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Abstract: The profit maximization problem takes a central place in the theory of the firm, especially when 
conditions for perfect competition hold. In this paper, we solve the profit maximization problem of a perfectly 
competitive firm when the constant elasticity of substitution (CES) production function with n≥2 inputs 
describes its technology. Commonly, this problem is solved by using multivariable differential calculus. 
However, to avoid tedious algebraic manipulations and bypass checking nontrivial necessary and sufficient 
conditions, we employ geometric programming (GP), and the power mean inequality (PMI) as an elegant 
complementary tool to multivariable calculus. Since the GP and the PMI are simple optimization techniques 
without derivatives, they can provide new insights into the given problem to managers, students, and other 
audiences who may be unfamiliar with multivariable differential calculus. Additionally, by using the properties 
of limits, we show that the solution to the profit maximization problem with Cobb-Douglas technology is a 
limiting case of our result. 
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Introduction 
 
Since finding the optimum using differential calculus may be nontrivial and inelegant, the signomial geometric 
programming (SGP) technique with zero degrees of difficulty was proposed by (Liu, 2006) as a complementary 
approach to solving the profit maximization problem with Cobb-Douglas production function (CDPF). Further, 
(Kojić & Lukač, 2018) showed how the results from (Liu, 2006) can be obtained by solving an equivalent 
geometric programming (GP) problem with zero degrees of difficulty, providing proof that the (global) 
maximum profit in the case of CDPF has been achieved. 
 
In this note, we solve a profit maximization problem where the firm’s technology is given by the CES 
production function (CESPF). Furthermore, since the CESPF is a generalization of the CDPF, we show how the 
results by (Liu, 2006) and (Kojić & Lukač, 2018) can be derived from our results.  
 
The paper is organized as follows. After the introduction, the notation and preliminaries are presented in the 
second section. The solution to the profit maximization problem with CESPF is the main result of the paper and 
it is given in the third section. The fourth section shows that the solution to the profit maximization problem 
with CDPF is a limiting case of our result. The fifth section concludes the paper.  
 
 
Notations and preliminaries 
 
Notations have been adopted from (Avvakumov et al., 2010), (Jehle & Reny, 2011), and (Liu, 2006): 
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 p market price per unit, p>0 
 A scale of production, A>0 
 xi input quantities, xi>0 
 vi input prices, vi>0 for all i 
 φi elasticities of Cobb-Douglas production function (CDPF) φi>0 for all i 

C D
ix −   the ith component of the maximizer 
πC-D maximum profit in the case of CDPF (i.e. Cobb-Douglas technology) 
αi allocation coefficients of CES production function (CESPF, i.e. CES technology), αi>0 for all i 
σ degree of homogeneity of CESPF 
ρ substitution coefficient of CESPF 

CES
ix  the ith component of the maximizer 
πCES maximum profit in the case of CESPF 

 
Considering CDPF with n inputs (n≥2), given by 
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By using SGP, (Liu, 2006) obtained the result of problem (2) as follows: 
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for all i=1, 2, …, n. However, problem (2) can be converted into a GP problem with zero degrees of difficulty, 
and the same result (4)-(5) was obtained by (Kojić & Lukač, 2018). 
Now, let us introduce CESPF as in (Avvakumov et al., 2010), defined by 
 

 ( )1 2
1

, , ,
n

n i i
i

x x x A x
σ ρ

ρψ α
−

−

=

 =  
 
∑2  , (6) 

 
Where 
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 0σ > ,  (8) 
 
 1, 0ρ ρ> − ≠ .  (9) 
 
Considering CESPF, the profit maximization problem of a perfectly competitive firm with CES technology 
becomes (Jehle & Reny, 2011): 

8 
 



International Conference on Basic Sciences, Engineering and Technology (ICBASET), August 25-28, 2022, Istanbul/Turkey 

 
1 2, , , , 0 1

1

max

s.t. .

n

n
CES

i iy x x x i

n

i i
i

py v x

A x y
σ ρ

ρ

p

α

> =

−
−

=

= −

  ≥ 
 

∑

∑

2

  (10) 

 
To solve (10), we will use a power mean inequality (see (Bullen, 2003)). 
 
