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Abstract: In this paper, we present an approximate analytic solution of the Riccati equation with fractional 
order of multi-parameters. The fractional order of Caputo types with generalized Mittag–Leffler kernel is 
adaptive, this kind of fractional derivative has three fractional parameters. Several properties of the fractional 
derivative and integral are studied. We use the homotopy analysis method to generate the approximate analytic 
solution to the problem. The effect of the fractional parameters on the behavior of the solution is studied, each 
parameter of the fractional derivative can change not only the solution behaviors but also the existence of the 
solution. Two examples are presented to demonstrate the efficiency of the method. Comparisons of the exact 
solution and the approximate solution in the case of the standard derivative are made. For the fractional case, we 
calculate the residual error of the approximate solution. In all cases, the solution is accurate and simply applies.   
 
Keywords: Fractional calculus, Riccati equation, Homotopy analysis method. 
 
 
Introduction 
 
Fractional calculus becomes one of the most interesting subjects in the area of applied mathematics. Several 
definitions of the fractional derivatives were introduced in terms of the local and the memory of the functions. 
Applications of fractional calculus appear in the differential equations which almost describe a real-live 
phenomenon. 
 
The Riccati equation is utilized in many branches of mathematics, including physics, algebraic geometry, and 
conformal mapping theory. It also shows up in a lot of practical issues. The Count Jacopo Francesco Riccati of 
Italy is honored by having his name attached to the Riccati differential equation (RDE) (1676-1754). The 
foundational theories of the Riccati equation are covered in the book by Reid (Reid, 1972), which also includes 
applications to random processes, optimal control, and diffusion issues. A well-known nonlinear differential 
equation, the Riccati equation has numerous uses in the fields of engineering and science, including resilient 
stabilization, stochastic realization theory, network synthesis, optimal control, and financial mathematics.  
 
The Riccati differential equation (RDE) of fractional order has been explored by numerous authors; for instance, 
(Momani & Shawagfeh, 2006), the authors created the Adomain decomposition method for the solution of RDE 
of fractional order. Some analytical methods for the resolution of RDE are provided (Pala & Ertas, 2017). The 
authors (Biazar & Eslami, 2010) used the differential transform approach to arrive at the RDE solution. The 
author (Tsai, 2010) created a Laplace-transform Adomain decomposition technique for the resolution of (RDE). 
An analytical approach based on the homotopy analysis method (HAM) is suggested to resolve nonlinear (RDE) 
with fractional order (Cang et. al., 2009). Using the homotopy approach, Odibat and Momani devised an 
algorithm for the quadratic Riccati differential equation of fractional order (Odibat & Momani, 2008). 
Recently, Abdeljawad (Abdeljawad, 2019) introduced a generalized Atangana-Baleanu Caputo (GABC) 
fractional derivative based on the Mettag-Lefller function kernel which contains three parameters. Srivastava et. 
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al. investigated the definition with Legendre polynomials for solving several physical models (Srivastava et. al., 
2021). Moreover, the fractional parabolic differential equation under the GABC fractional derivative is solved 
by the HAM (Alomari et. al., 2020). To the best of our knowledge, this paper will introduce the solution of RDE 
using GABC for the first time. The Riccati differential equation in fractional case using generalized Atangana-
Baleanu Caputo (GABC) definition can be written as: 

 
 0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡

𝛼𝛼,𝜇𝜇,1𝑦𝑦(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) + 𝑞𝑞(𝑡𝑡)𝑦𝑦(𝑡𝑡) + 𝑟𝑟(𝑡𝑡)𝑦𝑦2(𝑡𝑡), (1) 
 subject to 𝑦𝑦(0) = 𝑎𝑎.  
 
The following results for the GABC fractional derivative can be found in (Abdeljawad, 2019). 
 
