)are finished and the final weight  𝑊𝜇 is 

assumed the optimal weight for all objectives. An overall formulation is as below (20): 

 

𝑊𝑞 ≔ 𝑚𝑖𝑛(𝑓𝑞+2(𝑥))                                                                       (20) 

𝑠. 𝑡   𝑊𝑞−1 ≤ 𝜀𝑞   

 

However, alternatively instead of using the method presented in (18) for solving bi-objective optimization, the 

first objective is optimized as single objective optimization problem as below (21): 

 

𝑊0 ≔ 𝑚𝑖𝑛(𝑓1(𝑥))                                                                         (21) 

𝑠. 𝑡   𝑔𝑗(𝑋) ≤ 0,      

 ℎ𝑚(𝑋) = 0,      
 

So followed by second optimization while setting first optimal weight as constraint to second optimization see 

(22) 
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𝑊1 ≔ min(𝑓2(𝑥))                                                                         (22) 

𝑠. 𝑡   𝑊1 ≤ 𝜀0 
 

The process continues until all the functions in multi-objectives 𝑓𝑘(𝑥)are finished and the final weight  𝑊𝜇 is 

assumed the optimal weight for all objectives. An overall formulation is as below (23): 

 

𝑊𝑞 ≔ min(𝑓𝑞+1(𝑥))                                                                      (23) 

   𝑠. 𝑡   𝑊𝑞 ≤ 𝜀𝑞−1 

 

 

Weight Convergence Optimization 

 

The second approach is by dividing a given set of objectives into several small sub-sets of objectives, which is 

easily solvable without much burden, and each sub-set, solve separately see (24). Let 𝑊𝑞,𝑖  where 𝜇,  and 𝑖 are 

integers of weight level and set of weight respectively.  Weight Level zero 𝑊0,𝑖 

 

𝑚𝑖𝑛 (
𝑊0,0(𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑘1(𝑥)),𝑊0,1(𝑓𝑘1+1(𝑥), 𝑓𝑘1+2(𝑥), 𝑓𝑘1+3(𝑥), … , 𝑓𝑘2(𝑥)), …

. . ,𝑊0,𝑖(𝑓𝑘𝑛+1(𝑥), 𝑓𝑘𝑛+2(𝑥), 𝑓𝑘𝑛+3(𝑥), … . . , 𝑓𝑘(𝑥))
)                   (24) 

𝑠. 𝑡   𝑊0,𝑖 ≤ 𝜀0 

𝑘1 < 𝑘2 < 𝑘𝑛 < 𝑘; 𝑛 ∈ ℕ 

 

The process continues up to a set of weight with a single element (weight point) 𝑊𝑞,0 and that is assume to be an 

optimal weight point for multi-objective optimization see (25).  Weight Level 𝜇 for 𝑊𝑞,0 

 

𝑚𝑖𝑛 (𝑊𝑞,0(…… ),𝑊𝑞,1(…… . ),𝑊𝑞,2(…… . ), … . ,𝑊𝑞,𝑖(…… ))                                         (25) 

𝑠. 𝑡 𝑊𝑞−1,𝑖 ≤ 𝜀𝑞 

 

 

Objectives Classification, Ranking, Estimation, Prediction 

 

The second approach, which is based on the followings, objective classification, Ranking, Estimation, and 

Predictive measurement to find how far a system will deviate from a preferred optimal weight. This is in the 

present of a decision maker (DM), where there could be preference. 

 

The following steps are how the process can be executed in order to find an optimal weight point. 

 

 

Step 1: Objectives Classification 

 

Several criteria can be used to classify objectives. For instance, each objective can be categories as 

independence and dependence objective. Independence is an objective which does not rely on other objectives 

as oppose to dependence objective, which depend on other objectives in other word solving one objective, affect 

the other which is dependent on it also known as Pareto Optimal solution which means a solution that cannot be 

improve without degradation of at least some of the solutions. Another way of classifying objectives is by 

categorizing them into either temporary or permanent objective as discussed above. This is mainly to priorities 

and takes care of objectives such that when dynamically choosing weight, such objectives are taken care of. 

 

 

Step 2; Objective Ranking 

 

In this step 2 of objective ranking, in a set of multi-objectives, objectives are first rank in order of preference or 

merit base. Second, each individual participating objective their minimum or maximum optimal weight point is 

determined such that when finding weight such points are taken care of. Furthermore, objective can be rank in 

order with which they exit process execution, starting with the one that exit earliest being the last to be optimize 

and the one that exit last being the first to be optimize in partial optimization. The same applies to the order with 

which Objectives enter into a process, i.e., those that enter first are rank first up to the one that enter last into the 

process. 
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For instance,  𝑥𝑖
𝐿  and 𝑥𝑖

𝑈 are defined as lower and upper bound limits or constraints see (1) for both minimum 

and or maximum optimal weight point for a given single objective see condition (26) or from condition (1). 

