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Abstract: In order to reduce greenhouse gas emissions, logistics companies are strongly encouraged to make 

their operations more environmentally friendly through efficient solutions by implementing electric vehicles 

(EVs). However, the driving range is one of the aspects that restricts the introduction of EVs in logistics fleets 

as it poses new challenges in designing distribution routes. In this regard, this paper investigates the issue of the 

Electric Vehicle Routing Problem (EVRP) raised by logistics companies in real time. There are many models 

that extend the classic VRP model to consider electric vehicles, but VRP by combining the features of capacity 

VRP, VRP with time window, backhaul VRP, multi-trip VRP, and electric VRP (MT-EVRPBTW) has not been 

worked out yet. We present a mathematical model of the MT-EVRPBTW to explain the problem in detail with 

the objective function to minimize the total distance travelled, where each vehicle could be charged nightly at 

the depot and during the day at the rest time of the driver in the depot. A feasible initial solution is built using a 

constructive heuristic to solve this problem, namely, the sequential insertion heuristic, which will be done by 

improving the solution using Local Search operators. Several Local Search processes using inter-route and intra-

route operators for improvement solutions are tested and compared to their performance in measuring the impact 

of Local Search operator usage on overall travelled distance. Computational experiments for five Local Search 

operators will be presented and analyzed based on data from one of Indonesia’s post and parcel companies. 

 

Keywords: Electric vehicle routing problem, Backhauls, Multiple trips, Time window, Local search operator 

 

 

Introduction  
 

Under the 2015 Paris Agreement, Indonesia must reduce 30% of GHG emissions by 2035 (Indonesian Minister 

of Industry Regulation Number 27, 2020). However, Indonesia ranks fourth as the highest carbon-emitting 

country in the world (World Bank, 2020). The transportation sector is responsible for emitting large amounts of 

CO2. Emissions generated from the transportation sector are 157,326 Gg CO2e, with an average increase in 

emissions of 7.17% per year (ESDM, 2019). In addition, freight vehicle contributes to most of this emission 

growth. The procurement of freight vehicles continues to increase by 4.7% per year, accompanied by an 

increase in post and logistics services. 

 

Reducing emissions produced by the logistics sector is important to create an environmentally friendly logistics 

system. Furthermore, emissions reduction can enhance the overall effectiveness and efficiency of the logistics 

network (Indonesian Ministry of Energy and Mineral Resources, 2019). One strategy to reduce emissions 

produced by the logistics sector is implementing policies to use more energy-efficient vehicles such as, electric 

vehicles (Aziz and Abidin, 2021). EV vehicles are considered more environmentally friendly and to have a great 

potential to reduce GHG emissions from transportation (Tang et al., 2022; Pan et al., 2023). In light of the 

growing emphasis on environmental sustainability and improved quality of life, logistics service providers in 

various countries have initiated fuel-switching strategies for their freight vehicles (Muñoz et al., 2019). Several 

leading logistics service providers have switched to electric vehicles, including FedEx, UPS, and DHL (Ehrler et 

al., 2021). 

http://www.isres.org/
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The transition to electric vehicles in Indonesia is supported by the transformation policy that regulates battery-

powered electric motor vehicles used in road transportation, as stated in Presidential Regulation No. 55 of 2019.  

This policy is designed to stimulate the rapid advancement of battery-based electric motor vehicles in road 

transportation. Its primary objectives are to enhance energy efficiency, promote energy conservation within the 

transportation sector, and contribute to adopting clean energy sources. Moreover, this policy aligns with 

Indonesia's commitment to reduce greenhouse gas emissions and fosters cleaner and more environmentally 

friendly air quality. However, the EV implementation in logistics service providers is facing significant mileage 

and recharge time limitations. Given these challenges, companies need efficient route planning techniques by 

considering the characteristics of electric vehicles. The routing approaches for conventional vehicles do not 

apply to electric vehicles, which leads to a new optimization problem called the Electric Vehicle Routing 

Problem (EVRP). 

 

A basic EVRP is usually a series of routes to reach a specific destination function that serves all customer 

demands while considering the fulfilment of mileage restrictions and electric vehicle recharging requirements. 

Therefore, a real-world EVRP study that considers the operating issues of postal and parcel delivery companies 

in Indonesia is presented in this paper. Driven by the challenges mentioned earlier, postal and parcel delivery 

companies decided to change their vehicle fleet from fuel-powered vehicles to electric vehicles. In this case, a 

homogeneous vehicle departs from the depot to deliver the customer's package first until the vehicle's load is 

empty and then picks up the package. The policy can be called backhauling: all delivery operations are restricted 

to being carried out before the pick-up operation. The vehicle can return to the depot more than once to unload 

the collected package and load the parcel to be delivered. A full recharge can be performed if the service tour 

cannot be completed due to insufficient vehicle energy levels. However, drivers spend rest time at the depot, so 

the company focuses on having vehicle recharging stations used during drivers' rest periods. The goal is to 

minimize the overall distance travelled by vehicle. So, the problem is addressed by combining the variant VRP 

capacity (Toth and Vigo, 2002), VRP with time window (Braysy and Gendreau, 2007), VRP multi-trip (Taillard 

et al.,1996), VRP backhaul (Goetschalckx and Jacobs, 1989) and EVRP with charging station (Nolz et al., 

2022).  

