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Abstract: Water and energy are the two most essential assets for a sustainable global human society. 

However, the high carbon footprint and global warming effects caused by non-renewable sources have made 

energy transition a key element to ensure sustainable development. Currently, hydrogen produced from water 

supplied by renewable energy is considered an ideal and sustainable energy carrier for the future. Herein, we 

investigate experimentally and theoretically using MatLab modeling the production of hydrogen via PV 

supplied alkaline electrolysis of water coupled to 40 kHz ultrasonic bath. Nickel plates and nickel foam were 

used as electrode’s material immerged in 25% of KOH electrolyte while a 12V solar panel was used as a green 

source of power supply. The experimental and the modeling results related to the ultrasounds effect on hydrogen 

production efficiency showed a high agreement. The integration of ultrasound showed a reduction in electrode 

coverage by bubbles of approximately 54.8%, which was equivalent to 9.32% of the reduction in cell voltage 

according to the experiments. 
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Introduction 
 

As the intergovernmental panel climate change’s IPCC's latest report makes clear, while the temperature 

continues to rise, the risk of catastrophic events increases. Therefore, the transition to cleaner sources of energy 

is seen as an imperative step in order to reduce the carbon footprint of fossil fuels and conventional sources of 

energy (Hofrichter et al., 2022). Strategies for producing hydrogen that rely on renewable energy sources have 

been developed and implemented. Where the dispersion of ozone-depleting substances is also prohibited in 

these strategies (Gopinath & Marimuthu, 2022). In previous studies, the modelling and dimensioning of plants 

with hydrogen production from renewable energy sources such as PV have been investigated (Maurer et al., 

2022).  

 

The various established methods of solar hydrogen production use water as the critical reactant, as water 

separation produces oxygen and hydrogen (Burton et al., 2020). In addition, hydrogen production from water 

electrolysis is seen as a promising technology to produce hydrogen with high purity of 99.99% (Kerboua & 

Merabet, 2023).. Membrane free  electrolyzers, with potential advantages in durability and manufacturability 

made possible by eliminating membranes or diaphragms from the device architecture, offer an attractive 

approach to reducing the cost of hydrogen (H2) production from water electrolysis (Pang et al., 2020). With 

easier device designs that can be made from fewer components, membraneless electrolysers have the potential 

to reduce material and assembly costs (Esposito, 2017). However, the increase of the ohmic resistance in the 

electrolyte remains a challenge for the electrolytic technique, as bubble formation limits the operating current 

density in alkaline water electrolysis, increases electrolyte resistance and reduces electrode active area (Marini 

et al., 2012). 
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It has been reported in literature that the integration of ultrasonic power has an improvement effect on mass 

transport enhancement due to the combined effect of microjets and microstreaming (Islam et al., 2020) and the 

efficient bubble removal from the electrode’s surface (Li et al., 2009; Walton et al., 1996; Zadeh, 2014). In this 

context, it has been demonstrated very recently using modeling that the ohmic resistance and bubble coverage 

may be reduced due to the shockwave and microjets phenomena related to the ultrasound propagation in the 

electrolyte medium (Kerboua & Merabet, 2023).  

 

The aim of the present study is to investigate experimentally and numerically the effect of ultrasound on the 

removal of bubbles from the electrode surface and to quantify the ultrasound effect on the fraction of the 

electrodes’ area covered by bubbles, and hence the bubble and ohmic resistances, under a source of current, 

namely a PV solar panel as a source supplying a membraneless KOH electrolyzer. 

 

 

Material and methods  

 

Membraneless Sono-Electrolyzer  

 

An H-cell electrolyzer of 300 mL of total capacity was filled with 25% of KOH aqueous solution. The 

electrolyzer counts nickel plates or nickel foam electrode’s material of 13.5 cm
2
 of working area. As a source of 

indirect continuous sonication, an ultrasound bath of 40 kHz and 60We has been employed.  

 

 

Pv Solar Supply  

 

The power supply consists of a 30 W monocrystalline solar photovoltaic panel (ET Solar-ET- M53640) 

connected to a Maximum Power Point Tracking regulator MPPT.  