 

𝑥𝑖
𝐿 ≤ 𝑥∗ ≤ 𝑥𝑖

𝑈                                                                           (26) 

 

 

Step 3: Objective Estimation 

 

In estimation stage, this requires prior knowledge of objectives ranking and classification, then an optimal 

weight point is first estimated that certifies the ranking and classification in step 1 and 2. 

 

 

Step 4: Objective Prediction. 

 

This step is based on the principle of predictive measurement in that control variable can be predicted base on 

prior and current state, and hence a control strategy is using such that a controller parameter is adjusted 

accordingly to meet the estimated weight point of multi-objective optimization base on step 1 and 2. 

 

Suppose 𝛿𝑑 is deviation between estimated desired optimal weight  𝑊𝑒 and predicted optimal weight 𝑊𝑝 and in 

addition 𝑊𝑒 and 𝑊𝑝  if are quantifiable i.e., can be express numerically as express in (27): 

 

𝛿𝑑 = |𝑊𝑒−𝑊𝑝 |                                                                                (27) 

 

As   𝛿𝑑 → 0, the better as the condition can be express as 0 ≤  𝛿𝑑 ≤ ∆  where ∆ is deviation limits within which 

𝛿𝑑  is unacceptable and an appropriate strategy needs to be put in place to drive the system towards zero i.e., 

𝛿𝑑 ≤ ∆. 

 

The best predicted optimal weight occurs when 𝛿𝑑 = 0 or when  |𝑊𝑒−𝑊𝑝  | = 0 . Although theoretically it is 

convincing and achievable, in practice it could be very difficult to reach  𝛿𝑑 = 0, however 𝛿𝑑 ≤ ∆ is fine. 

 

 

Objective Alignment in Partial Optimization. 

 

In the above method presented under partial optimization, Objectives has to first be aligned in order to make it 

easily possible to remove an objective or many objectives without needs to redesign the entire solution. This is 

purposely to give temporary objective less priority and permanent objective very high priority. 

 

a. Classification. 

First before beginning to optimize the entire multi-objective using method of either iterative or weight 

convergence, it is first classified into either periodical or permanent objectives. This is to give temporary 

objective less priority and permanent objective very high priority 

 

b. Ranking 

After classifying the objective, it is further ranked base on the time the objectives take to exit the process before 

the process execution ends, then optimization is done in a way that objective which are classified as permanent 

are optimized first without any preference. In addition, the one that are classified as temporary or periodical 

objective are then optimized later by ranking them in the order with which they enter or exit the process and the 

one that exit earliest or enter last will be optimized last such that removing will not affect or need to redesign the 

entire equation. See equation below (28) and (29) where 𝑓5(𝑥)  is removed and the previous weight 𝑊2 

automatical become the weight of the current equation without the present of the objective function 𝑓5(𝑥). 
 

𝑊3 ≔ min(𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥), 𝑓5(𝑥))                                                          (28) 

 

The MOO (28) contains five objectives function, which need to be minimized. 

 

𝑊2 ≔ min(𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥))                                                                 (29) 

The same applies to weight convergence method where permanent objectives are classified and optimized 

separately and the one, which are temporary or periodical, are optimize separately. Then later they are finally 
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optimized such that removing portion of the periodical objectives does not affect the entire solution weight 

(optimal weight point) and resulting in reo. 

 

 

Sample Problem  

 

Here two sample examples are disused from different point of view such as graphical, analytical and the second 

example is about real-world example which involve time governed Multi-Objective Optimization problem with 

bounded constraints.  

 

 

Mathematical Optimization Sample Problem 

 

Example 1: Consider an example of time governed Tri-Objectives Optimization problems (30) where there are 

three objectives with bounded unconstraint,  

 

𝑓1(𝑥) = 0.5𝑥2 + 𝑠𝑖𝑛(𝑥2)      ;      𝑡0 → 𝑡6
′  

𝑓2(𝑥) = 𝑥2 − 1.4𝑥 − 1.5          ;   𝑡3 → 𝑡6
′                                                        (30) 

𝑓3(𝑥) = 𝑥
2 − 1.1𝑒−𝑥

2
− 1      ;    𝑡0 → 𝑡4

′  

Search domain    −3 ≤ 𝑥 ≤ 3 

 

From the above, to optimize the three objectives, we first optimize single objective under bounded constraint 

given above. So, since objective 𝑓1(𝑥) is the only objective that starts from beginning up to the end of the 

process. it is given highest priority followed by objective 𝑓3(𝑥) which starts from beginning but stop somewhere 

in the middle of the process, and last is objective 𝑓2(𝑥) which enter into the process not from the beginning but 

in the middle and stops at the end of the process. 

