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Abstract: In this paper, we will present several upper bounds for the numerical radii of a  operator matrices.

We use these bounds to generalize and improve some well-known numerical radius inequalities. We provide a 

refinement of an earlier numerical radius inequality due to (Bani-Domi & Kittaneh, 2021) [Norm and numerical 

radius inequalities for Hilbert space operators], (Bani-Domi & Kittaneh, 2021) [Refined and generalized 

numerical radius inequalities for  operator matrices] and (Al-Dolat & Kittaneh, 2023) [Upper bounds for the 

numerical radii of powers of Hilbert space operators]. 
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Introduction 

Let  be the algebra of all bounded linear operators on the complex Hilbert space  Recall that the 

numerical radius  and the usual operator norm  are, respectively, defined by  

A fundamental relation between the norms  and  is the following inequality 

   (1.1)  

Many mathematicians are interested in giving refinements for the inequalities in (1.1). For example, in Kittaneh 

(2005) Kittaneh provided the following improvement 

  (1.2) 

 where 

In El-Haddad and Kittaneh (2007), the authors showed that the upper bound in (1.2) can be generalized as 

follows:  

  (1.3) 
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International Conference on Basic Sciences, Engineering and Technology (ICBASET), April 27-30, 2023, Marmaris/Turkey 

16 

 

Recently, in Al-Dolat and Kittaneh (2023), Al-Dolat and Kittaneh have refined the inequality (1.3) by showing 

that  

 

 

(1.4) 

 

 In Kittaneh (2003), Kittaneh showed the following inequality  

 

                             (1.5) 

 

In Dragomir (2009), Dragomir showed that the numerical radius of a product of two operators has the following 

upper bound  

 

    (1.6) 

 

Let  be a complex Hilbert space and let  denote the copies of  Based on this 

decomposition every operator  has a  operator matrix representation  

 

Y=
11 12

21 22

Y Y

Y Y

 
 
 

 

 

With  where  To learn more about the numerical radii of operator of matrices and 

their applications, one can refer to (Al-Dolat et al., 2016 ; Al-Dolat & Jaradat, 2023).  

 

In this paper, we give new upper bounds for the numerical radii of  operator matrices. Based on those 

bounds, we obtain refinements of the inequality (1.4). Also, we refine earlier numerical radius inequalities for an 

operator of matrices obtained in (Bani-Domi & Kittaneh, 2021; Al-Dolat & Kittaneh, 2023). 

 

  

Results and Discussion 
 

For our purpose, we need to recall a few well-known lemmas.  

 

Lemma 2.1 (Kittaneh, 1988). Let  be a positive operator and let  with . Then  

 

 

  

Lemma 2.2 (Aujla & Silva, 2003). Let  be a non-negative convex function on  and  be 

positive operators. Then  

 

 

 

In particular,  

 

 

  

Lemma 2.3 (Hirzallah & Kittaneh, 2011). Let  Then  

 

(a)  
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 
0

max ( ), ( )
0

X
w w X w Y

Y

  
  

  
, 

 

(b)  

 

 max ( ), ( )
X Y

w w X Y w X Y
Y X

  
    

  
. 

 

In particular,  

  

0
( )

0

Y
w w Y

Y

  
  

  
. 

 

Lemma 2.4 (Buzano, 1974). Let  with  Then  

 

 

 

Lemma 2.5 (Moradi & Sababheh, 2021). Let   be self-adjoint. Then  

 

 

 

Our first main result in this paper provides a refinement for the upper bound given in (Ajula & Silva, 2003, 

Theorem 2.6).  

 

Theorem 2.6 Let  Then for every  and  we have  

 

. 

 

Proof. Let  be any unit vector. Then by letting  and  in Lemma 2.5, we have  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Thus, 
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Remark 2.7 The upper bound presented in the above theorem is smaller than the upper bound given in the 

inequality (1.6). To see this, note that for every  and  we have  

 

 

 

 

 

 

 

  

 

 

   

 The next result in this paper refine [Aujla & Silva, 2003, Theorem 2.9].  

 

Theorem 2.8  Let  Then for every  and  we have  

 

 

  

Proof. Let  be any unit vector. Then we have  

 

  

 

  

 

 

 

  

 

  

 

 

 

 

 

Thus,  
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Remark 2.9 The upper bound presented in the above theorem is smaller than the upper bound given in the 

inequality (1.3). To see this, note that for every  and  we have  

 

 

 

  

 

  

 

  

 

  

  

Now, we give an upper bound for the numerical radius of a  operator matrix which generalize [8,  

Theorem 2.1]. 