 

Many studies have discussed VRP variants using electric vehicles (EVRP) before. However, to the best of the 

researchers' knowledge, studies discussing the merging of route problems with backhaul variants and multi-trip 

with time windows using electric vehicles (MT-EVRPBTW) have never been conducted. As stated by Zhang 

and Zhang (2022) in their research review literature, there are still few studies that discuss the MT-EVRP 

problem. Kucukoglu et al. (2021), in conducting a comprehensive study in which there are 136 references to 

variants of the Electric Vehicle Routing Problem (EVRP), two researchers were found to discuss the Electric 

Vehicle Routing Problem Backhaul (EVRPB), namely Echeverri et al. (2020) and Cubides et al. (2019). The 

EVRPB research has not considered the existence of multi trips in the depot to carry out the unloading and 

loading process more than once.  

 

Since the EVRP is classified as an NP-hard combinatorial optimization problem, finding an optimal solution 

within a reasonable time is challenging. There have been several methods in recent years that offer potential 

solutions. The exact algorithms, such as branch-and bound, are recognized as the most straightforward method 

for deriving the optimal solution. However, due to their high computational complexity, exact algorithms are 

only practical for small-scale problems (Garey and Johnson, 1979). To address this limitation, the heuristic 

algorithms that rely on thumb, intuition, and experience are proposed as an alternative for quickly finding good 

solutions (Tang et al., 2023). In the last decade, many successful heuristic algorithms have been developed to 

solve instances of several hundred customers to near-optimal solutions within minutes of computational time 

(Vidal et al., 2013). Most heuristics are based on metaheuristic designs. Many authors have shown that 

metaheuristics have high-quality results that can be achieved with different designs (However, one component 

that all good heuristics for EVRP may have in common is Local Search (Arnold and Sörensen, 2019).  

 

Local Search (LS) has been established as a successful cornerstone for addressing EVRP and is included in 

many advanced heuristics. This paper aims to show that a well-implemented Local Search is enough to create 

heuristics that compute high-quality solutions quickly. To fill the gap of the EVRP variant, this paper first 

adapts MT-EVRPBTW drawn from real-world cases. Then, five commonly used LS operators, namely Shift 

(1,0), Swap (1,1), Swap (2,2), Relocation, and Reinsert, were used to solve the MT-EVRPBTW problem to 

investigate the influence of five LS operators in finding promising solutions for MT-EVRPBTW. 

 

The rest of the study is structured as follows. Section 2 provides a brief review of the pertinent literature about 

the EVRP. Next, Section 3 establishes a mathematical model of the problem being studied. Section 4 describes 
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the Local Search operators we used in this study. We define these operators with illustrations and describe the 

initial solution (Sequential Insertion Heuristic) used. Section 5 presents the results of tests conducted with these 

operators. Finally, Section 6 concludes the study and discusses future work. 

 

 

Related Works 
 

VRP was first proposed by Dantzig and Ramser (1959). Many studies have developed VRP variants for several 

applications. MTVRP is one variant that extends the classic VRP by adding some restrictions. It has a set of 

vehicles and drivers working on several routes or trips in a certain period. MTVRP was first introduced by 

Fleischmann (1990). Furthermore, MT-VRP considering the time window, was addressed in Azi, Gendreau, and 

Potvin (2007). They formulated it as an integer programming model with a weighted sum of two conflicting 

objectives, i.e., maximization of total revenue and minimization of total distance, and solved it by using brunch 

and price. Extending from MT-VRPTW, Neiraa (2020) learned Two-İnteger Programmings (IP) models for 

multi-trip vehicle routing problems with time windows, service-dependent loading times, and limited trip 

duration (MTVRPTW-SDLT). Huang (2021) introduces a multi-trip vehicle routing problem variant with a time 

window on urban garbage collection, where vehicles must wait in queues after the unloading capacity is filled. 

To complete the model, they proposed a Branch-And-Price-And-Cut Algorithm (BPC). Recently, Chena et al. 

(2023) investigated route planning for cold supply chain distribution of fresh food companies. They address 

route issues considering time windows, multiple trips per vehicle, heterogeneous fleets, parking constraints, 

loading and unloading times at customer positions, and limited duration to minimize associated operational 

costs. They formulated this problem as a Mixed-İnteger Programming mode. 

  

The VRPB is also an extension of the classical VRP. Further constraints include vehicles delivering to all the 

linehaul customers before visiting any backhaul customers. Koc and Laporte (2018) conducted a comprehensive 

literature study on VPRB, including variants of VRPB, heuristic, and metaheuristic approaches to complete 

VRPB applications. For example, Chavez et al. (2016) proposed a Pareto Ant Colony Algorithm to solve a 

multi-objective variant of Multi-Depot VRPB where the goal is to minimize distance, travel time, and energy 

consumption. Bajegani et al. (2021) present a mathematical model for a single depot, time-dependent vehicle 

routing problem with backhaul considering the First İn First Out (FIFO) assumption. Their proposed Variable 

Neighborhood Search (VNS) meta-heuristic and mat-heuristic algorithms have been designed that were applied 

to the real case study in the post office of Khomeini-Shahr town, Iran, and resulted in a reduction in vehicle 

travel time. 

