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Abstract: This work describes a longitudinal fracture analysis of beam structure of circular cross-section 

under periodic strains. The material whose properties vary in radial direction has non-linear viscoelastic 

behaviour. The beam is loaded in torsion so that the twist angle represents a periodical function. Time-

dependent behaviour under periodic strains is dealt with a model having a non-linear spring and a linear 

dashpot. The complementary strain energy in the beam is considered to determine the strain energy release rate. 

The balance of energy is examined to verify the strain energy release rate. The ascendency of various 

parameters over strain energy release rate is assessed.       
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Introduction 

 

One of the important tasks of up-to-date material science is the development and perfecting of continuously 

inhomogeneous structural materials. The properties of these materials are contingent on coordinates. In recent 

decades, the functionally graded materials have emerged as an advanced type of materials with continuous 

inhomogeneity (Fanani et al., 2021; Mahamood & Akinlabi, 2017; Nikbakht et al., 2019; Oza et al., 2021). The 

change of microstructure of functionally graded materials in a structural member or component is formed in a 

desired way during manufacturing (Dias et al., 2010; Gururaja Udupa et al., 2014; Gandra et al., 2011; Radhika 

et al., 2020).  

 

In their life-time, many engineering structures made of continuously inhomogeneous materials undergo non-

linear viscoelastic deformation under periodic loading that must be considered when analyzing fracture. On 

account of that, the aim of this work is to examine in analytical way the longitudinal fracture of a non-linear 

viscoelastic beam under periodic strains (prior papers in this field are focussed on linear viscoelastic beams 

(Narisawa, 1987; Rizov, 2022; Rizov, 2022). The beam under examination has a circular section and is 

inhomogeneous in radial direction. The beam is under torsion. The strain energy release rate (SERR) is 

determined. The balance of energy (BE) is considered for control of the SERR solution.          

 

   

Theoretical Analysis   
  

In this paper, the non-linear viscoelastic mechanical model in Fig. 1 is used. The model consists of a non-linear 

spring with shear modulus, fG , placed in parallel to a dashpot of linear behaviour (the viscosity coefficient is 

 ). Shear strain,  , in the model is a periodical function of time, t , as depicted in Fig. 2. The period of the 

shear strains is T . The maximum value of shear strains is m . The period of shear strains is presented as 

db TTT   where pTTb  , 10  p  (Fig. 2). Thus, TpTd )1(  .  
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Figure 1. Non-linear viscoelastic model. 

 

The shear strain is expanded in series of Fourier 
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Figure 2. Periodic change of the shear strain. 
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the coefficients in (1) are found as 
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The shear stress, f , in the spring and the shear stress,  , in the linear dashpot (Fig. 1) are expressed by the 

following laws: 

 

                                                                     
n

ff G   ,   ,                                                                 (5) 

 

where n  is a material property,   is the coefficient of viscosity.  

 

The shear stress (refer to Fig. 1) is deduced as 
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By using (1), (5) and (6), one derives 

                                     

       








n

j

j

j

jf tjrtjqqG  sincos
11

0  

 

                                             tjjrtjjq
j

j

j

j  cossin
11










 .                                             (7) 

 

 By combining of (5) and (7), one obtains 
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Dependence (8) represents the non-linear stress-strain-time law of model (Fig. 2).  

 

This law is used to model the mechanical behaviour of the clamped structure sketched in Fig. 3. The beam 

cross-section is a circle of radius, 1R . The beam longitudinal size is l . We are focussed on a longitudinal crack 

in the form of cylindrical surface of radius, 2R . The crack longitudinal size is a  as depicted in Fig. 3. The 

beam is under torque so that the twist angle,  , of external crack arm (the external crack arm section has 

internal and external radius, 2R  and 1R , respectively) changes periodically with time (at bii Tttt   the 
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angle of twist grows from 0 to 
h  ; at TttTt ibi   the angle decreases from 

h  to 0). The internal 

arm of crack is unstressed (the internal arm of crack has circular section with radius, 
2R ).  

 

 
Figure 3. Static scheme of beam under examination. 

