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Abstract: In the present work we numerically study the effect of the presence of triangular shaped promoters 

on the efficiency of a tubular heat exchanger. When we talk about efficiency, we are generally faced with 

problems of dynamic and thermal behavior within the latter. The main objective is to optimize the geometric 

parameters of the triangular-shaped promoters in order to collect the maximum energy at a minimum cost. 

Indeed, in the case of a two-dimensional simplified geometry, we considered the flow of an incompressible fluid 

(air) in a cylindrical heat exchanger tube equipped with baffles placed perpendicular to the direction of flow. 

Several baffle arrangements are considered according to the angle of inclination β, the space between the two 

successive baffles (space ratio PR: P/Dh) and the length of the baffle (blocking ratio BR: e/Dh) . The 

calculations are carried out by means of the fluent computer code using the k-ε turbulence model, RNG, with a 

Reynolds number Re varying from 3000 up to 13000. The results found indicated that the best thermal 

performance obtained corresponds to β=30°;BR=0.2; PR=1 and Re=4000. 

 

Keywords: Turbulence ribs, Nusselt number Nu, Friction number Fr, Turbulence model K-ε RNG, Thermal-

hydraulic factor  

 

 

Introduction 

 

The heat exchanger is one of the most important pieces of equipment in industry because it allows the recovery 

of energy, by convective transfer, between two or more fluids. In order to improve the heat transfer rate with 

minimal pressure drop, researchers have tried to develop several techniques. Two major classes of heat transfer 

enhancement techniques are used in heat exchangers: so-called active and passive techniques (Alam et al., 

2018). In our study, we focus on passive methods (Sheikholeslami et al., 2015), as they do not require an 

external power supply and generally use modified surfaces by inserting vortex generators into the main flow. 

According to the published works in this field, the method which succeeded, successfully, in improving the heat 
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exchange with a reduced cost and bulk with a low pressure drop of the fluid is the promoters of longitudinal 

turbulence (Kumar B et al., 2018). Indeed, several studies are carried out on this technique in order to give a 

better design of the turbulence generator inserted on the heat exchanger which can improve the heat transfer by 

the destruction of the thermal boundary layer (Nakhchi et al., 2019; Targui et al., 2008). In some experimental 

studies, Han et al. (1991) used ribs on two walls of a square channel with different angles of attack for pitch 

ratio (P/e = 10) and blocking ratio (e/D = 0.0625). They found that the angled "V" shaped ribs have a significant 

effect on the performance of the heat exchanger. According to Promvonge et al (2010) baffles with a 45° angle 

of attack increase the heat transfer coefficient from 150% to 850%. Torii et al (2002) concluded that installing 

"winglet" delta type baffles on a finned tube heat exchanger significantly improves heat transfer and reduces the 

friction factor. The effect of baffle angle of attack on heat transfer and fluid flow is investigated numerically by 

Kwankaomeng et al. (2010)  for which they used baffles inclined at 30° with different values of the blocking 

ratio (BR). They found that baffles angled at 30° significantly increased the heat transfer coefficient in the 

channel because they generated vortices in the fluid flow. But this increase in heat transfer associated with a 

large pressure drop ranging from 1 to 17 times over the channel without baffles. Zhang et al, (2013) studied the 

effect of the arc belt inserted in the tube heat exchanger. They found that the arc belt can swirl the fluid pipe and 

plays the role of enhanced heat transfer, but also significantly increases fluid resistance, where the PEC is 

anything above 1.5. A numerical analysis of vortex generators (VG), placed on the tubes of an exchanger, was 

carried out by J. Jang et al. The results obtained showed that the optimal values of the angle of inclination (θ) 

and the transverse location (Ly), are respectively between: 30° < θ < 60° and 2 mm < Ly < 20 mm. Omidi et al 

(2019) numerically investigated the effect of alumina nanofluid inside a three-lobe twisted ribbon tube on heat 

exchanger performance for various volume fractions of nanofluid from 0 .01, 0.02 and 0.03 with a Reynolds 

number between 5000 and 20,000; they noticed that increasing the nanoparticle concentration improves the heat 

transfer rates for these cases, while it does not increase the relative Nusselt number inside the twist tube with a 

Y-insert at a Reynolds number and high nanoparticle concentration. Shobahana et al (2018) concluded that the 

overall performance of the double fin and tube heat exchanger can be improved by 27-91% using 20 degree 

RWVGs for the studied Reynolds number range. 