 

 

MatLab Modeling  

 

The MatLab code is first based on the mathematical modeling of the PV supply, delivering a current I according 

to Eq.1 (Rahim et al., 2015; Villalva et al., 2009)  

 

𝐼 = 𝐼𝑝𝑣 − 𝐼𝑑 − 𝐼𝑠ℎ  (1) 

 

𝐼𝑝𝑣 =
(𝐼𝑝𝑣0 + 𝐾𝑇) 𝐺

𝐺0

 
(2) 

 
 

𝐼𝑑 = 𝐼0 (𝑒
(

𝑅𝑠𝐼+𝑉
𝑉𝑡.𝑎

)
− 1) 

(3) 

 

𝐼𝑠ℎ =
𝑉 + 𝑅𝑠𝐼

𝑅𝑝

 
(4) 

Where 𝐼𝑝𝑣  is the light-generated current of the PV cell is directly dependent on the solar irradiation G. As a 

next step, the produced current is injected to the electrolyser’s mathematical model, accounting for Eqs.5 to 9 

(Abul Kalam Azad & Khan, n.d.; Mohamed et al., 2016; Tijani et al., 2018). 

 

𝑈𝑐𝑒𝑙𝑙 = 𝐸𝑟𝑒𝑣 + 𝑈𝑎𝑐𝑡 + 𝑈𝑂ℎ𝑚 + 𝑈𝐶𝑜𝑛𝑐    (5) 

𝐸𝑟𝑒𝑣(𝑇, 𝑃) = 𝐸𝑟𝑒𝑣(𝑇) +
𝑅𝑇

𝑍𝐹
ln (

𝑃𝑣
∗(P − 𝑃𝑣)1.5

𝑃𝑣

) 
(6) 

𝑈𝑎𝑐𝑡 =
2.3026 𝑅𝑇

𝑍𝐹𝑎𝑎

log (
𝐼𝑎

𝐼0𝑎

) +
2.3026 𝑅𝑇

𝑍𝐹𝑎𝑐

log (
𝐼𝑐

𝐼0𝑐

) 
(7) 
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𝑈𝑜ℎ𝑚 = 𝐼(𝑅𝑐𝑒𝑙𝑙 + 𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠 + 𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 + 𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) (8) 

𝑈𝑐𝑜𝑛𝑐 =
𝑅𝑇

𝑍𝐹
(ln (1 − (

𝐼

𝐼lim

))) 
(9) 

Where 𝐸𝑟𝑒𝑣 is the reversible voltage, 𝑈𝑎𝑐𝑡  is the activation voltage, 𝑈𝑜ℎ𝑚 is the ohmic voltage and 𝑈𝑐𝑜𝑛𝑐 is 

the concentration voltage. 

 

The effect of sonication was evaluated according to the electrode coverage by bubbles that govern the ohmic 

resistance as shown in Eqs.10 to 12 (Gambou et al., 2022). 

 

𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 = 𝑅𝑏𝑓 + 𝑅𝑏 (10) 

𝑅𝑏𝑓 =
1

𝜎𝑏𝑓
(

𝑑𝑎

𝑆𝑎
+

𝑑𝑐

𝑆𝑐
) (11) 

𝑅𝑏 = 𝑅𝑏𝑓 (
1

(1 −
2
3

𝑒)
1.5 − 1) 

(12) 

𝑆𝑎  and 𝑆𝑐  are anode and cathode cross sections respectively, 𝑑𝑎  and 𝑑𝑐  are distances from anode and cathode to 

membrane, 𝜎𝑏𝑓 is the bubble-free electrolyte conductivity. 

 

 

Results and Discussion 
 

  

 
Figure 1. Simulated I-V and P-V characteristics of the solar panel feeding the electrolyzer under real solar 

radiation (a) and the effect of the electrodes’ coverage by bubbles on the ohmic and cell voltage (b) and ohmic 

and bubble resistance (c) in silent conditions  
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Figure.1 presents the results of simulation under silent conditions and a solar irradiation of 827 W/m
2
.
 