Lemma 1. (Power mean inequality) Let n≥2, n∈ℕ, xi>0, and wi>0, i=1, 2, …, n, such that 

1

n
ii

w w
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for all r>0, the following inequality holds 
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Equality in (11) holds if and only if x1=x2=…=xn. 
 
 
The profit maximization problem with CES technology 
 
Since the very discovery of geometric programming, it has been applied to various optimization problems in 
science and industry. In the economic theory of production, (Reklaitis et al., 1975) applied geometric 
programming to solve the firm’s cost minimization problem with Cobb-Douglas and CES production functions. 
Mainly, they used power mean inequality in solving the cost minimization problem with CESPF using 
geometric programming. However, they didn’t comment on the sign of the substitution coefficient ρ, which 
makes their analysis incomplete.  
 
Another important problem in the theory of the firm is the profit maximization problem for the perfectly 
competitive firm. The profit maximization problems with Cobb-Douglas and CES production function and their 
solutions are very well known in the literature (Zevelev, 2014). These problems are usually solved using 
multivariable calculus (Avvakumov et al., 2010). Still, a geometric programming approach to the profit 
maximization problem with CESPF is the main result of this paper since, to the best of our knowledge, such an 
approach is unknown in the literature. 
 
According to (Duffin et al., 1967), (Beightler & Philips, 1976) and (Boyd et al., 2007), problem (10) is 
equivalent to the following problem: 
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Since max f = 1/(min (1/f)) for a positive function f, instead of the problem (12)-(14) we will solve the problem 
(15)-(17):  
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Let us consider two cases regarding the value of the substitution coefficient of CESPF ρ from (9). 
 
 
Case 1. ρ>0 
 
Since the degree of homogeneity σ is defined as a positive number (see (8)), and when ρ>0, the 
function x x ρ σ− is decreasing (for all x>0). In this case, the inequality (17) is equivalent to  
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which transforms the problem (15)-(17) into a GP problem (15)-(16) and (18) written in standard form. 
According to (Boyd et al., 2007) and (Duffin et al., 1967), the corresponding dual of (15)-(16) and (18) is the 
following problem:  
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where a null vector 0 in (20) has n+2 components, and β>0, γ>0, δi>0, εi>0, i = 1, 2, …, n, are dual variables. 
From (20) we get  
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Note that from (8), (23) and the positivity of dual variables, it follows that the degree of homogeneity of CESPF 
must satisfy the following condition: 

 0 1σ< < .  (25) 
 
Furthermore, using (21)-(24), (19)-(20) becomes an unconstrained maximization problem  
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Let us solve (26) by using Lemma 1. Let  
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According to (11), for all r>0, the following inequality holds 
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By choosing r=ρ/(ρ+1), the right-hand side of (29) becomes the constant. Thus, from (26) and (29), we get  
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Equality in (29)-(30) holds if and only if 
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From (23) and (31) we get 
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Thus, by definition of the strict global optimum, the strict global maximum M of (26), and at the same time of 
(19), is equal to the right-hand side of (30), and it is achieved if and only if δi, i=1,2,…,n, satisfy (32). In 
addition, M represents the strict global minimum of (15)-(17). Furthermore, since max f = 1/(min (1/f)) for a 
positive function f, we can find πCES from (10) via (12)-(17) as follows:  
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According to (Duffin et al., 1967), from (15)-(18) and (21)-(24), we have 
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from where we get 
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Thus, the strict global maximum of the profit maximization problem with CES technology πCES is given by (33), 
and it is achieved for the input values given by (38).  
 
