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Abstract: An Unmanned Aerial Vehicle (UAV) is an autonomous airborne platform characterized by
fundamental flight capabilities, including take-off and landing procedures, navigation, route tracking, and
mission execution. UAVs serve civilian and military purposes across various domains, undertaking tasks that
surpass human capabilities. These vehicles come in diverse hardware and software configurations, comprising
essential components such as take-off and landing systems, navigation modules, emergency response
mechanisms, sensory apparatus, imaging instrumentation, and energy supply systems. UAVs exhibit the
capability for flight management, target identification, and mission analysis, drawing on data collected from
preloaded datasets, control centers, and real-time environmental cues. Leveraging various artificial intelligence
(Al) algorithms, UAVs autonomously process instantaneous data, incorporating methodologies such as artificial
neural networks, image processing algorithms, learning algorithms, and optimization techniques. This paper
analyses data analytics methodologies and Al technologies used by UAVSs. Furthermore, an image processing
application using a Convolutional Neural Network (CNN) algorithm is implemented to provide object
recognition. The object recognition rate of the application developed in Python language was calculated with an
accuracy of 0.7107. This finding shows that by using Al algorithms to analyze images acquired through onboard
sensors, the UAV's capability to conduct critical operations such as target acquisition, obstacle avoidance and
collision avoidance can be improved.

Keywords: UAV, Al, Machine learning, Image processing, Object recognition

Introduction

In recent years, a significant spotlight has been cast on the advancement of systems, underpinned by the
contributions of Information Technologies (IT), engineered to provide support in endeavors exceeding human
capabilities or encompassing substantial risk. These systems are predominantly identified as robotic systems or
Al systems.

The term "Robot," which means "heavy and tedious labor" in Czech, was first coined by Karel Capek in 1921.
The word "Robotics" was first used in 1950 by the science fiction writer 1saac Asimov. Robotics is a software
and hardware system utilized to control, disassemble, and assemble a robotic object according to its
programmed instructions (Ozfirat, 2009). In the architecture of robotic systems, there are physical components
encompassing mechanical, electrical, electronic, and computational modules, along with software components
such as operating systems, control software, communication protocols, and task-specific software (Cosar, 2023).

The terms "Robot" and "Robotics" are often used interchangeably, but they do have some conceptual
distinctions. "Robot" typically refers to a self-moving entity, whereas "Robotics" encompasses the system that
constitutes such an entity. With the addition of Al, these systems become autonomous and capable of collecting
data, learning, and solving problems independently. When a robotic system can emulate human behaviors,
demonstrating the ability to perform these behaviors, it signifies its intelligence and learning capabilities.
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The concept of Al was initially delineated by John McCarthy in 1956 as the 'science and engineering devoted to
the creation of intelligent machines, especially intelligent computer programs' (McCarthy, 2007). Al systems are
conceptualized to improve upon the present state, identify optimal solutions to problems, and automatically
calculate and execute them. Progressing significantly beyond their initial capabilities, Al systems have currently
advanced to a level where they can engage in meaningful conversations with humans and provide diverse
recommendations, thus functioning at the level of a proficient assistant.

UAVs, commonly known as drones, represent autonomous aerial platforms capable of independently executing
a wide spectrum of operations, including takeoff, flight, mission execution, and landing, occasionally making
autonomous decisions. UAVs have gained significant traction in both military and civilian domains due to their
versatility and advantages, being deployed for tasks such as observation, monitoring, transportation, search and
rescue (Cosar, 2022). UAVs, commonly referred to as drones, can operate in two primary modes: remote-
controlled and semi-autonomous, or fully autonomous. In the former, they are under remote human control,
while in the latter, they exhibit a high degree of autonomy, often assisted by advanced Al technologies, enabling
them to independently manage all aspects of their missions.

This study commences by providing an overview of the general architectures and components inherent to UAV
systems. It subsequently delves into the realm of Al technologies and their current applications, which bestow
upon UAVs their advanced capabilities. Finally, the study presents a practical application in image processing,
specifically for object recognition. The article's structural organization unfolds as follows: The second section
navigates through the conceptual framework surrounding UAVs and Al technologies, offering insights into
exemplary applications and summarizing the pertinent literature. The third section meticulously elucidates the
methodology of the exemplar application, expounding on the dataset employed for image processing, the Al
algorithm applied, and the algorithmic underpinnings of the program developed using the Python programming
language. The fourth section divulges the outcomes of running the Python program, particularly focusing on the
achieved accuracy rate in object recognition and the visual outputs. In conclusion, the final section provides an
exhaustive assessment that encompasses a retrospective analysis, the current state of affairs, and prospective
outlook regarding the technologies under discussion. This study is positioned to make substantial contributions
to forthcoming research initiatives within the realms of UAVs and Al technologies.