Definition 1 The generalized  Atangana-Baleanu Caputo (GABC) fractional derivative with Mittag-Leffler 
kernel of  three parameters   𝐸𝐸𝛼𝛼,𝜇𝜇

𝛾𝛾 (𝜆𝜆, 𝑡𝑡), is defined by  
 

 (𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾𝑓𝑓)(𝑥𝑥) = 𝑀𝑀(𝛼𝛼)
1−𝛼𝛼 ∫  𝑥𝑥𝑎𝑎 𝐸𝐸𝛼𝛼,𝜇𝜇

𝛾𝛾 (𝜆𝜆, 𝑥𝑥 − 𝑡𝑡)𝑓𝑓′(𝑡𝑡)𝑑𝑑𝑡𝑡, (2) 
 
where 0 < 𝛼𝛼 < 1, 𝑅𝑅𝑅𝑅(𝜇𝜇) > 0, 𝛾𝛾 ∈ ℝ, 𝜆𝜆 = −𝛼𝛼

1−𝛼𝛼
, 𝐸𝐸𝛼𝛼,𝜇𝜇

𝛾𝛾 (𝜆𝜆, 𝑧𝑧) = ∑  ∞
𝑘𝑘=0

𝜆𝜆𝑘𝑘(𝛾𝛾)𝑘𝑘𝑧𝑧𝛼𝛼𝑘𝑘+𝜇𝜇−1

𝑘𝑘!𝛤𝛤(𝛼𝛼𝑘𝑘+𝜇𝜇)
, and (𝛾𝛾)𝑘𝑘 = 𝛾𝛾(𝛾𝛾 + 1)⋯ (𝛾𝛾 +

𝑘𝑘 − 1) is the Pochhamme function.  
 
For γ = 1,2,3,⋯, the AB fractional integrals of order 0 < α,μ ≤ 1  can be written as 

(𝑎𝑎𝐴𝐴𝐴𝐴𝐼𝐼𝛼𝛼,𝜇𝜇,𝛾𝛾𝑓𝑓)(𝑥𝑥) = ��
𝛾𝛾
𝑖𝑖
�

𝛼𝛼𝑖𝑖

𝑀𝑀(𝛼𝛼)(1 − 𝛼𝛼)𝑖𝑖−1 (𝑎𝑎

𝛾𝛾

𝑖𝑖=0

𝐼𝐼𝛼𝛼𝑖𝑖+1−𝜇𝜇𝑓𝑓(𝑥𝑥). 

 
Theorem 2 For 0 < 𝛼𝛼 < 1, 𝜇𝜇 > 0, 𝛾𝛾 ∈ ℕ , and 𝜆𝜆 = −𝛼𝛼

1−𝛼𝛼
, we have  

 (𝑎𝑎𝐴𝐴𝐴𝐴𝐼𝐼𝛼𝛼,𝜇𝜇,𝛾𝛾𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎)∑  𝛾𝛾
𝑘𝑘=0 (−1)𝑘𝑘𝜆𝜆𝑘𝑘𝐸𝐸𝛼𝛼,𝛼𝛼𝑘𝑘+1

𝛾𝛾 (𝜆𝜆, 𝑥𝑥 − 𝑎𝑎) 
 = 𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎). (3) 

 
 
HAM Solution 
 
The homotopy analysis method provides an approximate analytical solution for various nonlinear problems. In 
this chapter, we extend the applications of the homotopy analysis method to the general form of the time-
fractional partial differential equation: 
 

 0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾𝜂𝜂(𝜉𝜉) = 𝑁𝑁[𝑢𝑢(𝑡𝑡)],        0 < 𝛼𝛼 ≤ 1, 𝜇𝜇 > 0, (4) 
 
subject to the initial condition: 𝜂𝜂(0) = 𝑎𝑎, where 𝑁𝑁 is a non-linear operator, 𝜉𝜉 denotes an independent variable, 
and 𝜂𝜂(𝜉𝜉) is an unknown function. Firstly, we construct the homotopy map (Alomari et. al. 2020):  
 

