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Abstract: Landslide is one of the natural hazards that considers a serious threat to both humans’ lives and 
properties. Tasmania, Australia is one of those regions where landslides caused considerable damage to people 
and the State. Landslide damages can be reduced, even stopped, if proper land condition and planning 
assessment has been done. The main influencing parameters in landslide occurrences are topography, 
precipitation, and geological formation. Those parameters along with other influencing parameters have been 
used in landslide susceptibility mapping. In order to have a reliable analysis, a robust method of Decision Tree 
(DT) has been used to perform susceptibility mapping. According to the hierarchy structure of DT, geology and 
slope have been selected as the most influential parameters in landslide susceptibility.  In order to evaluate the 
reliability of the outcomes, Area Under the Curve (AUC) has been utilized. Success and prediction rates were 
87.64% and 84% respectively. Subsequently, risky features such as buildings, schools, hotels, etc. have been 
used in overlay analysis in a GIS environment with “very high” and “high” susceptibility classes. The outcome 
of this research can assist planning parties to secure vulnerable regions and consider those areas in their future 
decision-making strategies. 
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Introduction 
 
Natural hazards are a great threat to both lives and properties worldwide (Jia et al., 2021). These include 
flooding, wildfire, earthquake, landslides, etc. Among natural disasters, landslides can cause serious losses 
directly or indirectly to the society and economy (Del Soldato et al., 2017). They are related to the 
characteristics of the slope of the terrain (Sim et al., 2022). One way to minimize the damage of landslides is to 
recognize the susceptible regions that are most likely to occur (Park et al., 2018). In the natural hazard scope, a 
susceptibility map recognizes regions that are more or less disposed to a potential landslide occurrence using 
low to high possibility values/classes (Ballabio & Sterlacchini, 2012). Susceptibility assessment has been 
implemented by several researchers to prevent or reduce actual damage from natural hazards. Until now, various 
methodological approaches including qualitative and quantitative methods have been applied for landslide 
susceptibility mapping (Reichenbach et al., 2018). 
 
There is a variety of methods available in the literature to identify landslide susceptible areas such as frequency 
ratio (FR) (Lee & Sambath, 2006), logistic regression (LR) (Lee, 2005), index of entropy (IoE) (Pourghasemi, 
Mohammady, et al., 2012), the weight of evidence (WoE) (Lee & Choi, 2004), evidential belief function (EBF) 
(Althuwaynee et al., 2012), statistical index (Regmi et al., 2014), analytical hierarchy process (AHP) (Kumar & 
Anbalagan, 2016), fuzzy logic (Pourghasemi, Pradhan, et al., 2012), fuzzy rule-based classifiers (Pham, Tien 
Bui, et al., 2016), neuro-fuzzy models multivariate adaptive regression splines (MARS) (Chu et al., 2019), 
random forest (RF) (Hong et al., 2019), (DT) (Park et al., 2018), Artificial neural network (ANN) (Lee et al., 
2004), and support vector machines (SVM) (H. R. Pourghasemi et al., 2013), and etc. Each of the 
aforementioned methods has advantages and disadvantages (Reichenbach et al., 2018). Though, machine 
learning is a category of methods that are repeatedly used in natural hazard studies (Korup & Stolle, 2014).  
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Figure 1. Distribution of landslides in Tasmania along with a few examples of the affected areas (BAY) 

 
Machine learning is related to a set of methods that distinguish patterns in the dataset and use them to predict 
future scenarios (Jain et al., 2020).  One of the differences between machine learning methods and other 
approaches is that without any pre-defined rules from experts, they can learn their own mappings between 
parametric rules directly from the data. This characteristic is advantageous in the case that the number of factors 
is considerably large and their physical properties are quite complex, as in the case of landslide (Merghadi et al., 
2020). Hence, the machine learning approach to landslide response may assist to avoid many of the limitations 
of physics-based algorithms. In this study, we applied the machine learning method of DT using landslide data 
collected in the 1950s. 
 
Australia has been affected by several landslides in the past (Roodposhti et al., 2019). Some lands in Tasmania 
are susceptible to slope instability (Slee & McIntosh, 2022). In some cases, the financial damage to people and 
the State reaches millions of dollars. However, there is no information source that people can use to get 
informed about landslide risk (Mazengarb, 2005). In addition, neither the insurance company nor the Tasmanian 
government provides coverage for those damages (Roodposhti et al., 2019). Without any doubt, such disasters 
and their destructive impacts can be avoided if the ground conditions are evaluated and assessed prior to the 
planning and construction (Dai et al., 2002). 
 