Conceptual Framework
UAV Systems

UAVs are autonomous aerial robotic systems capable of independently performing takeoff, flight, mission
execution, and landing activities, and, in some cases, making autonomous decisions. They consist of mechanical
and electronic hardware components, flight control systems, and software components designed for various
purposes. In addition, they are equipped with sensors that can collect real-time data from both their own
components and the external environment. Moreover, they possess communication modules that facilitate
communication with other UAVSs, particularly in swarm missions and with ground control centers.
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Figure 1. Components of a UAV (Cosar, 2022)
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Within a UAV system, the software components encompass autonomous navigation software, image capture
and processing software, mapping and route planning software, communication software, mission protocol
software, and cybersecurity software. Figure 1 depicts the components of a UAV, as updated from Cosar (2022).
Each heading in the figure is accompanied by sub-components. All of these components play various roles in
making Al operational. Particularly noteworthy are the sensor components that have the ability to detect internal
and external environmental parameters, enabling learning through data analytics and facilitating autonomous
decision-making. In addition to these components, UAV systems include a fuselage and wings, which enable the
UAV to stay aloft and fly. Under the fuselage, various materials are used for the chassis and connection
elements. Another essential component that should not be overlooked is the power source, engine, and power
transmission lines that provide energy to the mechanical and electronic components.

UAVs are classified into various categories based on their physical characteristics, wing structure, shapes, and
intended applications. UAVs are categorized by their physical attributes into Fixed-Wing, Rotary-Wing,
Flapping-Wing, and VTOL (Vertical Take Off and Landing). Furthermore, they undergo a separate
classification based on payload capacity and whether they are designed for military or civilian purposes.

The most critical component of a UAV system is the flight control system. This component, organized as a
module in terms of both software and hardware, processes data collected from the ground station, the UAV
itself, and the surrounding environment during pre-flight, in-flight, and post-flight operations. The flight control
system utilizes sensors to collect and process data, subsequently transmitting commands to other UAV
components and relaying information to the ground station's computer system via the telemetry module.
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Figure 2. Block diagram of UAV flight control system (Hegde et al., 2020)

Figure 2 illustrates a block diagram of a rotary-wing UAV's flight control system, responsible for managing
flight based on parameters such as altitude, distance, coordinates, wing rotation speed, and other variables. This
system initially performs measurement and calculation processes to reach ideal position values based on the
UAV's position during takeoff, landing, and flight. Subsequently, it calculates the disparities between the current
state, as derived from data collected through sensor communication, and the desired state. Based on these
calculated values, it initiates crucial processes such as mission and route optimization, triggering the
autonomous decision-making process. This loop continuously operates throughout the mission.
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Figure 3. Some sensors found in UAV architecture
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One of the most influential components in the convergence of UAVs with Al is the sensors depicted in Figure 3.
This component serves as the UAV's sensory organs, providing the data that assists in situational analysis.
Below, we introduce the most commonly used sensors in UAV applications.

= GPS Sensor (Global Positioning System Sensor): GPS sensors are employed to determine the UAV's
geographical location on Earth, facilitating navigation and route planning. They are essential for
mapping flight paths, reaching designated waypoints, and accomplishing mission objectives.

= IMU Sensor (Inertial Measurement Unit Sensor): IMU sensors measure the UAV's speed, acceleration,
and angular movements. This data is crucial for maintaining flight stability, refining position
calculations, and enabling precise maneuvering during flight.

= Camera Sensor: UAVSs use cameras for tasks such as image and video recording, observation, mapping,
and object recognition. Camera sensors are utilized to capture and analyze visual data.

= LiDAR Sensor (Light Detection and Ranging Sensor): LiDAR sensors are employed to create high-
resolution 3D maps, detect objects, and measure distances accurately. They are particularly valuable for
tasks like terrain mapping and environmental sensing.

= Thermal Sensor: Thermal cameras detect temperature variations and are used for operations such as
search and rescue, fire monitoring, and identifying water resources.

= Gyro Sensor (Gyroscope Sensor): Gyro sensors are used to detect changes in orientation and rotation.
They contribute to maintaining the UAV's stability during flight and enabling precise maneuvers.