 (1 − 𝑞𝑞)𝐿𝐿[𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) − 𝜂𝜂0(𝜉𝜉)] = ℏ𝑞𝑞(0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) − 𝑁𝑁[𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞)]), 
 (5) 

where 𝑞𝑞 ∈ [0,1] is an embedding parameter, ℏ is a nonzero convergent control parameter, 𝐿𝐿 is an auxiliary 
linear operator, 𝜂𝜂0(𝜉𝜉) denotes an initial approximation of the solution, and 𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) is an unknown function. 
When 𝑞𝑞 = 0 and 𝑞𝑞 = 1, it holds  
 

 𝜙𝜙(𝜂𝜂(𝜉𝜉); 0) = 𝜂𝜂0(𝜉𝜉),        𝜙𝜙(𝜂𝜂(𝜉𝜉); 1) = 𝜂𝜂(𝜉𝜉). (6) 
 
Thus, as 𝑞𝑞 increases from 0 to 1, 𝜙𝜙(𝜂𝜂(𝜉𝜉);𝑞𝑞) varies from the initial guess 𝜙𝜙(𝜂𝜂(𝜉𝜉); 0) to the exact solution 
𝜙𝜙(𝜂𝜂(𝜉𝜉); 1). For succinctness, equation (5) is called the zero-order deformation equation. 
 
According to HAM, we have the freedom to choose the auxiliary parameter ℏ, the initial approximation 𝜂𝜂0(𝜉𝜉), 
and the auxiliary linear operator 𝐿𝐿. we can assume that all of them are properly chosen so that the solution 
𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) of the zero-order deformation equation (5) exists for 0 ≤ 𝑞𝑞 ≤ 1, and besides, the 𝑖𝑖th-order 
deformation derivative. Define 

 𝜂𝜂𝑖𝑖(𝜉𝜉) = 1
𝑖𝑖!
𝜕𝜕𝑖𝑖𝜙𝜙(𝜂𝜂(𝜉𝜉);𝑞𝑞)

𝜕𝜕𝑞𝑞𝑖𝑖
|𝑞𝑞=0. (7) 
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Expanding, 𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) in Taylor’s series with respect to 𝑞𝑞, we have 

 𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) = 𝜙𝜙(𝜂𝜂(𝜉𝜉); 0) + ∑  ∞
𝑖𝑖=1

1
𝑖𝑖!
𝜕𝜕𝑖𝑖𝜙𝜙(𝜂𝜂(𝜉𝜉);𝑞𝑞))

𝜕𝜕𝑞𝑞𝑖𝑖
|𝑞𝑞=0𝑞𝑞𝑖𝑖 . (8) 

From equations (6) and (7), the above power series can be written as:  

 𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) = 𝜂𝜂0(𝜉𝜉) + ∑  𝜂𝜂𝑖𝑖(𝜉𝜉)𝑞𝑞𝑖𝑖 .∞
𝑖𝑖=1    (9) 

Substitute the value of 𝜙𝜙(𝜂𝜂(𝜉𝜉); 𝑞𝑞) into equation (5), and we get  

 (1 − 𝑞𝑞)𝐿𝐿[∑  ∞
𝑖𝑖=1 𝜂𝜂𝑖𝑖𝑞𝑞𝑖𝑖] = ℏ(0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾 ∑  ∞

𝑖𝑖=0 𝜂𝜂𝑖𝑖𝑞𝑞𝑖𝑖+1 − 𝑞𝑞𝑁𝑁[∑  ∞
𝑖𝑖=0 𝜂𝜂𝑖𝑖𝑞𝑞𝑖𝑖]). (10) 

By equating like powers of 𝑞𝑞 from both sides in Eq.(10), we get 

𝑞𝑞1:𝐿𝐿[𝜂𝜂1(𝜉𝜉)  − 0] =  ℏ(0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾 𝜂𝜂0 (𝜉𝜉)   − 𝑅𝑅1), 

𝑞𝑞2: 𝐿𝐿[𝜂𝜂2(𝜉𝜉) − 𝜂𝜂1(𝜉𝜉)] =  ℏ(0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾 𝜂𝜂1 (𝜉𝜉)  − 𝑅𝑅2), 

⋮ 

𝑞𝑞𝑛𝑛: 𝐿𝐿[𝜂𝜂𝑛𝑛(𝜉𝜉) − 𝜂𝜂𝑛𝑛−1(𝜉𝜉)] =  ℏ(0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾 𝜂𝜂𝑛𝑛−1 (𝜉𝜉)  − 𝑅𝑅𝑛𝑛), 

where  

 𝑅𝑅𝑛𝑛 = 1
(𝑛𝑛−1)!