 

However, little literature is available on the MTVRPB, and the company needs to visit the transfer stations on 

multiple rounds daily for package delivery and pickup, where each round is called a batch. Ong dan Suprayogi 

(2011) developed the new VRP variants: VRP with backhauls, multiple trips, and time window (VRPBMTTW), 

that solved Ant Colony Optimization (ACO) and Sequential Insertion as the initial solution algorithm, 

minimizing the number of vehicles, the total duration time and the range of duration times. Wassan et al. (2017) 

presented the MTVRPB with a homogenous fleet by filing ILPs for small and medium-sized instances to 

minimize the total cost by reducing the total distance travelled and the suitable number of vehicles used. 

Meanwhile, a metaheuristic VNS two-level variable neighborhood search algorithm was employed for large 

instances. Sethanan and Jamrus (2020) examined MTVRPB for beverage distribution with a heterogeneous fleet 

that uses glass bottles for soft drinks to deliver to all customers who need soft drinks in glass bottles before 

making any pickups of empty glass bottles from clients to return to the Depot. This study aimed at both an 

integer linear programming formulation and a novel hybrid differential evolution algorithm involving a genetic 

operator with a fuzzy logic controller whose objective function is to minimize total cost related to distance 

travelled. 

  

In recent years, there have been more and more studies on EVRP due to increasing social concern over low 

carbon consumption and environmental sustainability. EVRP is an expansion of VRP where the vehicles use 

electric vehicles. EVRP was first introduced by Conrad and Figliozzi (2011), where electric vehicles can 

recharge at a fixed customer location to extend their trip. Then Schneider et al. (2014) introduced EVRPTW 

with full vehicle recharging based on a linear charging function. 

 

Research on the expansion of VRPB using electric vehicles (EVRPB) was conducted by Cubides et al. (2019), 

which is formulated as a mixed-integer linear programming model that considers the operation of the DN in 

conditions of maximum power demand. This problem is formulated by adopting a multi-objective approach 

where transportation and the operation of power distribution networks are modelled. The study considered 

recharging electric vehicle batteries at the end of linehaul or during backhaul routes. Granada et al. (2020) 
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examined the Electric Vehicle Routing Problem with Backhauls (EVRPB) to minimize two operating costs. The 

first is the total cost of the travel route used for shipping and picking up goods, and the second is the cost of the 

travel route to the recharging station. The solution method uses the exact method of Mixed Integer Linear 

Programming (MILP), which can produce solutions quickly and effectively. Nolz et al. (2022) researched 

EVRPB by adding time window limits for each customer and consistency of customer visit time. The recharging 

point is based on the end of the linehaul service route within the depot during the break time. The settlement 

method uses the Adaptive Large Neighborhood Search (ALNS) method in a case study at an Austrian parcel 

delivery company. 

  

Research on the expansion of MT-VRP using electric vehicles (MT-EVRP) was conducted by Zhang and Zhang 

(2022) regarding electric buses that pick up where vehicles have more than one route. The solution to these 

problems used genetic algorithms with an improved recombination strategy (GA-IR). Wang et al. (2023) 

combined multi-trip EVRP with a heterogeneous fleet with the objective function of this study, which is to 

minimize the total mileage time and total fixed costs of electric vehicles by using the Hybrid LNS method using 

benchmark data from previous studies. Zhao and Lu (2019) combined various variants by considering time 

windows, heterogeneous fleets, and multi-trip (MT-EVRPHFTW). The model is applied to logistics companies 

in Wuhan to minimize the total cost of total mileage and recharge costs completed using the Adaptive Large 

Neighborhood Search (ALNS) method. 

 

Studies that examine VRP with Multi-trip, backhaul, and time window (MT-VRPBTW)  are still limited. At the 

same time, MT-VRPBTW, which uses electric vehicles with recharging (MT-EVRPBTW), has yet to be worked 

out. Therefore, this study proposes an MT-EVRPBTW that integrates EVRP with multi-trip, backhaul and time 

window that considers mileage with energy consumption. 

 

 

Proposed Model for the EVRPB 
 

Problem Description 

 

In MT-EVRPBTW, the central depot has two types of customers served, namely customers with linehaul 

requests and customers with pick-up requests. Linehaul customers must be served first before serving backhaul 

customers. Vehicles can return to the depot more than once to carry out the unloading of goods and also the 

loading process, which is the filling of the cargo of goods. The depot is also used by drivers as a place to rest 

until the next departure. In the VRP variant with electric vehicles (EVRP), the vehicle requires recharging to 

increase driving range. Many researchers assume that electric vehicle batteries are in full state and ready for use 

in vehicles departing from depots at the beginning of the time horizon. Electric vehicles can recharge if the 

range cannot perform services during the time horizon. The location of recharging vehicle batteries used in this 

study is a charging depot. The level of recharge power is assumed to be constant, and this assumption has been 

widely used by researchers such as Zhang and Zhang (2022), Hierman et al. (2016), Wang et al. (2023), and 

Nolz et al. (2022). 

 

 
Figure 1. Illustration from MT-EVRPBTW 
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The strategy used in developing this research model uses a full charging strategy, with a long recharging time 

that is assumed to be constant. This assumption can be found in various studies such as Zhao and Lu (2019), 

Afroditi et al. (2014), and Erdogan and Miller (2012). The energy consumption used in this study is linear with 

the distance travelled. This assumption is widely used in EVRP problems by many researchers, such as Zhang 

and Zhang (2022), Nolz et al. (2022), Keskin and Çatay (2016), Schiffer and Walther (2017), Erdelić et al. 