 

As part of the understanding and improvement of the convective transfer phenomenon in tubular heat 

exchangers with the presence of inclined baffles, the objective of this work is to numerically study the optimal 

geometry, the angle of attack, the ratio pitch (PR) and blocking ratio (BR), which provides the best efficiency of 

a heat exchanger. 

 

 

Geometry Studied 
 

The configuration of the rough circular duct proposed for the ram air stream is a simple two-dimensional (2D) 

rectangular channel with dimensions: H×L2= 0.05×1.3 m
2
 and a hydraulic diameter Dh=50 mm, The dimensions 

of the heat exchanger tubular are given in the following table: 

 

Table 1. Geometry dimensions. 

Parameters Range 

Reynolds number (Re) 3000-13000 (7 valeurs) 

Hydraulic diameter (Dh) 50 mm 

Angle of inclination Ribs (β) 20°, 30°, 40°, 60° 

Roughness height(e) 5 et 10 mm 

Block report (BR: e/Dh) 0.1et 0.2 

spacing roughness(P) 50, 100,150 et 200 mm 

Space ratio(PR:P/Dh)   1, 2,3 et 4 

 

 
Figure 1. Geometry of an exchanger equipped with artificial roughness 
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In our studied tubular heat exchanger two other rectangles are placed, one before the test area of dimensions 

H×L1= 0.05×0.150 m
2
 and the other after the test area of dimensions H×L3= 0.02×0.150 m

2
. The objective of 

adding these two rectangles are to obtain a steady state before the air enters the test area, and on the other hand, 

to ensure a good mixture of air leaving the latter. The ribs of triangular geometric shape are arranged at a fixed 

spacing ratio, on the internal wall of the exchanger. 

 

 

Boundary Conditions 
 

In our numerical study, we take a uniform airflow velocity at the Uinlet inlet section with a fixed temperature of 

300K corresponding to the Prandtl number (Pr) equal to 0.7. The tube wall temperature of the test section is set 

at 350K while the baffle walls and the inlet and outlet extension tube wall are considered adiabatic. The pressure 

of the fluid flow at the outlet is atmospheric (fig.1). The physical properties of air are given in the table below 

(Table 2). 

 

Table 2. Thermo-physical properties 

Properties Tube (al) Fluid (air) 

Cp (J/kg k) 871 1006.43 

ρ   (kg/ m3) 2719 1.225 

λ   (w/m k) 202.4 0.0242 

μ  (N.s/ m2) - 1.7894e-05 

 

 

Governing Equations 
 

In order to study the problem of heat transfer of an incompressible fluid in a two-dimensional turbulent regime 

of our heat exchanger design, one has to solve the equations of continuity, momentum and energy. 

 

Continuity equation: 
∂u

∂x
+

∂V

∂y
= 0                                                                 (1) 

 

Momentum conservation equation: 

 
∂

∂xi
(ρuiuj) = −

∂p

∂xi
+

∂

ρxi
[μ(

∂ui

∂uj
− ρui

′ρuj
′̅̅ ̅̅ ̅̅ ̅̅ )]                         (2) 

 

Energy conservation equation 

 
∂

∂xi
(ρuiT) =

∂

ρxi
[(ᴦ + ᴦt)

∂T

∂xj
]                                               (3) 

            

 Knowing that (ᴦ) is the thermal diffusion given by: 

 

ᴦ =
μ

Pr
                                                                                    (4) 

 

In this study, the standard k-ε turbulence model is adopted over other turbulence models available in the 

ANSYS Fluent computer code, because it is robust and gives accurate results in the case of convective transfer 

of a flow fully turbulent in the test section of a heat exchanger equipped with turbulence promoters. 

−ρui
′uj

′̅̅ ̅̅ ̅̅ ̅̅ ̅ : is called Reynolds constraints defined by the turbulence model ε. 

μt : is the turbulence viscosity defined by: 

 

μt = ρcμ
k2

ε
                                                        (5) 

 

For ANSYS-Fluent software the coefficient cμ = 0.9 and for the other empirical constants are defined as 

indicated below: 

 

c1ε = 1.44 ; c2ε = 1.92 ; σk = 1.0 ; σε = 1.3 . 
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To evaluate the heat transfer in each geometric configuration of our exchanger, we calculate the average Nusselt 

number given by: 

Nu =
hDh

λ
                                                                (6) 

 

h: is the heat transfer coefficient of the heated wall obtained from ANSYS fluent. 