𝜕𝜕𝑛𝑛−1𝑁𝑁[Φ(𝜂𝜂(𝜉𝜉),𝑞𝑞)]
𝜕𝜕𝑞𝑞𝑛𝑛−1

|𝑞𝑞=0. (11) 

The initial conditions define as Φ(𝜂𝜂(0); 𝑞𝑞) = 𝜂𝜂0(0) + ∑  ∞
𝑖𝑖=1 𝜂𝜂𝑖𝑖(0)𝑞𝑞𝑖𝑖 = 𝑎𝑎. Thus 𝜂𝜂0(0) = 𝑎𝑎 and 𝜂𝜂𝑖𝑖(0) = 0, 

where 𝑖𝑖 = 1,2,3,⋯. Assume that the auxiliary linear operator 𝐿𝐿, the initial guess 𝜂𝜂0(𝑡𝑡), and the auxiliary 
parameter ℏ is selected such that the series (9) is convergent at 𝑞𝑞 = 1, then due to (6) we have  
 

 𝜂𝜂(𝜉𝜉) = 𝜂𝜂0(𝑡𝑡) + ∑  ∞
𝑖𝑖=1 𝜂𝜂𝑖𝑖(𝜉𝜉). 

 
Additionally, the values of the auxiliary parameter ℏ have a significant impact on the convergence and rate of 
approximation for the HAM solution. It is simple to select an appropriate value for ℏ that will guarantee that the 
solution series is convergent. Finding the valid region of ℏ, which relates to line segments almost parallel to the 
horizontal axis, is simple. This indicates that during this region, the solution is independent of ℏ. Therefore, by 
selecting an appropriate value for this auxiliary parameter, the convergence region and pace of the solution 
series can be significantly increased. To get the ideal value of ℏ, we first fixed α = μ and used the least square 
approach. Now,  consider the residual error.  
 

 𝑅𝑅𝑅𝑅𝑅𝑅(𝜉𝜉) = 0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,𝛾𝛾𝜂𝜂(𝜉𝜉) − 𝑁𝑁[𝜂𝜂(𝜉𝜉)], (12) 

and the average residual error function  

 𝜁𝜁(ℏ) = 1
(𝑁𝑁1+1)

∑  𝑁𝑁1
𝑗𝑗=0 𝑅𝑅𝑅𝑅𝑅𝑅

2(𝜉𝜉𝑖𝑖), (13) 

 where 𝜉𝜉𝑗𝑗 = 𝑗𝑗𝑗𝑗
𝑁𝑁1

. Therefore, we will use the averaged residual error (13) to find the optimal values of the 
unknown convergence-control parameter ℏ. Note that 𝜁𝜁(ℏ) contains unknown convergence-control parameter ℏ. 
The more quickly 𝜁𝜁(ℏ) decreases to zero, the faster the corresponding homotopy-series solution converges. So, 
the optimal values of the convergence-control parameter ℏ are given by the minimum of 𝜁𝜁(ℏ), corresponding to 
a set of a nonlinear algebraic equation. 𝜕𝜕𝜁𝜁(ℏ)

𝜕𝜕ℏ
= 0. Using the symbolic computation software Mathematica, we 

directly employ the command Minimize to get the optimal convergence-control parameter ℏ. 
 
Applications 
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In this section, we introduce the solution of two examples; linear and nonlinear Riccati fractional differential 
equation with three parameters.  
 