(2019). Customers served have a time window, and vehicles are not allowed to arrive before the specified 

service time. An illustration of the system can be seen in Figure 1 above. 

 

Table 1. Notation and decision variables 

Notation 

 The set of nodes,  ,  is the customer node,  the charging station,  the initial 

depot and  the final depot 

 Arc set    

 The set of customers, , where the linehaul customers  and backhaul 

customers are . 

 The set of recharge points where refilling takes place at a depot,   

 The set of electric vehiclee,  

 The set of trips,  

 The earliest time of receipt of service to customers  

 The latest time of receipt of service to customers  

 
Earliest start time of recharge 

 
The latest start time of recharge 

 
Travel time between nodes  and  

 Dwell time is the waiting time for the vehicle at the final depot on the trip  

 Service time for customers  

 Service time for customers  

 
Service time in the depot 

 
Electric vehicle recharging time 

 Time to start recharging the energy of vehicle  

 The end time of recharging the energy of vehicle  

 The number of requests for customers , which  is based on the type of customer, namely  if the 

delivery request, and  if pick-up requests 

 
Electric vehicle battery capacity 

 
Recharging power level 

 
The distance between points on the arc  

 
Energy consumption per kilometer 

 
Vehicle speed 

 Maximum capacity of vehicles for customers  

 
The value of the large constant 

               Decision Variables: 

 
A binary variable that has a value of 1 if the arc  is traversed by a vehicle during the trip  and a 

value of 0 otherwise 

 A binary variable that has a value of 1 if the vehicle  visits a point  along the trip  and a value of 0 

otherwise 

 Time of the vehicle  when visiting points  along the trip u,  

 Remaining energy of vehicle  when visiting points  on a trip ,  

 Additional energy of vehicle  when recharging at a recharging station on a trip ,  

 

In the formulation of the MT-EVRPBTW mathematical model, there is one depot and  customers that must be 

served. The problem can be described as a complete directed graph , where .  

is a node or customer point which  consists of linehaul customers and backhaul 
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customers . is the initial depot as the departure of the vehicle to start a trip, and the final 

depot  is the place of return of the vehicle after a trip is completed. The set is a depot that 

can be used to make multi trips as well as for recharging vehicle . The set i,j   is the set 

of arcs. 

 

Each customer  has a service request that is not allowed to exceed the maximum capacity . Homogeneous 

vehicles  travel distances with as much travel time  and have a constant speed  to make a trip 

. Service time in carrying out service activities such as loading or unloading is divided into three, namely, 

service time for linehaul customers amounting to , service time for backhaul customers amounting to , and 

service time in the depot amounting to , assuming that the service time on each node is constant. Each 

customer must be served within their respective time window ranges with a start time and an end time . 

Vehicles that have finished the service in the depot but the initial time window for customers has not been 

opened, then the vehicle must wait inside the depot with a waiting time  before departing again. 

 

The vehicle has a battery capacity  with battery energy consumption per kilometer . Energy consumption 

is assumed to be linear with mileage. If the battery energy contained in the vehicle is insufficient to cover a 

route, then the vehicle needs to recharge the battery during the recharge time and with the recharge power 

level . Recharging is done in the depot during rest periods that have a period . Related notations 

are summarized in Table 1. 

 

 

Mathematical Formulation 

 

We propose a mathematical formulation for the MT-EVRPBTW inspired by Zhang and Zhang (2022) with their 

research MT-EVRPTW with the addition of the following constraints: 

 

 

(1) 

Subject to: 

[Route selection constraints]  

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

[Time constraints]  

 

(9) 

 

(10) 
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(11) 

 

(12) 

 

(13) 

 (14) 

 

(15) 

 

(16) 

 

(17) 

 

(18) 

 

(19) 

 

(20) 

[Remaining power and capacity constraints]  

 

(21) 

 

(22) 

 

(23) 

 

(24) 

 

(25) 

 

(26) 

 

(27) 

 

(28) 

 

(29) 

 

(30) 

 

The objective function [1] is to minimize vehicle mileage. Constrain [2]-[3] represents flow conservation and 

ensures that vehicles departing from the depot are the same as vehicles arriving back at the depot. Constrain [4] 

This constraint indicates whether the vehicle will depart back from the final depot or not. The constraint 

indicates the existence of multi-trip where departure and return at the depot are possible more than once. 

Constrain [5] indicates that each customer must be visited exactly once by one vehicle on one trip. Constrain [6] 

limits recharging activities to no more than once. Constraint [7] that ensures that there is a prohibition on 

vehicles from visiting linehaul customers after visiting backhaul customers. Constrain [8] ensure the prohibition 

of vehicles from directly visiting the final depot after serving linehaul customers. Constrain [9] states the arrival 

time at the customer's point to be between the customer's time window intervals . Constrain [10] and 

constrain [11] states the prohibition of the arrival of the vehicle at the customer  before the arrival time of the 

vehicle at the customer  has finished servicing and traveling from the customer  to the customer . Where I for 

linehaul customers [10] and backhaul customers [11]. Constrain [12] states the prohibition of arrival at the 

customer  before a certain time ( ) if they travel from the depot to the customer . Constrain [13] 

states the prohibition of arrival at the customer  before a certain time ( ) if they travel from the 
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customer  backhaul to the final depot . The arrival of the vehicle at the recharging station must be less 

than the end time of recharge [14]. While the departure time of the vehicle from the recharging station must be 

more than the initial time of recharging plus the service time [15]. Constraint [16] calculates the recharging time 

assuming the battery recharging rate  is a constant. Constrain [17] states the prohibition of arrival at the 

customer  before a certain time ( if they perform from the recharge station to the 

customer . Constraint [18]-[19] states the time of route sequence, where the departure time of the next trip is 

equal to the arrival time of the previous trip plus the service time plus the waiting time of the vehicle [18]. 