 

Where Dh: is the hydraulic diameter defined as follows: 

 

                                         Dh =
4×section

perimeter
= Dtube                                                 (7) 

 

Reynolds number 

 

Re =
uinD

μ
                                                                  (8) 

 

The friction factor is calculated by the following equation:  

 

fr =
2 ∆P

ρuin
2 (

L

Dh
)
                                                             (9) 

 

Where ∆P: is the pressure drop along the tube.    

 

The best baffle arrangement in the heat exchanger is the one with the highest thermal enhancement factor value 

given by (Webb and Eckert., 1972) : 

 

ƞ =
Nu/Nu0

(
Fr

Fr0
)

1
3

                                                                (10) 

 

 

Geometry Mesh 
 

In this numerical work a block-structured, quadratic type mesh is used in order to control the size and the 

spacing of the first line of the mesh close to the heated wall and to minimize the iterative calculation error. 

 

 
 

 
Figure 2. Mesh of the computational domain 

 

Table 1. Mesh size sensitivity 

N° of elements Element size Nu Fr % diff  Nu %diff Fr 

46350 1 30,84557 0,278849 -- -- 

53766 0,9 30,35513 0,276743 0,49044 0,002106 

59328 0,8 29,96112 0,274552 0,39401 0,002191 

67671 0,7 29,73213 0,272688 0,22899 0,001864 

77868 0,6 29,719913 0,271979 0,012217 0,000709 
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The strategy of using a more refined block-structured mesh close to the walls aims to minimize errors and 

calculation stability, particularly in regions where temperature and speed gradients are the greatest, as in the 

case of thermal boundary layers and hydraulics. The sensitivity of the mesh size on the variations of the Nusselt 

number and the coefficient of friction is represented in Table 3. It was found that at larger grid numbers the 

relative error of Nusselt and of the coefficient of friction is almost zero. 

 

 

Results and Discussions 
 

Validation of Results 

 

In order to validate the results of our numerical study obtained, we compared the values of the number of 

Nusselt and coefficient of friction in the case of a smooth tube with the correlations of Dittus-Boelter (1930) and 

Gnielinski (1976 ) (see figures 3 and 4). 

 

 

Dittus-Boelter Correlation: 

 

𝑁𝑢 = 0.023 𝑅𝑒0.8𝑃𝑟0.4 
 

Gnielinski Correlation: 

 

𝑁𝑢 =
(

𝑓𝑟
8⁄ )𝑅𝑒𝑃𝑟

1+12.7(
𝑓𝑟

8⁄ )

1
2

(𝑃𝑟
2

3⁄ −1)

                For    2300≤ Re ≤ 5.106 

with: 

 

𝐹𝑟 = (0.76𝑙𝑛𝑅𝑒 − 1.64)−2               For 2300≤ Re ≤ 5.106 

  

Moody Correlation (1944):  

 

𝐹𝑟 = 0.316𝑅𝑒0.25                        For Re≤ 2.104 

 

 

          
 

 

 

 

Effect of Reynolds Number on Nusselt Number 

 

Figures 5 and 6 show the evolution of Nusselt numbers as a function of Reynolds numbers, for different 

parameters of deflector arrangements and inclinations: β (20°, 30°, 40° and 60°), PR (1, 2, 3 and 4) and for two 

fixed values of BR (0. 1 and 0. 2). The results obtained indicate that the Nusselt number increases with the 

increase in the Reynolds number for the different angles of inclination β. The best heat transfer recorded 

corresponds to the following geometric parameters (β, PR and BR) = (30°, 1 and 0.2) at a number of Re equal to 

13000. This improvement in convective transfer is about 97% compared to the smooth tube due to the presence 

of the ribs which disturbs the main flow by creating zones of separation and reattachment of the turbulent 
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Figure 3. Comparison between the Nusselt Nu number 

of the present study and Gnielinski, Dittus-Boelter. 

 

Figure 4. Comparaison between the friction facor Fr of 

the present study and Gnielinski, Moody diagram. 
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boundary layer, thus promoting heat transfer through the appearance of secondary flows. We also notice that the 

increases in the thickness of the ribs (BR=0.1 and 0.2), for fixed values of β, PR and Re, have a great influence 

on the improvement of the exchange coefficient of about 32% at fixed values of (β, PR and Re) = (30°, 1 and 

13000) respectively. 