Example 1  Consider the linear problem:  

 0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡
𝛼𝛼,𝜇𝜇,1𝑦𝑦(𝑡𝑡) = 𝑦𝑦(𝑡𝑡), (14) 

 
subject to the initial condition:  

 𝑦𝑦(0) = 1. (15) 
 
At 𝛼𝛼 = 𝜇𝜇 = 1 the exact solution is 𝑦𝑦(𝑡𝑡) = 𝑅𝑅𝑡𝑡 which will be useful for the comparison of different 
approximations. By choosing 𝑦𝑦0(𝑡𝑡) = 𝑦𝑦(0), and the linear operator 𝐿𝐿 = 0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡

𝛼𝛼,𝜇𝜇,1, the zero-order of 
deformation (5) becomes  
 

 (1 − 𝑞𝑞)0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡
𝛼𝛼,𝜇𝜇,1[∑  ∞

𝑖𝑖=0 𝑦𝑦𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖 − 𝑦𝑦0(𝑡𝑡)] =
                                                                                                             ℏ𝑞𝑞(0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡

𝛼𝛼,𝜇𝜇,1 ∑  ∞
𝑖𝑖=0 𝑦𝑦𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖 − ∑  ∞

𝑖𝑖=0 𝑦𝑦𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖), (16) 
 
 
 0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡

𝛼𝛼,𝜇𝜇,1[∑  ∞
𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖 − ∑  ∞

𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖+1] =
                                                                                                        ℏ(0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡

𝛼𝛼,𝜇𝜇,1 ∑  ∞
𝑖𝑖=0 𝑦𝑦𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖+1 − ∑  ∞

𝑖𝑖=0 𝑦𝑦𝑖𝑖(𝑡𝑡)𝑞𝑞𝑖𝑖+1), (17) 
 

 where  
 

 Φ(𝑦𝑦(𝑡𝑡), 𝑞𝑞) = 𝑦𝑦0 + ∑  ∞
𝑖𝑖=1 𝑦𝑦𝑖𝑖𝑞𝑞𝑖𝑖 . 

 
Balancing the coefficients of equal powers of 𝑞𝑞, we have the following set of infinite linear fractional 
differential equations: 
 
 0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡

𝛼𝛼,𝜇𝜇,1[𝑦𝑦𝑛𝑛(𝑡𝑡) − 𝜒𝜒𝑛𝑛𝑦𝑦𝑛𝑛−1(𝑡𝑡)] = ℏ�0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡
𝛼𝛼,𝜇𝜇,1𝑦𝑦𝑛𝑛−1(𝑡𝑡) − 𝑦𝑦𝑛𝑛−1(𝑡𝑡)�, 

where 𝜒𝜒𝑛𝑛 = � 0,𝑛𝑛 ≤ 1
1,𝑛𝑛 > 1 . 

 
For the initial condition, we have  
 

 Φ(𝑦𝑦(0), 𝑞𝑞) = 𝑦𝑦0(0) + ∑  ∞
𝑖𝑖=1 𝑦𝑦𝑖𝑖(0)𝑞𝑞𝑖𝑖 = 1,        thus, 𝑦𝑦0(0) = 1, 𝑦𝑦𝑖𝑖(0) = 0, i=1,2,3,. 

 
By applying the integral operator 0𝐴𝐴𝐴𝐴𝐼𝐼𝛼𝛼,𝜇𝜇,𝛾𝛾 on both sides with 𝛾𝛾 = 1, and using equation (3), we achieve the 
general form of the infinite linear fractional differential equations given by  
 

 𝑦𝑦𝑛𝑛(𝑡𝑡) = (𝜒𝜒𝑛𝑛 + ℏ)𝑦𝑦𝑛𝑛−1(𝑡𝑡) − (𝜒𝜒𝑛𝑛 + ℏ)𝑦𝑦𝑛𝑛−1(0) − ℏ0𝐴𝐴𝐴𝐴𝐼𝐼𝛼𝛼,𝜇𝜇,1[𝑦𝑦𝑛𝑛−1(𝑡𝑡)]. (18) 