While Constrain [19] states the order of route if the departure of the vehicle from the recharging station. 

Constraint [20] states the relationship between speed and travel time and distance traveled. 

 

Constrain [21] ensures that the vehicle has enough battery energy to travel toward the customer after recharging 

at the depot recharging station. Constrain [22] ensures that the vehicle has sufficient battery energy to travel to 

the customer  if the vehicle departs from a depot or another customer . Constrain [23] ensures that the 

remaining energy of the vehicle battery must be sufficient when visiting a customer and then directly traveling 

back to the depot, or the remaining energy must be sufficient when visiting other customers  before returning to 

the depot. Constrain [24] states that the remaining energy of the vehicle battery when departing from the depot 

for the next trip is the same as the remaining battery energy upon arrival at the depot on the previous trip plus 

the additional energy if the vehicle recharges in the depot. A value of  is 1 if the vehicle recharges, and a 

value of 0 if the vehicle does not recharge. Constrain stating that the number of customer requests carried by a 

vehicle does not exceed its maximum capacity, constrain [25] for linehaul customers and [26] for backhaul 

customers. Constraints [27]-[30] specify the types and ranges of the decision variables. 

 

 

Methodology 
 

Local  Search 

 

Local Search (LS) is one of several common approaches to combinatorial optimization problems with empirical 

success (Johnson et al., 1988). Local Search is a good method for producing quality solutions in completing 

vehicle routing relatively quickly (Arnold and Sörensen, 2019). The basic idea underlying Local Search is to 

start with some feasible solution  of the problem; the neighborhood of a Local Search operator is the set of 

solutions  that can be reached from  by applying a single move of that type. To evaluate it (i.e., calculate 

the corresponding objective function  and then evaluate  for some feasible solution , which is a 

neighborhood of . If a neighborhood y provided that this solution is better than the current solution 

 is found, then select  and repeat the same procedure. If no improving solution is found in the 

neighborhood of the current solution, a local optimum has been reached. In some cases, Local Search provides a 

near-optimal or even optimal solution quickly (Smet et al., 2016). It is particularly suitable for large instances 

where the search space is too large to explore in a reasonable amount of time. 

 

In the Local Search process, an operator defines the environment, which is the set of solutions that can be 

generated by applying the operator to a single solution. A move is a transition from one solution to another in its 

environment. The success of the Local Search is highly dependent on the surrounding environment and the 

operators used. In general, Local Search operators for VRP can be distinguished between operators for intra-

route optimization and operators for inter-route optimization. These two operator types reflect the two tasks that 

one has to solve in a VRP: (1) the optimization is carried out on two or more than one different route (inter-

route optimization), and (2) the optimization of each route in itself (intra-route optimization). In this paper, we 

mainly embed five common LS operators widely used for traditional VRP by taking the three intra-route 

operators found in the research of Subramanian et al. (2010), and two inter-route operators in the research of 

Silva et al. (2015). Here are some changes in the structure of the neighborhood inter-route and intra-route: 

 

 

Shifts (1,0) 

 

A node c is transferred from route 1 to route 2. In Figure 2b, node 7, which was originally on route 1, was 

moved to route 2. So, route 1, which originally had 5 nodes (1-2-8-9-10), had 6 nodes (1-2-7-8-9-10), and route 

2, which originally had 6 nodes (6-7-11-3-4-5), had 5 nodes (6-11-3-4-5) because node 7 has been moved. 
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Swap (1,1) 

 

Swap (1,1) was introduced by Boudia et al. (2007); it is a permutation between node c1 from route 1 and node 2 

from route 2. In Figure 2c, node c2 from route 1 is swapped with node c6 from route 2. This operation is also 

known as 1-1 Neighborhood Exchange. 

 

 

Swap (2,2) 

 

Swap (2,2) has almost the same move as swap (1,1) by moving 2 nodes instead of moving 1 node. The 

interchange between two adjacent nodes, c1, and c2, from a route 1 by another two adjacent nodes, c3, and c4, 

belonging to a route 2. The opposite arcs (c2, c1) and (c4, c3) are also considered, yielding 4 possible 

combinations (Fig 2d- Fig 2g).  

 

 
Figure 2. Inter-route neighborhoods. 

 

 
Figure 3. Intra-route neighborhoods. 
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In Fig. 2d, the adjacent node c6 and c7 were exchanged with the adjacent node c1 and c2. In Fig. 2e, the 

adjacent node c7 and c6 were exchanged with the adjacent node c2 and c1. In Fig. 2f, the adjacent node c6 and 

c7 were exchanged with the adjacent node c2 and c1. In Fig. 2g, the adjacent node c7 and c6 were exchanged 

with the adjacent node c2 and c1. In Fig. 2f, the adjacent node c7 and c6 were exchanged with the adjacent node 

c1 and c2. Two intra-route neighborhood structures were also implemented. Fig. 3 shows an example of each 

one of these neighborhood operators. The following two intra-route neighborhood structures were considered: 

 

 

Exchange 

 

Permutations between two nodes. This Exchange is shaped like Swap (1,1) but is in an intra-route version or 

occurs in the same route. An example of the Exchange move is shown in In Fig. 3b, that the nodes 2 and 6 were 

swapped. So that the sequence of nodes which was originally 1-2-3-4-5-6-7 becomes 1-6-3-4-5-2-7. 