 

Theorem 2.10 Let  Then for every  we have  

 

 

 

1 2 2 2

3 * *

2 max ( ), ( ) 2 max ( ), ( )

2 max ,

r r

r r r r r

r rr rr

A B
w w A w D w BC w CB

C D

C B B C

 



    
     

    

  

 

  

Proof.  Let  

 

A B
Y

C D

 
  
 

, 1

0

0

A
Y

D

 
  
 

 and  

 

2

0

0

B
Y

C

 
  
 

. Then for every unit vector  we have  
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Therefore,  

 

  

 

  

 

  

 

  

  

There are many upper bounds for the numerical radii of Hilbert space operators that can be obtained from 

Theorem 2.12. The following results demonstrate some of these upper bounds.  

 

Corollary 2.11 Let  Then for every  we have  

 

 

1 2 2 3 *2

max ( ), ( )

2 ( ) 2 ( ) 2

r r r

r
rrr r r r

A B
w A B w A B w

B A

w A w B B B  

  
     

  

    . 

 

By setting  and  in the above corollary we have the following result.  

 

Corollary 2.12 Let  Then for every  we have  

  

2 *2

*

0
( )

0

1 1
( )

2 4

1
.

2

r r

r
rr

rr

X
w X w

X

w X X X

X X

  
   

  

  

 

 

  

To prove Theorem 2.16, we need the following lemma which can be found in (Al-Dolat & Al-Zoubi, 2023). 

  

Lemma 2.13 Let  with  Then  

 

 

 

For every  and   
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Now, we present new upper bound for the numerical radius of the off-diagonal of a  operator matrix. 

 

Theorem 2.14  Let  Then  

  

 2 2 * 2 *
0 1

max ( ), ( )
0 4

r
B

w w C i B w B i C
C

  
    

  
 

 

 * * 2 2max , max ( ), ( )
4

r r
r rr r

C B B C w BC w CB
  

    
 

 

 

 
1

max ( ), ( ) ,
2

r rw BC w CB


  

 

 For every  and   

  
Proof. Let 
 

0
.

0

B
Y

C

 
  
 

 

 

Then for every  with  we have  

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 Thus,  

 

  

 

 2 * 2 *1
max ( ), ( )

4
w C i B w B i C    
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 As special case of Theorem 2.16, we have the following refinement of the inequality (1.4).  

 

Corollary 2.15  Let  Then for every  and  we have 

  

  

 

  

   

Proof. We have  

  

2 2
0

( )
0

r r
X

w X w
X

  
   

  
 (by Lemma 2.3) 

 

 

 

 

 

 

 

 

 

  

 In the following result, we find a new an upper bound for the numerical radius of a  operator matrix. 

 

Corollary 2.16 Let  Then for every  and  we have  

  

 

 

2 2 1 2 2

2 3 2 * 2 *

2 max ( ), ( )

2 max ( ), ( )

r r r r

r

A B
w w A w D

C D

w C i B w B i C





  
  

  

  

 

 

  

 

  

  

 Proof. By the convexity the of  and Theorem 2.16 we get  

  
2

2
0 0

0 0

r

r
A B A B

w w w
C D D C

           
             

           

 

 

 
2 1 2 2 1 2

0 0
2 2

0 0

r r r r
A B

w w
D C

 
      

       
      
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The following result presents an upper bound for the numerical radius of the sum of operators. 

 

Corollary 2.17 Let  Then for every  and  we have  

  

 2 2 2max ( ), ( )r r r
A B

w A B w A B w
B A

  
     

  
 

 

  

 

  

  

To prove Theorem 2.22, we need the following lemma which can be found in (Al-Dolat & Al-Zoubi, 2023).  

 

Lemma 2.18  Let  with  Then  

 

 

 

where  and   

 

Now, we can state the following result in this paper as follows.  

 

Theorem 2.19 Let  Then for every  and  we have  

  

 2 2 * 2 *
0 1

max ( ), ( )
0 8

r rr rr
B

w w C i B w B i C
C

  
    

  
 

 

  

 

  

   
Proof. Let  

 

0
.

0

B
Y

C

 
  
 

 

 

 Then for every  with  we have  
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Therefore,  

  

 

  

  

  

 

  

 

  

 

Corollary 2.20 Let  Then for every  and  we have 

  

  

 

  

  
Proof. We have  

2 2
0

( )
0

r r
X

w X w
X

  
   

  
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