 Thus, the N-th order HAM approximate solution is given by  

 𝑦𝑦(𝑡𝑡) = 𝑦𝑦0(𝑡𝑡) + ∑  𝑁𝑁
𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝑡𝑡). (19) 

The explicit expression given by (19) contains the auxiliary parameter ℏ. This parameter determines the 
convergence region. Thus the solution depends on the fractional parameters 𝛼𝛼 and 𝜇𝜇. We fixed 𝜇𝜇 = 0.5 and vary 
𝛼𝛼 = 0.2,0.5,0.9.  The optimal value of ℏ can be determined by minimizing the 𝜁𝜁(ℏ) as given in Figure 1. The 
effect of varying the fractional parameters α and μ the 𝑦𝑦(𝑡𝑡) is presented in Figure 2. Similarly, we plot the 
residual error 𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) with different values of fractional derivative in Figure 3.  
 
Table 1 gives the convergent control parameter ℏ and its ARE for several values of 𝛼𝛼 and 𝜇𝜇 using a 6-order of 
approximation. Now, we fixed 𝑡𝑡 = 0, and calculate the solution for several values of α and  𝜇𝜇 as in Table 2, for 
𝜇𝜇= 1 the only case that 𝑦𝑦(0) = 1 happened if ℏ = 0 which is a contradiction with the HAM framework. So, 
equation (14) has no solution in the case of  μ = 1 which means this equation has no solution in the ABC 
fractional type.  
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Figure 1. Average residual error with ℏ  for α = 0.9 (Left), 0.5(Right).  

  
Figure 2. y(t) for example 1 with different values of α (Left), and μ (Right). 

  
Figure 3. Residual error with optimal ℏ given in table 3.1 for α = 0.3, 0.5, 0.9, respectively. 

    
Table 1. ARE and its optimal ℏ  for example 1 at μ=0.5, vary α, and α=0.5, vary μ. 

𝛼𝛼 ARE ℏ 𝜇𝜇 ARE ℏ 
 0.1   8.32917 × 10−7   -1.35798   0.1   3.08439 × 10−12   -1.0527  
 0.3   1.28684 × 10−7   -1.2891   0.3   1.72733 × 10−10   -1.10178  
 0.5   6.33778 × 10−9   -1.19928   0.5   6.33778 × 10−9   -1.19928  
 0.7   8.01290 × 10−11   -1.11493   0.7   1.48121 × 10−6   -1.38789  
 0.9   8.36700 × 10−14   -1.04322   0.9   0.00128426   -1.64569  

 
Table 2. α, μ, and initial condition for example 1 

  𝛼𝛼   𝜇𝜇   Initial condition 
  0.9   1   1. - 0.1 ℏ + 0.01 ℏ2 - 0.001 ℏ3 + 0.0001 ℏ4 - 0.00001 ℏ5 + 1.∗ 10−6ℏ6  
  0.9, 0.5  1 
 0.5  1  1.−0.5ℏ + 0.25ℏ2 − 0.125ℏ3 + 0.0625ℏ4 − 0.03125ℏ5 + 0.015625ℏ6 
  0.9, 0.5  1  
 
 
Example 2  Consider the following ABC fractional Riccati equation:  

  0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,1𝑦𝑦(𝑡𝑡) + 𝑦𝑦(𝑡𝑡) − 𝑦𝑦2(𝑡𝑡) = 0, (20) 

 with the initial condition,  

 𝑦𝑦(0) = 0.5. (21) 

The exact solution in the standard case is 
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 𝑦𝑦(𝑡𝑡) = 𝑒𝑒−𝑡𝑡

𝑒𝑒−𝑡𝑡+1
. (22) 

 The homotopy expression for (20) will be,  

  0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,1[𝑦𝑦𝑛𝑛(𝑡𝑡) − 𝜒𝜒𝑛𝑛𝑦𝑦𝑛𝑛−1(𝑡𝑡)] =
ℎ[0𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝛼𝛼,𝜇𝜇,1𝑦𝑦𝑛𝑛−1(𝑡𝑡) + 𝑦𝑦𝑛𝑛−1(𝑡𝑡) −
                                                                                                      ∑  𝑛𝑛−1