 

 

Reinsertion 

 

One customer in the route is deleted, then the customer is reinserted into a different position on the same route. 

An example of the Exchange move is shown in In Fig. 3c that node 6 is deleted from the previous sequence and 

then moved to the sequence after node 2. So, the sequence of nodes which was originally 1-2-3-4-5-6-7 became 

1-2-6-3-4-5-7. 

 

All types of movement from the operators above must pay attention to the constraints that have been determined 

previously, and these constraints may not be violated for each movement. As an example of the capacity of each 

swap transfer (1,1), where the capacity of node 2  from route 1 exchanged with node 6 from route 2 with 

capacity   cannot exceed the capacity of vehicle  Time window limit for each customer . may not be 

violated. The energy consumption ( ) at each node movement must not violate the electric vehicle battery 

capacity . Rules for backhaul where nodes with shipping customers are always served first before nodes with 

pickup services. 

 

 

Initial Solution 

 

Based on Joubert and Claasen (2006), the heuristic algorithm is used as a problem-solving approach to obtain a 

feasible initial solution. It can reduce the computation time for finding a solution. In this study, the initial 

solution was built using the Sequential Insertion heuristic method, and then the solution was repaired using the 

LS operators described earlier. Solomon (1987) conducted a study by comparing several heuristic methods, 

concluding that the sequential insertion method provides a better output value than the other methods. 

 

Based on Campbell and Saverbergh (2002), the basic principle of the insertion algorithm is to try to insert 

customers between all the arcs on the current route. The sequential insertion algorithm begins by selecting a 

customer point as the first customer in a route after the depot point. The first customer is called the "seed." The 

selection of the first customer that researchers most use is the customer with the earliest time window deadline 

or the customer who has the farthest distance from the depot. After the initial customer is identified and entered, 

the SIH algorithm considers the points not included in the route while still checking the eligibility in the route. 

 

The sequential insertion algorithm consists of a number of work procedures to find the solution. Based on the SI 

algorithm used for the EVRPTW problem by Keskin and Çatay (2016), a new development is made of certain 

processing steps that are adapted to multi-trip conditions by recharging during breaks. Customers who will be 

inserted on a route will be checked for eligibility first. The eligibility in question includes the eligibility of the 

capacity load, the fulfilment of backhaul rules, the fulfilment of the customer's time window, and the energy 

charge of the battery.  

 

The rules for determining seeds apply to all initial customer formation in each trip. After updating the 

information, then calculate all insertion costs that have the eligibility time window and capacity. Insertion costs 

are obtained from adding the distance d if insertion of customer  is carried out between customer  and 

customer  which can be calculated as . The best insertion to be included in the route is the one 

with the minimum additional distance. Table 2 is the sequential insertion pseudocode used for initial solution 

development. 
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Table 2. Sequential insertion heuristic pseudocode 

Algorithm 1  Initial Solution construction 

1 Start a new route with the customer who have the earliest time window deadline 

2 repeat 

3 Calculate insertion cost of all unserved customers to the current route 

4 If no customer can be added because of violating the capacity of the vehicle then 

5 Start a new trip with the unserved customer who have the earliest time window deadline 

6 else 

7 Select the customer which increases the distance least and make the insertion 

8 end if 

9 If no customer can be added because of violating the time window then 

10 

Start a new route with the unserved customer who have the earliest time window 

deadline 

11 else 

12 Select the customer which increases the distance least and make the insertion 

13 end if 

14 If vehicle traverse lunch time then 

15 Insert charging 

16 end if 

17 Select the customer which increases the distance least and make the insertion 

18 end if 

19 until all customer are served 

 

 

Experiments and Results 
 

All numerical experiments were performed using a single-core Intel(R) Core(TM) i5-10500H CP machine with 

2.50 GHz and 8.00 GB RAM, each running Windows 11 Home Single Language. All Local Search operators 

were solved using the Python 3.10 programming language, and programs are solved using PyCharm. Each run 

of the solution approach was carried out 10 times, and the best results were presented in the next section. The 

total time limit allowed for the proposed algorithm was set to 300 seconds, and the time limit allowed to 

complete QP and CP was set to 5 seconds. 

 

We tested the proposed solution approach on 24 tests in attitudes derived from historical data of parcel delivery 

companies in Indonesia. The fleet consists of an unlimited number of identical electric vehicles with a battery 

capacity of 38.7kWh or a maximum range of 160 km and a cargo capacity of 750 kg for Linehaul customers and 

300 for backhaul customers. The vehicle is always fully recharged with a fixed recharging time. Note that more 

advanced functions can be used to model the behaviour of the charging process (interested readers refer to 

Montoya et al. (2017) for more details on nonlinear charging functions). Travel times are given in minutes and 

are based on the actual road network of the focus area. Customer demand is determined by the percentage of 

delivery and collection, which determines the percentage of customer requests that require delivery or 

collection, namely 30% and 70%, respectively. The number of customers varies between 10,25,50,75,100 to 300 

customers (2 in each instance) based on the recharge power . The recharging process relies on slow charging 

as it takes place at the depot, hence low-power home charging is implemented. Electricity companies in 

Indonesia have reported that home charging typically requires between 3 kW and 6 kW of power. Our research 

indicates that it takes approximately 6 hours to fully charge a vehicle from 0% to 100% using slow charging, as 

per data provided by car manufacturers. 