= Radar Sensor: Radar sensors are used to monitor air traffic, avoid other aircraft, and ensure safe
landings at airports.

= Ultrasonic Sensor: Ultrasonic sensors measure the distance to the ground and are crucial for automatic
landings and obstacle avoidance systems.

=  Pressure Sensor: UAVs employ pressure sensors to measure atmospheric pressure, providing crucial
data for altitude determination and weather analysis.

=  Magnetic Field Sensor: A magnetic field sensor is a vital component used for detecting changes in
magnetic fields, which aids in orientation and navigation within UAV systems.

= Humidity Sensor: Humidity sensors are utilized to measure atmospheric moisture levels, offering
valuable insights into environmental conditions and weather phenomena during UAV missions.

= Current Sensor: Current sensors play a fundamental role in monitoring the electrical current flowing
through various components in the UAV's electrical system, ensuring both safety and operational
efficiency.

= Voltage Sensor: Voltage sensors are pivotal for measuring electrical potential differences, allowing for
the continuous monitoring of the electrical system's status and performance.

= |nfrared Sensor (IR Sensor): Infrared sensors capture infrared radiation, enabling thermal imaging and
object detection, particularly under low-light conditions, facilitating enhanced situational awareness.

= Compass Sensor: Compass sensors serve as a navigational aid, determining the UAV's orientation
concerning Earth's magnetic field, thereby contributing to accurate heading control.

= Distance Sensor: Distance sensors are instrumental in gauging the range between the UAV and objects
in its vicinity. They are indispensable for applications such as obstacle avoidance, terrain mapping, and
precise landing procedures.

These sensors collectively bolster the sensory capabilities of UAVs, allowing them to undertake a diverse array
of tasks and interact effectively with their surroundings.

Avrtificial Intelligence

Al is the discipline of science and engineering related to the imitation or development of thinking, learning,
decision-making and problem-solving abilities that model human behavior in software and hardware systems of
computer science. Al possesses a wide range of applications, including the performance of complex tasks, big
data analysis, object recognition, natural language processing, autonomous decision-making, and predictive
modeling. This technology enables a multitude of innovative applications spanning various domains, from
industrial processes to healthcare services, automation systems to intelligent assistants.

Figure 4 depicts the systematic assessment of Al applications over a sequence of stages. The process
commences with the transition from extensive repositories of big data, progressing towards meticulously
curated, categorized, correlated, processed, and analyzed datasets. Subsequently, leveraging learning techniques,
the dataset undergoes profound knowledge extraction. Ultimately, this acquired knowledge facilitates the
generation of decisions and actions. It is imperative to acknowledge that this process imposes an additional
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burden in terms of hardware and software resources. Notably, the computation speed for parameter adjustments
and the computational requirements for data processing introduce supplementary expenses and computational
workloads for UAVs.
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Figure 4. Architecture of a Al system (Reuter et al., 2020)

UAV and Al

Al technologies are prominently employed in processes demanding cognitive functions, such as speech
recognition, image perception, autonomous navigation, and positioning. UAV systems have harnessed these Al
capabilities to act autonomously and make decisions. In the early stages of UAV utilization, rudimentary
challenges were addressed through human-assisted expert systems. As technology evolved, integrating human
pilot behaviors to mimic analogous responses, particularly for critical decision-making, became a common
practice. In recent times, the growing demand for mission diversity, speed, and energy efficiency necessitates
the exploration of alternative technologies. In this context, Al technology emerges as the primary solution. This
is attributed to the UAV's requirement to process dynamic environmental variables continuously and in real-
time during flight.

Two distinct operational principles for UAVs and Al technologies exist, dependent on data collection and
processing methods. The first, Off-board processing, hinges on data transfer and processing between the UAV
and an external computer within the environment. However, this method is susceptible to external influences as
the entire process occurs through a communication medium. The second approach is Onboard processing,
whereby the UAV autonomously initiates data processing using its in-built hardware and software. In onboard
processing, it is not possible to change pre-existing image processing rules and add new ones. Therefore, such
UAVs are generally preferred in non-dynamic missions. Decision-making rules are generally straightforward,
void of temporal constraints, and do not accommodate event prioritization or hierarchies’ dependent on other
events (Boubeta Puig et al., 2018).

The integration of Al with modules responsible for UAV flight control, encompassing image recognition, object
tracking, and various information-based processes, has yielded favorable outcomes. Despite the augmented
demand on software, hardware, and energy systems, the empowerment of UAVs designed for low-tolerance,
sensitive tasks with robust machine and deep learning processes significantly enhances mission performance,
rendering them indispensable.

