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Abstract: As an energy storage system, Li-Ion batteries have many applications from mobile devices to 

vehicles. No matter what application they are used in, Li-Ion batteries lose performance over time, and this 

negatively affects the user experience in terms of both comfort and safety. For this reason, it is extremely 

important to estimate state of health (SOH) of Li-Ion batteries and to use the batteries accordingly. In this 

study, examinations on the SOH estimation of batteries with different machine learning (ML) methods are 

included using Constant Current (CC) and Constant Voltage (CV) charge-discharge characteristics of the li-Ion 

batteries. Moreover, how the estimation performance changes by both short-term and long-term features is 

observed by using mutual information metric. According to results, the highest accuracy on SOH estimation is 

achieved when long-term features are used with Bayesian Ridge Regression. When the short-term features are 

used, the accuracy of Bayesian Ridge Regression is dramatically reduced, and Random Forest Regression 

provides highest performance.   
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Introduction 

 

Lithium-ion batteries are being developed day by day and are important energy storage systems used in many 

application areas. It is also extremely critical to know how much the performance of batteries changes during 

use, in other words, how much their capacity is reduced. Battery management systems can optimize battery 

usage especially through this information and ensure the use of the battery in the longest possible term (Chen 

et al., 2023). Moreover, SOH is significant parameter showing capacity degradation which is also used for 

evaluating battery state of safety (Li et al., 2022). 

 

There are lots of data driven methods used for extracting state of health (SOH) of the batteries in literature. 

Especially machine learning-based approaches have become very popular recently. For instance, in a study 

using tree-based algorithms deals with predicting lifetime of the li-ion batteries using early cycle data and the 

study also includes analyze of feature importance using Kendall’s tau and Spearman correlation methods 

(Çelik et al., 2022). Another one of the SOH estimation studies is the online estimation with DSMTNet, one of 

the deep learning methods (Wang et al., 2022). They have achieved SOH computing in just 0.14 sec. which is 

satisfactory result for real time applications. Linear regression analysis with multiple charge and discharge 

features (Agudelo et al., 2023), Support Vector Regression combining with Voltage-Capacity (VC) model 

(Zhang et al. 2022), incorporating the DNN into a Kalman filter (Tian et al., 2021), partial analysis of charging 

curve (Lyu et al., 2021) and wavelet neural networks with genetic algorithm (Chang et al., 2021) were also 

proposed for SOH estimation of Li-Ion batteries.   

 

In this study, SOH estimation of the batteries is made by using well-known machine learning methods such as 

Random Forest Regression, Decision Tree Regression, Ridge Regression, Bayesian Ridge Regression, Support 

Vector Regression and Extreme Gradient Boost Regression. For each model, battery features are extracted in 
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case of long-term and short-term characteristics from CC-CV charging/discharging curves. All details of each 

step is described in following sections.   

 

 

Battery Life Cycle Dataset 
 

To perform SOH estimation, or in other words, capacity degradation analysis, a battery data set in which 

charge/discharge cycles are made under certain conditions is needed. In this study, the HNEI dataset (Hawaii 

Natural Energy Institute, 2014), in which more than 1000 cycles were made and prepared on 18650 Li-Ion 

batteries, was used. Details of the dataset are presented in below table (Table 1). 

 

Table 1. HNEI Li-Ion Battery Life Cycle Dataset 

Cell & Cycle Parameters Description 

Anode Graphite 

Cathode NMC-LCO 

Capacity 2800 mAh 

Form Factor 

Temperature 

18650 

25°C 

Max SOC 100 

Min SOC 0 

Charge Rate 0.5 C (1.4 A) 

Discharge Rate 1.5 C (4.2 A) 

Max Voltage  

Min Voltage 

4.35 V 

3.0 V 

Nominal Voltage 3.8 V 

 

The measured characteristics of the battery during the life cycle are as follow; Current (A), Min-Max Current 

(A), Voltage (V), Min-Max Voltage (V), Charge Capacity (Ah), Discharge Capacity (Ah), Charge Energy 

(Wh), Discharge Energy (Wh). 

 

 

Feature Extraction 
 

In this section, the features are observed as long-term feature which needs to get complete charge/discharge 

cycle and short-term feature which needs to get a small portion of charge/discharge curve. All features are 

extracted in CC region of Charge/Discharge Curve. Each of features are described in following sections. 

 

 

Long-Term Features 

 

 

 
Figure 1. CC and CV regions of complete charge/discharge cycle 
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1) Charge/Discharge Duration 

 

Charge and discharge duration are extracted from the duration of charge and discharge states during the CC 

region for each cycle. 

 

 

2) Charge/Discharge Current Count 

 

Current accumulation of CC charge and discharge states is another key feature regarding to overall capacity. 