 

Table 3 above presents an example column consisting of column “C”, namely customers, and column “S”, 

which states the charging power used, which is 3 kW and 6 kW for each number of customers. The Initial 

solution column is the initial feasible solution used to build routes using Sequential Insertion. Initial Solution 

column consists of column “Kv”, which states the number of vehicles used, and the “Sol”. column, which is a 

solution resulting from the development of the Initial solution. The number of vehicles used in the initial 

solution increases with the number of customers. Interestingly, vehicles that recharge with a 3 kW power source 

require more units compared to those that recharge with a 6 kW power source, even when the number of 

customers is the same. For example, if there are, If the vehicles are being charged at 3 kW power, it would 

require 10 vehicles to complete the charging process. However, it would take 10 vehicles to complete the 

charging process when recharging with 3 kW power. However, if the charging power is increased to 6 kW, only 

7 vehicles would be required. This is due to the fact that the amount of energy put into the battery depends on 

the charging power used. If electric vehicle batteries take too long to recharge, it can cause service delays and 
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violate time windows for customers, which is especially crucial for parcel delivery. Similarly, the initial solution 

for the Sol. column indicates the completion value of the solution in terms of distance (kilometers). As more 

customers and vehicles are utilized, the distance increases. This is because more vehicles enable additional trips, 

resulting in an increase in the distance traveled to return and depart from the depot. 

 

Table 3. Comparison among different Local Search operators 
1 2 3 4 5 6 7 8 

Instance Initial Solution BS Shift (1,0) Swap (1,1) Swap (2,2) Relocation Reinsert 

C S Kv Sol. 
 

Sol. Gap Sol. Gap Sol. Gap Sol. Gap Sol. Gap 
10 3 1 51.45 40.23 42.24 41.28 40.28 0.05 41.77 1.54 47.04 6.8 40.23 0 

10 6 1 51.45 32.19 45.5 13.31 41.19 9 32.19 0 40.69 8.5 41.56 9.37 

25 3 1 116.31 95.63 111.35 15.72 102.57 6.94 95.63 0 109.28 13.65 106.89 11.26 
25 6 1 116.31 99.71 114.58 14.87 109.61 9.9 99.71 0 110.49 10.78 103.33 3.62 

50 3 2 180.55 164.76 174.76 10 166.59 1.83 167.92 3.17 170.28 5.52 164.76 0 

50 6 2 180.55 160.11 172.99 12.89 165.55 5.44 160.11 0 173.45 13.34 171.27 11.16 
75 3 3 242.34 221.87 239.34 17.47 231.06 9.19 221.87 0 230.89 9.01 231.73 9.86 

75 6 3 304.13 286.15 301.28 15.13 295.99 9.83 295.06 8.9 295.59 9.43 286.15 0 

100 3 5 592.74 576.64 585.13 8.49 577.09 0.45 583.87 7.23 589.29 12.65 576.64 0 
100 6 4 585.54 572.36 579.57 7.21 572.36 0 572.88 0.53 578.91 6.55 574.17 1.81 

125 3 5 646.35 629.04 640.22 11.18 640.9 11.86 635.25 6.21 637.47 8.44 629.04 0 

125 6 4 633.53 622.28 630.82 8.54 624.13 1.85 622.28 0 624.54 2.26 624.37 2.09 
150 3 6 770.63 755.08 766.63 11.55 756.45 0 755.08 0 758.28 3.2 759.19 4.11 

150 6 5 754.05 738.05 752.96 14.91 741.02 2.97 738.05 0 746.2 8.15 743.86 5.81 

175 3 7 921.21 906.44 915.29 8.85 906.51 0.07 912.55 6.11 915.97 9.52 906.44 0 
175 6 6 897.38 877.53 896.19 18.66 889.58 12.05 877.53 0 891.94 14.42 886.31 8.78 

200 3 9 1062.32 1048.07 1056.26 8.19 1048.07 0 1048.58 0.52 1051.62 3.56 1053.1 5.04 

200 6 7 1026.63 1008.9 1017.62 8.72 1022.35 13.45 1010.43 1.53 1021.15 12.26 1008.9 0 
225 3 9 1154.33 1138.08 1148.06 9.97 1149.44 11.36 1138.08 0 1146.07 7.99 1140.33 2.25 

225 6 7 1129.64 1115.64 1127.75 12.12 1120.28 4.65 1115.64 0 1119.52 3.88 1122.43 6.79 

250 3 10 1386.99 1371.61 1382.35 10.74 1371.61 0 1374.26 2.65 1378.5 6.9 1375.32 3.72 
250 6 8 1356.09 1344.43 1350.3 5.87 1344.43 0 1345.4 0.97 1345.59 1.16 1349.68 5.25 

300 3 11 1551.08 1534.91 1546.27 11.35 1542.46 7.54 1537.35 2.44 1544.36 9.45 1534.91 0 

300 6 8 1519.53 1507.7 1513.09 5.4 1508.39 0.69 1509.12 1.42 1511.78 4.08 1507.7 0 