 

The beam is inhomogenous in radial direction. Thus, material properties, fG  and  , change exponentially 

along section radius  
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Here, 0fG  and 0  are  fG  and   magnitudes in the section centre, s  and g  are parameters.   

 

The SERR, G , for the longitudinal crack (Fig. 3) is deduced as 
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where the complementary strain energy (CSE) in the beam is  
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Here, 
*

01u  and 
*

02u  are CSE densities in the external arm of crack and in the intact portion of beam. 
*

01u  is 

calculated as 
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The shear strain in section of the external arm of crack is 

  



International Conference on Research in Engineering, Technology and Science (ICRETS), July 06-09, 2023, Budapest/Hungary 

147 

 

                                                                              R
R

ek

1


  .                                                                        (13) 

 

In dependence (13), ek  is the strain magnitude at the surface. 

 

The CSE density in the intact portion of beam is found by substituting un   and 
un   in formula (12) 

( un  and un  the shear stress and shear strain in the intact portion of beam). Distribution of un  in section of 

the intact portion of beam is obtained by substituting of ek =
hw  in (13). Here, 

hw  is the strain magnitude at 

the surface of the intact portion of beam.  

 

ek  and 
hw  are determined by applying the following approach. First, two equilibrium equations are 

formulated 
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where T  is the torque in the external arm of crack.  

 

Further, it follows from the Maxwell-Mohr integrals that 
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ek , hw  and T are determined from (14) and (15) by MatLab.   

 

After combining of (10) and (11), one derives 
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Integrals in (16) are treated by MatLab.  

 

In order to verify (16), the SERR is determined as well by analyzing the BE. The result is  

 

                                                                      
a

U

RaR

T
G











22 2

1

2 




.                                                     (17) 

 

Here, the strain energy (SE), U , is reckoned by using (11) and (12). For this purpose, the CSE densities are 

replaced with the SE densities, 01u  and 02u . The SE density in the external arm of crack is  
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The SE density in the intact portion of beam is calculated by replacing of   with un  in (18). By substituting of 

  and U  in (17), one obtains 
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Integrals in (19) are treated by MatLab. The SERR reckoned by (19) and (16) are match which is a verification 

of the present analysis.  

 

 

Numerical Results  
 

The SERR calculations are carried-out by using the following data: 008.01 R  m, 300.0l  m, 6.0n , 

5.0p ,  80T  sec and 001.0h  rad.  

 

 

Figure 4. SERR - s curves (1 – at 4.0/ 12 RR , 2 – at 6.0/ 12 RR  and 3 – at 8.0/ 12 RR ). 

 

 

Figure 5. SERR - g  curves (1 - at 0006.0h  rad, 2 - at 0008.0h  rad and 3 - at 001.0h  rad). 
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The SERR - s  curves are presented at three 
12 / RR  ratios in Fig. 4. The curves in Fig. 4 indicate that SERR 

reduces when s  grows. However, growth of 
12 / RR  ratio generates growth of SERR (Fig. 4). The influence of 

h  and g  on SERR is assessed (Fig. 5). When the twist angle, 
h , increases, SERR also increases. Increase 

of parameter, g , reduces SERR (Fig. 5).        

 

 

Conclusion  
 

An approach for analytical examination of the longitudinal fracture in non-linear viscoelastic inhomogeneous 

beam structure under periodically changing strains is presented. The beam is subjected to pure torsion. A model 

of non-linear spring placed in parallel to a linear dashpot is used for describing the beam mechanical behaviour. 

A solution of SERR that accounts for the beam non-linear viscoelastic deformation under periodic loading is 

derived. The influence of the periodic loading on SERR is assessed. Reckons of SERR are carried-out at 

different magnitudes of twist angle, 
h . It is found that growth of 

h  generates growth of SERR. The SERR 

increases as well with growth of 
12 / RR  ratio. The growth of parameters, s  and g ,  induces reduction of 

SERR.  

 

 

Recommendations 

 

The approach presented in this paper can be developed further by analyzing the longitudinal fracture of beams 

subjected to torsion and bending under periodic strains.   
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