 

 

First Step: 

 

𝑤0 = min 𝑓1(𝑥) 
s.t  −3 ≤ 𝑥 ≤ 3 

 

Therefore, 𝑤0: =[𝑓1(𝑥
∗), 𝑥∗] so, [𝑓1(𝑥

∗), 𝑥∗] = [2.9𝑒−31, 4.44𝑒−16]  
 

Which is approximately in the range of 0 < 𝑥 < 0.1 for the feasible solution of the first objective. 

 

This feasible solution range is therefore use to set bounded constraints for the next objective to solve to ensure 

that the feasibility range of the first optimized objective is protected. 

 

 

Second Step: 

 

𝑤1 = min 𝑓3(𝑥) 
s.t     0 < 𝑥 < 0.1   

 

So, since 𝑓3(𝑥) is next to be optimized, 𝑤1: =[𝑓3(𝑥
∗), 𝑥∗] so, [𝑓3(𝑥

∗), 𝑥∗] = [−2.1, 3.998𝑒−5] 
 

Which is approximately in the range of 0 < 𝑥 < 0.1 for the feasible solution of the first objective. 

 

These feasible solution range is therefore use to set bounded constraints for the next objective to be solve to 

ensure that the feasible range of the second optimized objective is protected. However, if we are to keep the 

bound rang of the first Objective, −3 ≤ 𝑥 ≤ 3 one finds that [𝑓3(𝑥
∗), 𝑥∗] = [−2.1, −3.3307𝑒−16] which is still 

within the range. We take the range of  0 < 𝑥 < 0.1 

 

 

Third Step: 

 

𝑤2 = min 𝑓2(𝑥) 
s.t    0 < 𝑥 < 0.1 
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Finally, 𝑓2(𝑥) the last to be optimize, 𝑤2: =[𝑓2(𝑥
∗), 𝑥∗] so, [𝑓2(𝑥

∗), 𝑥∗] = [−1.63 , 0.1]. 
 

However, if we are to keep the bound range for the first one −3 ≤ 𝑥 ≤ 3, one finds that [𝑓2(𝑥
∗), 𝑥∗] =

[−1.99 , 0.7] which makes the feasible solution range of  0 < 𝑥 < 0.7 when the first and the second objectives 

are not priorities or given higher rank. If given higher rank, so the range has to be in 0 < 𝑥 < 0.1. To ensure that 

optimal weight point is given respect, favors objectives with higher priority, and not deviated when finding the 

least objective in the rank.  Therefore, any solution in the range of 0 < 𝑥 ≤ 0.7 would be an optimal solution for 

the three objectives. 

 

Please note an Objective in MOO may be short live (periodical) but still have the highest priority, likewise, an 

objective may too be long live (permanent) but still have lowest priority. 

 

See below figure 1 shows graph of the three objectives plotted on a graph. 

 

See figure 1. 

 

Figure 1. Shows graph of Objectives function (f1, f2, f3) against x variable 

 

Example 2: 

 

Another example here in (31) shows MOO with two input variables i.e., 𝑥1, 𝑥2 

It is extended from example (30), so reader can try to solve. 

 

𝑓1(𝑥1, 𝑥2) = 0.5(𝑥1
2 + 𝑥2

2) + 𝑠𝑖𝑛(𝑥1
2 + 𝑥2

2)      ;      𝑡0 → 𝑡4
′  

𝑓2(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2) − 1.4(𝑥1 + 𝑥2) − 1.5          ;   𝑡3 → 𝑡6
′                                       (31) 

𝑓3(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2) − 1.1𝑒−(𝑥1
2+𝑥2

2) − 1      ;    𝑡0 → 𝑡6
′  

Search domain    −3 ≤ 𝑥1, 𝑥2 ≤ 3 
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Solutions: 

 

This sample problem is left for reader. 

 

 

Real World Optimization Sample Problem 

 

Here is another example 3, a Bi-Objective Optimization Problem where first Objective is to minimize time for 

cargo loading and Offloading on Cargo Ship and the second Objective is to minimize Space in the Cargo Ship 

by proper arrangement. This is based on Sipping industry where Cargo (Container) ship need to be optimized 

for transportation. This example is an extract from published article by (Ajay Menon, Marine Insight, 2021) 

webpage, and modified in order to fit this scenario. 

 

Please note: This example 3 may not be a perfect example to depict the situation in Time Governed MOO, but it 

is an illustration of such scenario, author’s attempt to show.  