 
Case 2. -1<ρ<0  
 
If -1<ρ<0, then the function x x ρ σ− is increasing (for all x>0). In this case, inequality (17) is equivalent to  
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so (15)-(17) becomes a signomial geometric programming problem (15)-(16) and (39). SGP problem (15)-(16) 
and (39) can be solved similarly to (15)-(16) and (18). The only difference is changing parameter ρ<0 by –ρ>0 
into equations (19)-(24). From that, by doing some algebraic calculations, it follows that the solution in this case 
is 
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Note that (40) and (41) have the same form as (33) and (38), respectively, where the only difference is the 
change of parameter ρ with –ρ. 
 
 
The profit maximization problem with Cobb-Douglas technology 
 
In this section, we show that the solution to the profit maximization problem with Cobb-Douglas technology 
given by (4)-(5) is the limiting case of (33) and (38) when ρ>0, i.e. the limiting case of (40)-(41) when -1<ρ<0. 
Let us first show how the Cobb-Douglas production function can be obtained from the CES production function. 
Let CDPF be given by (1) where (3) holds. Let us define 
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Since (44) holds, by taking a natural logarithm and after applying L’Hospital’s rule, from (45) we have  
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Then, from (46) we have  
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Thus, the Cobb-Douglas production function given by (1) is the limit when ρ→0 of the CES production function 
given by (6).  
 
Further, let us show how πC-D from (4) can be obtained from πCES. From (33) we have 
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Since (44) holds, by taking a natural logarithm and after applying L’Hospital’s rule, from (49) we have  
 

 

( )

( )

( )
( )

1
1 1

1

0

1 1 1
1 1 1 1 1 1

2
' 1 1 1

0

1

1 1

1 ln

ln lim
1

1ln 1 ln
1

lim
1

ln ln
1

i

n

i i
i

n n n
i

i i i i i i
L H i i ii

nn
i i

i
i ii i

v

vv v v

v v

ρ
ρ ρ

ρ

ρ ρ ρ
ρ ρ ρ ρ ρ ρ

ρ

σα
σ

ρ σ α

ρ σ

σ α ρ σ α α
αρ

σ

σ α
σ α α

+

+

+ +

=

→

+ + + + + +

= = =

→

−
−

= =

 
− +   

 Λ = =
−

    
 − − +       +    =

−

 
= − =  −  

∑

∑ ∑ ∑

∏ .∑

  (50) 

 
Thus, from (42)-(43) and (48)-(50) we have 
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Thus, the profit πC-D from (4) is the limit when ρ→0+ of the profit πCES from (33). When -1<ρ<0, by using a 
similar procedure, we can show that the profit πC-D from (4) is the limit when ρ→0− of the profit πCES from (40). 
 
Finally, let us show how C D

ix − from (5) can be obtained from , 1,2,...,CES
ix i n= . Let 
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Since (43)-(44) hold, from (38), (51) and (52) we have 
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Thus, C D

ix − from (5) is the limit when ρ→0+ of , 1, 2,...,CES
ix i n= , from (38). When -1<ρ<0, by using a similar 

procedure, we can show that C D
ix − from (5) is the limit when ρ→0− of , 1, 2,...,CES

ix i n=  from (41). 
 
 
Conclusion  
 
One of the most important problems in economics is the firm’s profit maximization problem. In this paper, we 
solved the profit maximization problem with CES technology with n≥2 inputs using a geometric programming 
approach and power mean inequality. Unlike multivariable calculus, this procedure does not require checking 
nontrivial necessary and sufficient conditions. Instead, a unique solution followed by power mean inequality and 
the definition of a strict global maximum directly. Finally, by using L’Hospital rule only, we showed how the 
solution to the profit maximization problem with Cobb-Douglas technology could be derived from the CES 
technology case.  
 
 
Recommendations 
 
Given that the geometric programming approach to the profit maximization problem bypasses checking 
nontrivial necessary and sufficient conditions when multivariable calculus is used, educators could incorporate 
this technique into classrooms to present this important topic in a complementary way. Since geometric 
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programming and the power mean inequality are simple optimization techniques without derivatives, they can 
provide new insights into the given problem to managers, students, and other audiences who may be unfamiliar 
with multivariable calculus. 
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