In order to create safer and sustainable communities land use planning strategies are required (Chakraborty & 
Anbalagan, 2013; Sultana & Tan, 2021). Some of the planning actions are: to avoid development in areas that 
will increase the likelihood of landslide risk; to remove or modify structures in risky zones; to recognize high-
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risk areas through zoning and overlay controls, and to avoid developments that are more likely to contribute to 
increased landslide risk. 
 
According to the above information, since landslide conditions in Tasmania received less attention in the 
literature, this study contributes to a better understanding of the landslide risky areas in Tasmania, Australia by 
overlaying the landslide susceptible areas with risky locations. Using this analysis to identify the risky areas can 
be a great tool for several end-users (private and public sectors), intended for landslide mitigation purposes at 
both local and international levels. 
 
 
Study Area and Data Used  
 
Landslides are common in Tasmania due to the natural geological processes over long-time scales (Figure 1). 
Due to its varied topographical, geological, and geomorphic processes, including the effects of past and present 
climates, landslides occur in a variety of sizes and types (Mazengarb & Stevenson, 2010). Mineral Resources 
Tasmania (MRT) stated that due to the nature and magnitude of the known past landslides, similar events 
occurring today would have the potential for significant damage in the future 
(https://www.mrt.tas.gov.au/home). The five major landslide types (slide, flow, fall, topple and spread) all can 
happen in Tasmania, with slides (both shallow and deepseated) and flows being the most common types. A 
number of landslides are a combination of movement types. The material that moves is classed as rock, earth, or 
debris. 
 
In order to have efficient mitigation strategies, defining the landslide conditioning factors must be also 
highlighted throughout the spatial domain (Roodposhti et al., 2019). A relevant and reliable landslide 
conditioning factors dataset with accurate landslide inventories is essential for landslide susceptibility analysis. 
Both datasets’ precision has a direct impact on the final outcomes (Meena et al., 2022). For the current research, 
the conditioning factors are altitude, slope, aspect, forest, geology, landuse/cover (LULC), Normalized 
Difference Vegetation Index (NDVI), rain, distance to the river, distance to road, and soil (Figure 2). Each 
factor was resized to a 30 × 30 m grid. Each one of these factors has an impact on landslide occurrence in a 
region. 
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Figure 2. Landslide conditioning factors 

 
Regarding the risky features, the Tasmania government website provided a set of factors such as ambulance, 
buildings, children and elderly population density, cultural places, educational places, entertainment places, 
governmental places, heritage Tasmania features, hotels, kindergarten, medical services, police stations, primary 
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infant schools, private reserves, and tourist features. The aforementioned dataset has been used in risk analysis 
which will be described in the following sections. 
 

 
Figure 3. Flowchart 

 
 
Methodology 
 
Analyzing the correlation between “landslide conditioning factors” and “landslide inventory” is the first stage in 
landslide susceptibility analysis. Therefore, according to the flowchart (Figure 3), both datasets of conditioning 
and inventory have been produced. As has been mentioned landslide database has been received from MRT 
which includes the landslide locations since the 1950s. A total of 600 landslides were randomly selected; 70% 
of them were used as training data and 30% as validation data. The same number of non-landslide points were 
randomly selected from the free-landslide regions. Subsequently, values of 1 and 0 were assigned to landslide 
pixels and non-landslide pixels respectively. In order to perform DT, all dataset needs to be converted into 
ASCII (American Standard Code for Information Interchange) format. ArcGIS was used to convert all of the 
input data into ASCII data. Then, landslide training data and landslide conditioning factors were analyzed while 
using the DT method in the SPSS environment to calculate the landslide susceptibility index and build a 
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andslide susceptibility map in the study area. Classes with the highest susceptibility were overlaid on risky 
features derived from different sources. 
 
 
Decision Tree (DT) 
 
DT is one of the machine learning methods that consider a predictive modeling technique. It can precisely 
identify the structural patterns in data and represent them graphically as tree structures. Another advantage of 
DT is that pre-defined correlation between the variables is not required (Saito et al., 2009). DT can explain data 
and use it predictively, it can also ingest data calculated at varying scales, purely on the non-linear relationship 
without the need for assumptions based on frequency distributions (Kheir et al., 2010). Consequently, each 
factor can be considered input into the model. DT has been used as a rule-based technique in numerous natural 
hazard studies (Chen et al., 2017; Jaafari et al., 2018; Tehrany et al., 2013). DT groups the landslide 
conditioning factors hierarchically according to levels of susceptibility. The aim is to create a set of decision 
rules that can form the basis for predicting the outcome from the input dataset. Thus, the rules are generated by 
the analysis of a set of conditioning factors, with the purpose of predicting an outcome from a similar set of 
variable factors. Due to the proficiency of DT, this method was used to analyze the correlation between the 
landslide conditioning factors and the training dataset. Using DT-CHAID the conditioning factor that is selected 
at each step is the one representing the strongest relationship with the landslide occurrence susceptibility. 
 