Because these features are extracted in CC domain, it is easy to handle current count operation using below 

formula for each charge and discharge states.    

 

𝐶ℎ𝑎𝑟𝑔𝑒 𝐶𝑜𝑢𝑛𝑡 = 𝐶ℎ𝑎𝑟𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 x Charge Current (CC)                                      (1) 

 

𝐷𝑖𝑠ℎ𝑎𝑟𝑔𝑒 𝐶𝑜𝑢𝑛𝑡 = 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 x Discharge Current (CC)                               (2) 

 

 

3) Charge/Discharge Voltage Integration 

 

Because the voltage-time curve of the battery changes by long cycles, the area under the curve is also 

significant clue about state of the health analysis. On this issue the area can be calculated as follow: 

 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =  ∫ 𝑉𝑇
𝐶ℎ𝑎𝑟𝑔𝑒

𝑑𝑡
𝑇2

𝑇1

                                             (3) 

 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =  ∫ 𝑉𝑇
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑑𝑡
𝑇2

𝑇1

                                        (4) 

 

 
Figure 2. Area under the voltage-time charge/discharge curve for different cycles  

 

In equation (3) and (4), 𝑇1 and 𝑇2 correspond to start and end time of the charge and discharge states, 𝑉𝑇 shows 

terminal voltage of the battery, respectively. 

 

 

4) Kurtosis and Skewness 

 

Before the calculation of kurtosis and skewness feature, it is needed to calculate difference of charge and 

discharge voltage curve. On this issue, it is handled by subtracting discharge voltage values from reversed 

form of charge curve as below figure. By this way, skewness and kurtosis features can be calculated using 

third and fourth order central moment of the voltage difference respectively as below (Cheng et al., 2021). 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑛
 ∑ [(

𝑋𝑖 − 𝜇

𝜎
)

3

]
𝑛

𝑖=1
                                                              (5) 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑛
 ∑ [(

𝑋𝑖 − 𝜇

𝜎
)

4

]
𝑛

𝑖=1
                                                               (6) 
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Figure 3. Voltage differences between charge and discharge states  

 

In equation (5) and (6); 𝑛 is the number of samples, 𝑋𝑖 is the value of the 𝑖 th sample of voltage difference, 𝜇 

and 𝜎 are the mean and variance of the voltage difference sequence, respectively. 

 

 

Short-Term Features 

 

While analyzing the short-term features, the nominal voltage value of the battery is considered as a base 

voltage. To partial analyze of charge/discharge curve, threshold voltage which maximize the time skew of 

voltage curve between first and last cycle is calculated by below formula: 

 

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐶ℎ𝑎𝑟𝑔𝑒

= arg 𝑚𝑎𝑥
𝑉

(|𝑇
𝑓𝑖𝑟𝑠𝑡 𝑐𝑦𝑐𝑙𝑒

𝑉𝑐ℎ𝑎𝑟𝑔𝑒 
− 𝑇𝑙𝑎𝑠𝑡 𝑐𝑦𝑐𝑙𝑒

𝑉𝑐ℎ𝑎𝑟𝑔𝑒
|)                                              (7) 

 

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐷𝑖𝑠ℎ𝑎𝑟𝑔𝑒

= arg 𝑚𝑎𝑥
𝑉

(|𝑇
𝑓𝑖𝑟𝑠𝑡 𝑐𝑦𝑐𝑙𝑒

𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
− 𝑇𝑙𝑎𝑠𝑡 𝑐𝑦𝑐𝑙𝑒

𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
|)                                            (8) 

 

 
Figure 4. Partial analysis of charge/discharge curves based on nominal and threshold voltages 

 

 

1) Charge/Discharge Nominal Duration 

 

As described in Figure 4, charge and discharge duration features are calculated regarding to the area limited by 

nominal and threshold voltages. Thus, nominal charge and discharge durations are equal to duration from 

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐶ℎ𝑎𝑟𝑔𝑒

 to 𝑉_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and   and 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

 to 𝑉_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 points respectively. By this way, there is no need 

to wait complete cycle. 

 

2) Charge/Discharge Nominal Voltage Integration 

 

Charge and discharge nominal voltage integration features are calculated by same way in equation (3) and (4) 

based on the area limited by threshold voltage and nominal voltage as illustrated in Figure 4. 
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3) Ohmic Response 

 

Ohmic response can be defined as resistive effect of internal chemical to drawn current. It is also known from 

the (Koç et al., 2022) that as batteries age, their internal resistance increases accordingly. İncreased resistance 

also causes higher voltage to drop under the load. Hence, the increase in voltage drop across the cycle is 

caused by increased internal resistance or ohmic response, which is directly related to the health of the battery. 

