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Abstract: The present theoretical paper treats the problem of determination of the coefficient of thermal 

expansion of a rod with two concentric longitudinal layers. The layers exhibit non-linear elastic behaviour. 

Besides, the layers have different thickness. The rod is exposed to temperature influence. The coefficient of 

thermal expansion of the rod is derived by analysing the thermal strains in the two layers. Since the layers are 

connected, the strains in the layers are equal (this fact is used to work out an equation for determining the 

coefficient of thermal expansion of the rod). The case when the two layers are continuously inhomogeneous 

along the rod length is also considered. In this case the material properties of the layers vary continuously in 

longitudinal direction. Here again the layers have non-linear elastic mechanical behaviour. Analysis of the 

distribution of strains along the length of the rod is carried-out when deriving the coefficient of thermal 

expansion of the rod. A comparison with the coefficient of thermal expansion of a rod having linear-elastic 

mechanical behaviour is performed for check-up of the solutions obtained in the present paper.       
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Introduction 

 

Layered material systems find wide application in different sectors of modern technics (components of load-

carrying structures, electronics, optical devices, sport facilities, engineering infrastructure, aeronautics, 

aerospace, car industry, etc.) (Dolgov, 2005; Kim et al., 1999; Nguyen et al., 2015). The increased usage of 

layered material systems in recent decades can be explained mainly by their excellent properties like high 

strength-to-weight and stiffness-to-weight ratios and very good processability (Rzhanitsyn, 1986; Rizov, 2017). 

The layered material systems represent combinations of layers made of different engineering materials (Kaul, 

2014; Lloyd & Molina Aldareguia, 2003; Rizov, 2018). This fact is a premise for developing of diverse systems 

which combine in a highly efficient manner the advantages of the constituent materials. Besides, the layers may 

have different thickness.           

 

In many practical applications in various areas of contemporary engineering layered components are subjected 

to temperature influence during their life-time. Besides, some layered material systems have non-linear elastic 

mechanical behaviour, i.e. their stress-strain constitutive law is non-linear. In such cases the Hook’s law is not 

applicable. Also, the coefficients of thermal expansion of the layers are different. Besides, the layers may be 

manufactured by using inhomogeneous materials like functionally graded materials (the latter represent 

advanced continuously inhomogeneous composites (Gururaja Udupa et al., 2014; Radhika et al., 2020; Rizov, 

2020; Toudehdehghan et al., 2017). In cases when layers are inhomogeneous, the material properties of a layer 

including the coefficient of thermal expansion change continuously along one or more directions. 

 

The purpose of the present paper is to develop an analytical approach for determination of the coefficient of 

thermal expansion of a rod with two concentric longitudinal layers which have non-linear elastic mechanical 

behaviour. The moduli of elasticity and the coefficients of thermal expansion of layers are different. First, the 

case of homogeneous layers is treated. Then a solution is obtained also for a rod whose layers are continuously 

http://www.isres.org/
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https://www.sciencedirect.com/science/article/pii/S2211812814008074#!


International Conference on Basic Sciences and Technology (ICBAST), November 16-19, 2023, Antalya/Turkey 

2 

 

inhomogeneous in longitudinal direction. Comparisons with known solutions for the coefficient of thermal 

expansion are performed for check-up of the solutions derived in this paper.     

 

  

Coefficient of Thermal Expansion Determination 

 

Consider a rod of circular cross-section with radius, R . The rod is made of two concentric longitudinal layers. 

The radius of cross-section of the internal layer is r  as shown in Fig. 1. The rod is subjected to uniform heating 

by temperature, t . The coefficients of thermal expansion of layers 1 and 2 of the rod are denoted by 1t  and 

2t , respectively. The layers are homogeneous.  

 

 
Figure 1. Cross-section of the rod. 

 

The mechanical behaviour of the layers is non-linear elastic. The non-linear constitutive law of layer 1 is 

expressed by formula (1) (Lukash, 1997), i.e.  
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where 1  is the stress,   is the strain, 1E  is the modulus of elasticity, 1s  is a material property of this layer. 

Similarly, for the constitutive law of layer 2 of the rod we have 
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Here 2  is the stress,   is the strain, 2E  is the modulus of elasticity, 2s  is a material property. The purpose 

of the present analysis is to derive the coefficient of thermal expansion, tc , of the rod. As known, the 

prolongation, tl , of the rod due to heating can be calculated by applying formula (3), i.e. 

 

                                                                          ltl tct   ,                                                                     (3) 

 

where  l  is length of the rod.  
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The following approach is used here to derive tc . If the layers of the rod are not connected their prolongation 

can calculated by formulas (4) and (5), i.e. 

 

                                                                            ltl tt  11  ,                                                                      (4) 

 

                                                                           ltl tt  22  ,                                                                      (5) 

 

where 1t  and 
2t are the coefficients of thermal expansion of layers 1 and 2, respectively. However, the rod 

layers are connected. As a result of this the prolongations of the layers are equal. This induces axial forces in 

layers 1 and 2 denoted by 
1tN  and 2tN , respectively. The prolongations, 1Ntl  and 

2Ntl , of the layers due 

to axial forces are found by formulas (6) and (7), i.e. 