 
Accuracy Assessment  
 
AUC is a popular, comprehensive quantitative method of accuracy assessment, by which the prediction and 
success rates may be evaluated (Pham, Pradhan, et al., 2016). The proficiency of AUC in evaluating the 
susceptibility mapping outcomes has been demonstrated successfully in a number of studies (H. Pourghasemi et 
al., 2013; Pourtaghi et al., 2016; Xu et al., 2012). AUC evaluates the existence of the known landslide inventory 
data and the acquired probability map. It starts by dividing the landslide probability map into categories of equal 
area, and hierarchically ranking respective values from minimum to maximum in ArcGIS. AUC starts by sorting 
the calculated values of all cells into descending order, thus ranking each prediction hierarchically. Thereafter, 
the values of cells were divided into 100 classes with 1% accumulation intervals. The presence of landslide in 
each interval is measured using the “Tabulate area” tool in ArcGIS as the next step. The success and prediction 
curves determine the percentage of landslides in each probability category. 
  
 
Results and Discussion 
 
DT has been applied and a landslide susceptibility map has been created by classifying the derived map into five 
classes of “low”, ”very low”, ”moderate”, ”high”, and ”very high” (Figure 4) using a well-known quantile 
classification technique (Baeza et al., 2016). Based on the DT tree structure, the most influential landslide 
conditioning factors affecting the landslide distribution were geology and slope, as they were selected at the top 
of the branch. The most susceptible combination of conditioning factors contributing to the high landslide 
susceptibility was as follow: starting with slope (between 32-58°), as well as the decision root continued by the 
rainfall greater than 10mm, and NDVI <-0.1. Areas exhibiting these characteristics were classified as 100% 
susceptible to landslides (Table 1). 
 

Table 1. The most susceptible combination of conditioning factors 
Factors Range DT Rules 
Slope 0-72° 32-58° 
Rainfall  6.6-42.4mm >10mm 
NDVI 0-67° <-0.1 

 
The landslide susceptibility map is presented in Figure 4. It depicted where the slope failure may occur spatially 
in the future.  
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Figure 4. Landslide susceptibility map 
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Figure 5. Risky features 

 
As it can be seen in Figure 4, the majority of the susceptible areas are located southeast, center, and north 
regions. AUC has been applied and success and prediction rates were 87.64% and 84% respectively. In order to 
evaluate which features are at risk from these susceptible areas, overlay analysis has been implemented. The 
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classes of “very high” and “high” have been used to be overlaid with ambulances, buildings, children and 
elderly population density, cultural places, educational places, entertainment places, governmental places, 
heritage Tasmania feature, hotels, kindergarten, medical services, police stations, primary infant schools, private 
reserves, and tourist features. Figure 5 represented the features that fall into the highest susceptible zones. 
 
According to Figure 5, 142 touristic places; 39 primary and infant schools; 122 police stations; 45 medical 
services; Huonville Primary School Kindergarten; 210 hotels; 217 governmental places; 94 education places; 30 
cultural places; 30% buildings; 12 ambulances; 186 entertainment places; 744 private reserves; and 2195 
heritage features are located in highest susceptible zones. The derived output can considerably assist different 
sectors such as governments, insurance, tourism, and etc. 
 
 
Conclusion  
 
All societies are affected by natural hazards in one form or another. Whilst landslides do not present the most 
significant danger in Tasmania, the cost to the community over time from economic and social perspectives is 
considerable. This study aimed to evaluate the existence of risky features in high landslide susceptibility zones 
in Tasmania. DT as one of the robust machine learning methods has been used to evaluate the correlations 
among landslide conditioning factors and landslide inventory. Susceptible zones were detected and risky 
features such as hotels, children and elderly population, etc. have been overlaid with the produced map. Through 
this analysis, some risky features have been detected in classes of “very high” and “high” susceptibility. For 
instance, among all kindergartens in Tasmania, Huonville Primary School Kindergarten has been located in 
risky zones. From 291,698 buildings in Tasmania, 82,736 buildings have been located in risky zones. Such 
information can significantly be helpful in future management plans. It can be used as a basis for more detailed 
and deep risk assessments in Tasmania. 
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