That is why, the ohmic response is considered as a key feature and calculated by ohm law as below. 

 

𝑂ℎ𝑚𝑖𝑐 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑉𝑑𝑟𝑜𝑝

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

=
𝑉𝑐ℎ𝑎𝑟𝑔𝑒

𝑒𝑛𝑑 −  𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

                                                  (9) 

 

In equation (9), 𝑉𝑑𝑟𝑜𝑝 refers to the voltage drop experienced at the first moment of discharge. In this study, 

𝑉𝑐ℎ𝑎𝑟𝑔𝑒
𝑒𝑛𝑑  corresponds to 4.35 V, 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  is 1.5C which equals to 4.2 A and 𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔
 decreases due to ohmic 

response.  

 

 

State of Health Estimation 
 

Feature Importance 

 

As already described in previous sections, the features were classified as short and long term. While the short-

term features seem more useful for time critical application, they need to ensure satisfactory results in machine 

learning method as they can. Long-term features are also expected to yield good results in terms of model 

accuracy. To understand the importance of all features, mutual information (Koç et al., 2021) scores are 

calculated as illustrated in below table. 

 

 Table 2. Mutual information scores of features (left side: long-term, right side: short-term) 

Feature Name Score Feature Name Score 

discharge duration 4.0954 discharge nominal duration 3.1166 

discharge current count 4.0934 charge nominal duration 3.0606 

charge duration 3.6494 ohmic response 2.5726 

charge current count 3.6467 charge nominal voltage integration 2.4771 

charge voltage integration 2.4124 discharge nominal voltage integration 2.4126 

discharge voltage integration  2.3427   

kurtosis 1.9288   

skewness 1.8855   

 

As shown in Table 2, long-term features have the highest scores with the disadvantage of taking a long time. 

On the other hand, short-term features provide superiority better scores compared to some of long-term 

features. 

 

 

SOH Analyze Using Machine Learning Methods 

 

Because the dataset has continuous numerical data, regression methods are preferred to handle SOH 

estimation. On this issue, Random Forest Regressor, Decision Tree Regressor, Ridge Regressor, Bayesian 

Ridge Regressor, Support Vector Regressor and Extreme Gradient Boost Regressor methods are used with 

default parameters defined in sklearn library. Before performing these methods, feature values were 

normalized using min-max normalization to map different ranges of the features into [0-1]. Each machine 

learning methods were trained and tested with both short-term and long-term features separately. Train and test 

sizes was defined as %75 and %25, respectively.  

 

 

Results and Discussion 
 

After training and testing steps, each method performances were obtained as below. All train and test results 

were calculated by using cross validation technique with 5 splits and 5 repeats to ensure more precise results. 
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Table 3. Performance Results (Left Side: Long-Term Features, Right Side: Short-Term Features) 

Model 

Train 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Model 

Train 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Random Forest 

Regressor 
98.3 92.6 

Random Forest 

Regressor 
98.9 95.3 

Decision Tree 

Regressor 
100 92.3 

Decision Tree 

Regressor 
100 93.0 

Ridge Regressor 97.1 96.2 Ridge Regressor 80.6 80.1 

Bayesian Ridge 

Regressor 
99.3 98.2 

Bayesian Ridge 

Regressor 
86.6 81.1 

Support Vector 

Regressor 
94.9 89.3 

Support Vector 

Regressor 
82.9 79.0 

Extreme Gradient 

Boost Regressor 
100 95.3 

Extreme Gradient 

Boost Regressor 
100 93.1 

 

As shown from the Table 3, tree-based methods like Random Forest Regression and Decision Tree Regression 

provides higher test accuracy even they used short-term features which yield small amount of data sample. 

When the long-term features are used in the model, the multicollinearity between features and targets can be 

higher compared to correlation with short-term features. Because Ridge Regression models are more sensitive 

to multicollinearity between independent variables, the performance dramatically reduced when the short-term 

features which provide less observation are used. On the other hand, Random Forest Regression can handle 

multiple ensemble methods and randomly samples the data during the train and test steps. By this way, 

Random Forest Regression can adapt itself during the training with short-term features and yields better results 

compared to long-term feature cases. 

 

 

Conclusion  
 

In this study, different machine learning methods are used to estimate SOH parameter of the battery with long-

term and short-term features. According to the results, Bayesian Ridge Regression ensures highest estimation 

performance as %98.2 on long-term features and it can be preferred in accuracy critical applications. On the 

other hand, if time critical applications need to be handled, short-term features can also be used with Random 

Forest Regression method. For the future work, more efficient short-term features can be defined even they 

also ensures higher accuracy. 
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