𝑗𝑗=0 𝑦𝑦𝑛𝑛−1−𝑗𝑗(𝑡𝑡)𝑦𝑦𝑗𝑗(𝑡𝑡)], (23) 

 for 𝑛𝑛 = 1,2,3,⋯, we choose the initial guess 𝑦𝑦0(𝑡𝑡) = 0.5, then applying 0𝐴𝐴𝐴𝐴𝐼𝐼𝛼𝛼,𝜇𝜇,1 In the above equation, the 𝑛𝑛-
order can be written as:  

 𝑦𝑦𝑛𝑛(𝑡𝑡) =
(𝜒𝜒𝑛𝑛 + ℏ)𝑦𝑦𝑛𝑛−1(𝑡𝑡) − (𝜒𝜒𝑛𝑛 + ℏ)𝑦𝑦𝑛𝑛−1(0) + ℏ[0𝐴𝐴𝐴𝐴𝐼𝐼𝛼𝛼,𝜇𝜇,1[𝑦𝑦𝑛𝑛−1(𝑡𝑡) −
                                                                                                                            ∑  𝑛𝑛−1

𝑗𝑗=0 𝑦𝑦𝑛𝑛−1−𝑗𝑗(𝑡𝑡)𝑦𝑦𝑗𝑗(𝑡𝑡)]]. (24) 

Applying analysis steps, we find the other 𝑁𝑁-terms. In Figure 4, we plot the behavior of the solution by varying 
the new fractional parameters 𝜇𝜇 and  𝛼𝛼. The residual error of the solutions for several values of α is plotted in 
Figure 5. Table 2 gives the convergent control parameter and it’s ARE for several values of 𝛼𝛼 and 𝜇𝜇 using 6-
order of approximation. We observed that if 𝜇𝜇 = 1 and varies 0 < 𝛼𝛼 < 1 (standard ABC derivative) the initial 
condition will not satisfy (i.e 𝑦𝑦(0) =  0.5 +  0.025 ℏ −  0.0000625 ℏ3 +  3.125 × 10−7ℏ5and ( ℏ ≠ 0)); 
which means that it may have no solution. 

   

 

 

 

 

 

Figure 4. y(t) for example 2  with different values of α (Left), and μ (Right). 

    

Figure 5. 

Residual error with optimal ℏ  given in table 2  for α = 0.3, 0.5, 0.9 respectively. 
 

Table 3. ARE and its optimal ℏ  for example 2 with different values of α with μ=0.5, and different values of μ with α=0.5. 
  α   ARE   ℏ    μ   ARE   ℏ  

 0.1   2.43308 × 10−7   -0.814443   0.1   9.29851 × 10−10   -0.911501  
 0.3   1.49506 × 10−7   -0.826851   0.3   8.28239 × 10−9   -0.882866  
 0.5   4.73852 × 10−8   -0.850767   0.5   4.73852 × 10−8   -0.850767  
 0.7   5.75513 × 10−9   -0.88488   0.7   1.66378 × 10−7   -0.81843  
 0.9   1.28970 × 10−10   -0.927909   0.9   3.39087 × 10−7   -0.790958  

 
 
Conclusion 
 
In this study, we implemented fractional integrals of any order and the fractional operator Caputo type (ABC) 
with Mittag Leffler kernels in three parameters to analyze the Riccati equation using the homotopy analysis 
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method.  Approximate solutions to linear and nonlinear fractional differential equations are calculated using this 
method. Unlike all other analytic methods, it allows us to easily adjust and control the convergence region of the 
series solution. The accuracy of the approximate solutions was validated by computing the solution's residual 
error. The employed method is used to analyze and solve the well-known fractional Riccati equation, which is 
based on rapidly convergent series with easily compatible components. With a few terms, the HAM is effective 
and reveals the existence of the solution, and the amount of error is small. We recommend this method for 
dealing with such issues. The method is straightforward, and it is the first approach to dealing with such issues. 
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