 

                                                                              llNt 11  ,                                                                          (6) 

    

                                                                                llNt 22  ,                                                                       (7) 

 

where the strains, 
1  and 2 , are found as 
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Formulas (8) and (9) are obtained by solving (1) and (2) with respect to strain. By using formulas (4) – (9), the 

prolongations of layers 1 and 2 of the rod due to heating and to axial forces are written as 
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Since the layers of the rod are connected, their prolongations are equal, i.e. 

 

                                                                                    21 ll  .                                                                      (12) 

 

From (10), (11) and (12), we obtain 
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The stresses, 1  and 2 , in equation (13) are unknowns. One complementary equation is written by 

considering the equilibrium of the axial forces, 1tN  and 2tN , in the layers of the rod, i.e. 

 

                                                                                  21 tt NN  .                                                                       (14) 

 

Since 



International Conference on Basic Sciences and Technology (ICBAST), November 16-19, 2023, Antalya/Turkey 

4 

 

                                                                                  111 AN t                                                                      (15) 

and 

 

                                                                                  222 AN t                                                                      (16)  

 

formula (14) takes the following form 

 

                                                                               
2211 AA   ,                                                                    (17) 

 

where the areas, 1A  and 
2A , of the cross-sections of layers 1 and 2 are found as 
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The stresses are derived from equations (13) and (17) by MatLab. In order to determine tc  we equalize l  

and 1tl , i.e. 

                                                                                    1tll  .                                                                      (20) 

 

Finally, by inserting of (3) and (10) in (20), we obtain the following equation with unknown, tc : 
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Equation (21) is solved with respect to tc , i.e. 
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Expression (22) is checked-up in the following way.  It is clear from formulas (1) and (2) that at 021  ss  

the non-linear constitutive laws transform into the Hook’s law, i.e. 

 

                                                                                 11 E ,                                                                         (23) 

 

                                                                                 22 E .                                                                        (24) 

 

This fact indicates that at 021  ss  formula (22) for the coefficient of thermal expansion of the non-linear 

elastic rod derived in this paper should transform into the formula for the coefficient of thermal expansion of the 

linear-elastic rod. We are going to check-up this. For this purpose, we substitute 021  ss  in (13) and (22) 

and by carrying-out some mathematical transformations we derive 

 

                                                                      

2211

222111

AEAE

AEAE tt
tc







 .                                                      (25) 

 

By inserting of (18) and (19) in (25), we have  
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The fact that (26) coincides with the expression for the coefficient of thermal expansion of a linear-elastic rod 

published in (Hoa et al., 2003) is a check-up of (22).  

 

The case of a non-linear elastic rod with two concentric layers which are continuously inhomogeneous in 

longitudinal direction is also considered. The rod cross-section is shown in Fig. 1. The moduli of elasticity and 

the coefficients of thermal expansion of the two layers change continuously along the rod length, i.e. 

 

                                                                                 )(11 xEE  ,                                                                    (27) 

 

                                                                   )(22 xEE  ,                                                                   (28) 

 

                                                                 )(11 xtt   ,                                                                     (29) 

 

                                                                 )(22 xtt   ,                                                                   (30) 

where 

                                                                      lx 0 .                                                                      (31) 

 

In formulas (27) – (30) x  is the longitudinal centroidal axis of the rod. The prolongations of the two layers due 

to heating are written as 
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The prolongations of the two layers induced by the axial forces are expressed as 
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By combing of (8), (9), (32), (33), (34) and (35) we derive the following expressions for the prolongations of 

layers 1 and 2 of the continuously inhomogeneous rod due to heating and to axial forces: 
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The prolongations of the layers are equal, i.e. 
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Equations (17) and (38) are solved with respect to stresses, 1  and 
2 .  

By equalizing of (3) and (36) we have 
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From equation (39) we determine  
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It should be mentioned that when 1t  and 1E  are constants (i.e., 1t  and 1E  do not change along the length of 

the rod) formula (40) transforms into expression (25) for the coefficient of thermal expansion of a non-linear 

elastic rod with two concentric layers which are homogeneous in longitudinal direction.  

 

 

Conclusion  
 

The problem for determination of the coefficient of thermal expansion of a rod with two concentric layers is 

considered theoretically. The rod has non-linear elastic behaviour that is treated by using a smooth stress-strain 

relationship. First, the case of a rod with two homogeneous layers is analyzed. Equations for determination of 

the coefficient of thermal expansion are worked out by analyzing the strains in the rod and by considering the 

equilibrium of axial forces in the two layers. The expression for the coefficient of thermal expansion obtained in 

the present paper is checked-up by comparing with a known formula for the coefficient of thermal expansion of 

a rod having linear-elastic behaviour (it is shown that the expression derived transforms into the known formula 

by substituting of 021  ss  in the equations for obtaining the coefficient of thermal expansion. The problem 

of determination of the coefficient of thermal expansion of a non-linear elastic rod with two concentric layers 

which are made of materials that are continuously inhomogeneous in longitudinal direction is also treated. The 

coefficients of thermal expansions determined in the present paper can be applied for calculating the 

prolongations of non-linear elastic rods under heating. The equations worked out can also be used for analyzing 

the stressed and strained state of the rod layers due to heating. It should be noted that the approach for 

determining the coefficient of thermal expansion presented in this paper can be developed further by considering 

various non-linear stress-strain relationships and laws for distributions of material properties of the 

inhomogeneous layers in longitudinal direction.                            

 

 

Recommendations 

 

The theoretical approach presented in this paper can be used for determination of the coefficient of thermal 

expansion of rods with two concentric layers having non-linear elastic behavior.    
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