Average     717.96   712.94 12.6 707 4.96 703.78 1.8 709.95 7.98 705.76 3.79 

 

Table 4. Run time of different Local Search operators 

Instance Run time 

C S Kv 
Shift 

(1,0) 

Swap 

(1,1) 

Swap 

(2,2) 
Relocation Reinsert 

10 3 1 10.4 39.75 28.18 26.67 35.88 

10 6 1 21.06 31.08 40.33 52.9 18.53 

25 3 1 45.35 47.02 70.33 82.49 80.34 

25 6 1 45.59 22.3 39.64 37.35 45.1 

50 3 2 50.33 36.1 53.64 30.08 29.09 

50 6 2 36.99 60.66 56.36 40.01 49.78 

75 3 3 159.09 145.34 164.22 162 147.76 

75 6 3 190.12 171.44 186.38 189.18 171.49 

100 3 5 288.16 319.77 307.303 305.19 305.43 

100 6 4 309.06 153.83 176.51 190.18 182.69 

125 3 5 592.46 417.33 464.8941 418.66 436.33 

125 6 4 368.83 215.72 252.277 215.03 407.8 

150 3 6 568.47 411.33 252.277 402.53 431.15 

150 6 5 381.14 206.12 449.9006 201.93 426.37 

175 3 7 642.64 485.42 564.028 470.6 606.39 

175 6 6 528.5 352.4 440.4486 357.02 578.53 

200 3 9 535.43 363.42 449.4251 362 732.62 

200 6 7 415.44 263.95 339.6964 259.24 692.34 

225 3 9 610.47 423.22 516.843 433.82 730.27 

225 6 7 496.89 316.66 406.78 327.84 708.65 

250 3 10 705.23 533.38 619.3081 535.31 970.73 

250 6 8 510.08 350.96 430.5204 347.74 925.64 

300 3 11 933.18 741.24 837.209 752.13 1126.69 

300 6 8 741.37 588.52 664.9457 588.08 1093.34 
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The results of each operator can be found in columns 4 through 8, with column 3 designated as "BS," indicating 

the best result attained by any of the operators in each instance. Each operator is represented by two columns: 

"Sol" and "Gap." The "Sol" column displays the result produced by each operator in each instance, while the 

"Gap" column reveals the disparity between the "Sol" result and the value in the "BS" column. The average gap 

obtained can be seen in Table 5. Table 4 showcases the average duration spent looking for a solution in the run 

timetable. It is important to note that generating a solution takes longer when the instance size increases. For 

example, as seen in Table 2, it takes more time to generate a solution for 300 than 200 customers. Furthermore, 

the inter-route operator, which involves using the order Swap (2,2) - Swap (1,1) - Shift (1,0), takes longer than 

the intra-route operator that uses the Relocation-Reinsert order. Transferring neighbours between routes requires 

more complex combinatorial work than intra-route transfers. 

 

Table 5 Comparison of average solutions 

Component Average Sol. Average Gap 

Initial Solution 717.96 15.99 

Shift (1,0) 712.94 12.60 

Swap (1,1) 707.00 4.96 

Swap (2,2) 703.78 1.80 

Relocation 709.95 7.98 

Reinsert 705.76 3.79 

 

Table 5 compares the results of various LS operators and shows that all of them outperformed the initial 

solution. This suggests that the resulting operator can enhance the obtained solution. The Swap (2,2) operator 

generated the most optimal solution, as indicated by the average gap in Table 5. This operator explores a larger 

solution space as the processing time increases. Reinsert follows Swap (2,2) and performs well because it 

systematically explores each node of the created environment. Swap (1,1) demonstrates a smaller gap than 

Reinsert and offers a better solution than Relocation, as it exchanges one node's space with another on a 

different route, rather than on the same route. Shift (1,0) produces a lower solution compared to other operators 

since moving a customer node to another route can potentially disrupt the vehicle capacity. To summarize, from 

the above extensive experiments, it is demonstrated that the inter-route Swap (2,2) operator is the most effective 

LS approach for solving MT-EVRPTW out of all five investigated LS methods. 

 

 

Conclusions and Future Research 
 

In this paper, we investigate the MT-EVRPBTW, a variation of the VRP that takes into account multiple trips, 

time windows, and backhaul using electric vehicles. We present a mathematical model that aims to minimize the 

total distance traveled. To solve the MT-EVRPBTW, we use the Sequential Insertion Heuristic to develop an 

initial feasible solution. We then introduce five widely used Local Search operators (LS) to further improve the 

solution: Inter route operators (Shift (1,0), Swap (1,1) and Swap (2,2)) and intra-route operators (Relocation and 

Reinsert). We compare the quality of the resulting solutions in real-world package delivery cases in Indonesia. 

All LS operators show good performance in generating solutions compared with the initial solution. Swap (2,2) 

is the most effective LS operator, followed by Reinsert and Swap (1,1), in achieving good performance in 

solving MT-EVRPBTW. 

 

Based on the above investigations, we highly recommend using the above LS operator in developing new 

effective optimization methods for such difficult problems. Further work can be done by combining several 

local searches to explore the search space and obtain out of the optimum trap. Furthermore, since the MT-

EVRPBTW is a new model, there is a need for extensive attention to design the addition of other VRP variants, 

such as heterogeneous and partial recharging schemes that consider the length of time for recharging vehicles to 

get closer to the real system. 
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