 Based on 

the polarization curve of the panel controlled by an MPPT controller, the performance of the PV panel is first 

described in Fig.1 (a) where the numerically obtained current-voltage I-V and power-potential P-V curves are 

described both with the maximum power point and its equivalent current and potential. Maximum power 

delivered corresponds to 19,481W, corresponding to a voltage of 14,7V and a current of 1,325A. Use of MPPTs 

allows to maintain input current at a steady value during electrolysis, avoiding any effect of intermittent 

photovoltaic power. 

 

Both the obtained ohmic overpotential and the electrolysis potential depend on the percentage of electrode 

coverage, as shown in Fig.1 (b), it can be observed that, when the percentage of electrode coverage varies 

between 0 and 100%, the electrolysis cell studied develops a total potential ranging from 5.2386 to 6.5946 V 

(with an increase of 25.88%).  The ohmic overpotential rises as well, with the above-mentioned variation of the 

e factor, from 3.6728 to 5.0650 V, which corresponds to 68.93% to 76.81% of the value of the total potential. 

According to the experimental resulting voltage that consist of cell potential of 5.9571 V, To meet the 

corresponding electrode coverage equals 81.98% and is represented in green color in Fig.1 (b). Accordingly, the 

ohmic overpotential characterizing the studied configuration is 4.4275V. 

 

  

 
Figure 2.  Simulated I-V and P-V characteristics of the solar panel feeding the electrolyzer under real solar 

radiation (a) and the effect of the electrodes’ coverage by bubbles on the ohmic and cell voltage (b) and ohmic 

and bubble resistance (c) under ultrasonic power 
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more specifically in Fig.1 (c), the variation of the e factor from 0 to 100% increases the Ohmic resistance from 

its lowest value of 2.7714 Ω to 3.822 Ω. In addition, the bubble resistance that constitutes 27.49% of the Ohmic 
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current were recorded. From Fig.2(a), it is clear that the maximum power equals 22.39 W and is achieved at a 

panel current of 1.523 A and a deliverable potential of 14.7 V. Thus, with the MPPT regulation, the electrolyzer 

is supplied with a direct current of 1.523 A.  

 

Fig.2(b) presents the evolutions of the overall cell voltage and the Ohmic overpotential as a function of the 

electrodes’ coverage percentage under the continuous ultrasound conditions. When the e factor is increased from 

0 to 100%, the cell potential increases from 5.7558V to 7.3559V. The ohmic overpotential constitutes the major 

part of the cell potential, with a proportion ranging between 73.34% and 79.14%. while Experimental cell 

potentials measured under continuous sonication conditions were obtained for an electrode coverage of 30 to 40 

%. 

 

The simulation with a linear step on the value of 𝑒 allowed the determination of the percentage of electrode 

coverage corresponding to the measured cell potential, i.e. 5.9577 V. This value corresponds to 37%, its 

associated ohmic overpotential is 4.4232 V, which corresponds to 2.904 Ω. In this case, as shown in Fig.7 (b), 

the bubble resistance is limited to 132.54mΩ, whereas it reaches 1.0505mΩ with 100% electrode coverage.  

 

 

Conclusion  
 

The effect of sonication on the bubble resistance and hence the ohmic resistance in a membraneless H-cell 

alkaline electrolyzer fed by PV has been studied experimentally and numerically in the present study. The 

combined experimental and fundamental modelling approach was based on the variation of the ohmic resistance 

parameters as a function of the coverage of the electrodes by bubbles, which was assumed to be reduced in the 

presence of sonication due to streaming, microjets and shockwavs.  

 

The lowest electrode coverage was achieved with indirect continuous sonoelectrolysis, with a value of 37%, 

compared to 82% under silent conditions which corresponds to a reduction of approximately 54.8%. The 

resulting bubble resistance ranged from 569.81 mΩ in the absence of ultrasound to 132.54 mΩ with integrated 

continuous sonication. In fact, it is assumed that ultrasound results in a stirring effect in the bulk electrolyte and 

near the surface of the electrode, promoting the desorption of gas bubbles from the electrode. 
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