 

 

 
 

Figure 5. Effect of the Re number on the average Nu number for different inclination angles β (PR = 1, 2, 3.4 

and BR = 0.2). 
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Figure 6. Effect of the number Re on the average number Nu for different angles of inclination β (PR =1, 2, 3.4 

and BR=0.1). 

 

 

Effect of the Reynolds Number on the Coefficient of Friction Fr 

 

 
 

 
Figure 7. Effect of the number Re on the friction number Fr for different angles of inclination β (PR =1, 2, 3.4 

and BR=0.2) 

 

The turbulent flow generated by the baffles increases both the heat exchange coefficient and the friction factor, 

due to the development and increase in thickness of the turbulent dynamic boundary layer. Figures 7 and 8 
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friction factor in comparison with the case of a smooth tube. A high friction factor value of around 0.27 is 

obtained at Re = 3000 and geometric values equal to (β = 60°; PR = 1; BR= 0.2). There is a great influence of 

the angle of inclination (β) on the increase in the friction factor which can reach 12% at β = 60° compared to an 

inclination of 40°. A significant increase in the coefficient of friction is recorded with the increase in the 

blocking ratio BR in comparison with the other parameters examined, which is quite logical since the duct 

becomes more and more obstructed. 

 

 

 
Figure 8. Effect of the number Re on the friction number Fr for different angles of inclination β (PR =1, 2, 3.4 

and BR=0.1) 

 

 

Effect of Reynolds Number on the Thermal-Hydraulic Performance (ƞ) 
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Figure 9.  Effect of the number Re on the efficiency  for different angles of inclination β (PR =1, 2, 3.4 and 

BR=0.2).  

 

 

 
Figure 2.  Effect of the number Re on the efficiency  for different angles of inclination β (PR =1, 2, 3.4 and 

BR=0.1).  
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Figures 9 and 10 represent the variation of the performance factor for different values of the pitch ratio (PR), of 

the blocking ratio (BR) and of the angle of inclination (β) as a function of the Reynolds number. It is clear that 

the performance factor decreases with the increase of β and BR. It can be seen that the best efficiency of 2.48 is 

obtained for β = 30°; PR=1; BR = 0.2 and a Reynolds number equals 4000. Also, the obstruction effect 

disappears at large Reynolds numbers. 

 

 

The Case Where the Main Flow is Reversed 

 

In this part, in order to improve the thermal-hydraulic performance factor as much as possible, we have tried to 

see the impact of reversing the conditions of entering and leaving our exchanger. Reversing the flow direction 

completely changes the geometric shape of the baffles. To do this and according to our subsequent results, we 

took the case which provided us with the best performance factor corresponding to the following geometric 

parameters: =30, BR= 0.2 and PR=1 to 4000 Re (see Figure 9 :  depending on Re case P=50). On the whole, 

the reversal of the inlet and outlet conditions (case AA) gave an acceptable improvement in the performance of 

the exchanger, but it remains insignificant in comparison with the first case examined (case A) (see histogram 

figure 11). 

 

 
Figure 3. Comparison of efficiency between the case of a flow from left to right and the case of a reversed 

flow of the optimal values obtained under the conditions: (=30, BR= 0.2 and PR=1) and (=20, BR= 0.1 and 

PR=1). 

 

 

Conclusion 
 

In this work we have numerically studied the effect of the variation of the geometric parameters of the ribs (β; 

PR; BR) on the dynamic field of the flow of the fluid and the improvement of the convective transfer in a 

tubular exchanger. The results obtained showed that all the ribs arrangements examined increase both heat 

transfer due to vortex generation in the flow and the friction factor. This study also allowed us to show the effect 

of the layout of the ribsand their shapes on the thermo-hydraulic performance compared to a smooth wall: 

 

• In comparison with the smooth case, the presence of roughness disturbs the flow and increases both the 

convective transfer and the pressure losses. 

 

• The Nusselt number increases with increasing Reynolds number and decreasing inclination angle β due to the 

modification of the laminar sublayer of the fully developed turbulent flow in the near-wall region. 
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• Of all the parameters examined, the blocking ratio is the most influential on the thermal-hydraulic performance 

factor. 

 

• The observations, from the results obtained, have shown that there are two optimal efficiency values that can 

be reached at a number of Re = 4000. The first corresponds to β=30°; PR=1; BR = 0.2 and the second at β = 

20°; PR = 1 and BR = 0.1. Between these two baffle layout values, the first case is more interesting. 
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