 

Example 3: 

 

A Cargo (Container) Ship is set to sail from Port A to port C via Port B. The Ship is supposed to load a total of 

′𝑛′ Containers from Port A of which half of it i.e  0.5𝑛 will be unloaded at Port B and from Port B, another 3 

container will be loaded onto the ship for final destination to port C (0.5𝑛 + 3) . 
 

1-Design loading arrangement plan of the Containers on the Cargo Ship such that time for transporting is 

minimized in a way that unloading and loading container at port mid-way to final destination does not result into 

unloading the entire containers to access those at the bottom, hence causing delays of time and wastage of 

energy. 

 

2-Minimize space of the Cargo Ship too with the arrangement plan. 

 

a. Unconstraint 

 

In this part, no condition or constraint is attached. 

 

Solution: 

 

The solution for this is quite straight forward as there is no constraint attached to the container arrangement 

plan. 

 

Answer: Containers to be transported from Port A to final destination Port C should be loaded first at the bottom 

on the Container Ship. 

 

The remaining Containers to be unloaded at mid-way Port B should be loaded on top such that at Port B, 

unloading them won’t affect those at the bottom and won’t result into unloading the entire container to access 

those at the bottom hence minimizing time for unloading and loading. 

 

Please note different arrangement plan can be design for these. 

 

b. Constraint 

 

The constraints in this case is that the heaviest Containers should be loaded first at the bottom followed by 

heavier one, up to the lightest containers loaded on top. This is to avoid damaging lighter container when loaded 

at the bottom and distorting Cargo Ship stability. I.e. To avoid shifting center of gravity of the Cargo Ship. This 

implies that heavier containers should be at the bottom and Containers should be equally distributed or spread 

across the Ship’s bed so that it does not concentrate on only one side. 

 

If out of the 0.5𝑛 containers to be unloaded at port B, about 0.75 of those are containers carrying heavy 

materials and all the containers to be unloaded at final destination are light containers. In addition, the three 

Containers to be loaded from port B are very heavy Containers. 

Design loading plan for such a Scenario to minimized time for transportation, and empty spaces on the Cargo 

ship. 
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Solution 

 

Solution is left for reader. 

 

 

Analysis of the Concepts 

 

The following analysis attempt to shows some drawback of existing methods and advantages of this propose 

methodology compared to the currently existing methods  

 

 

Disadvantage of Existing methods Compared to Presented Concepts 

 

In most of the current methodologies presented by many scholars tries to solve all multi-objective problem 

simultaneously which when periodical/short-term objectives is added or remove may result in destabilizing the 

optimal weight point hence need to redesign the entire solution again. This is not that much problem, however 

during runtime, it could be tiresome and the hardship to resolve the same thing repeatedly. for example, in 

equation given in (9) and (10) where objective is removed and the entire weight are not the same as (28) and 

(29). 

 

 

Advantage of Presented Concepts 

 

The advantage of this solution presented here is that unlike other existing solutions, partial objective 

optimization an objective can be remove safely without need to redesign the entire equation as the previous 

solution become the current solution without need to solve again. In addition, addition of an objective does 

affect much, all is needed is to optimize that objective together with existing solution as explained above. 

However, objective classification and ranking should be carefully done to ensure alignment before optimization. 

 

 

Conclusion  
 

Due to ultimatum in seeking the best optimal solution in multi-objective optimization, this paper discusses some 

notable published paper by scholars, which presents the novel technique in tackling problems in multi-criteria 

optimization such as evolutionary algorithm methods, flower pollination algorithm and many more. However, 

the author further notices some dare in the area of multi-objective optimization where there is situation when 

one or more objectives are needed either in the beginning or towards the ends or even in the middle of the 

process execution. The author called this as periodical or temporary objectives or short-term Objective unlike 

usual objectives that are needed from the start up to the end of process execution. This is called permanent or 

long-term objectives. The problem with this is that every time we add or remove an objective from a running 

process with multiple objectives may results in destabilization of existing optimal weight point as shown in 

example (9) and (10). In respond to the challenges, the author presented a theoretical concept, which uses partial 

optimization iteratively including some methods which use objective classification, ranking, estimation and 

predictive measurement. These concepts are very convincing theoretically, however their feasibility is far 

beyond the scope of this paper. Further in-depth studies will still be conducted to check the practical application 

and its feasibility in real world scenario including a numerical simulation or any analytical solution when 

conducted. 

 

Future research direction: Although this paper presents concepts about partial optimization, and Objective 

Classification, Ranking, Estimation and Prediction, Further examination or testing of concepts about Estimation 

and Prediction need to done, as the paper only cover concepts on partial optimization, Classification and, 

Ranking. Therefore, Estimation and Prediction remains concepts proposed but their feasibility is still beyond the 

scope of this paper. 
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