UAVs face a plethora of challenges, including adverse weather conditions, energy consumption optimization,
payload capacity management, mission risk mitigation, route obstacle avoidance, inherent design-related factors,
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cyber threats, and the dynamic nature of environmental conditions. To effectively contend with these adverse
circumstances, the implementation of an autonomous system capable of independent decision-making is
imperative. In this context, Al technology assumes a pivotal role in facilitating real-time situation analysis and
decision-making processes.

Table 1. Al technologies used by the UAV during the mission and the application process

Task Implementation Al Technologies
Object It is used for autonomous UAVs that have a decision-making
recognition and mechanism by real-time image processing. Noise and
tracking unwanted effects are removed from the pure image collected

by the camera and other image sensors, and the simplest and

clearest image is obtained. From these images, decision-

making processes such as object recognition, object tracking = Artificial Neural Networks

and obstacle avoidance are initiated. (ANN)

= Nearest Neighbors (KNN)

= CNN

= Graph Neural Networks

Path planning It is used to determine alternative routes by processing = Support Vector Machine
parameters such as speed, duration, path loss and target (SPV)

Target It is used to minimize target deviations in adverse
classification environmental conditions and areas with heavy signal traffic.

distance during the UAV's mission. = Machine Learning (ML)
Energy It is used to control energy consumption during landing, take- i De_ep Learning (DL) .
. . . . = Reinforcement Learning
consumption off and flight time and to prevent unnecessary consumption. (RL)
Takeoff, It is used to perform actions such as anomaly detection, = Markov decision process,
landing and obstacle avoidance and collision avoidance that do not = Q-Learning (Q-L)
maneuvering comply with the functioning of the system. = Swarm Al Algorithms
Communication It aims to improve the quality of the signal, its transmission, ' (Eelco;utlonary Computing
and its resistance to distortion during the communication _ Genetic Algorithms
phase of the UAV with the control centre and other UAVSs. tic Alg
= Gravitational Search
Task It is used to increase communication, interaction and  Algorithm (GSA)

optimization coordination in single and swarm flights of the UAV. It is = Optimization Algorithms
generally effective in flight speed, flight duration, energy = Heuristic and Meta-Heuristic

utilization and path planning. Algorithms (Bee Colony, Ant
Flying object It is used for activities such as detection, avoidance and Colony,  Particle  Swarm
. . . . : Opt...)
detection interception by processing radar, sound, image and thermal
scan data for the detection of other flying systems on the
route.

Cyber security It is used in the detection and prevention of cyber threats and
attacks against the UAV's position, swarm interaction and
communication systems.

Table 1 provides a list of Al technologies used in UAV applications. This table provides summary information
about the purposes for which Al technologies are used and what kind of improvements they make. Column 3 of
the Table 1 lists the most commonly used Al algorithms and optimization methods. It is possible to expand the
lines of this table as the use of Al technologies becomes widespread.

Literature

Gonzales et al. (2016) conducted image processing via thermal imagery to detect, classify, and monitor wildlife
in forests or open areas using drones. Zhang et al. (2018) wanted to provide cellular wireless network service by
optimizing UAV positions with ML algorithms. In the Ucan base station model, they managed to reduce the
energy consumption of IHs by 20-80%. Saribas et al. (2018) were able to real-time, accurately determine vehicle
positions using the EPPC, YOLO Tiny, and YOLOV2 algorithms with a 84.49% accuracy rate based on image
data collected by UAVs. Polvara (2018) successfully executed the landing of an UAV on a moving ship. The
evaluation of variables was carried out for landing at a non-fixed and irregularly moving point in this
application.
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In the study by Line (2018), autonomous landing was performed on a moving vehicle with a QR code. Zhang et
al. (2018) proposed a ANN detection algorithm using three signal features for UAV RF signals: improved slope,
improved kurtosis, and improved skewness. The recognition rates of SVM, KNN, RBFNN, SOMNN, and
BPNN were found to be 0.9106, 0.8828, 0.9252, 0.8459, and 0.9368, respectively.

Venturini et al. (2021) approached mission optimization in UAV swarms by using a scaled Reinforcement
Learning (RL) approach in a simulation environment, achieving a success probability of approximately 0.65 to
0.7. Poudel and Moh (2021) proposed a hybrid algorithm that combines probabilistic roadmap and optimized
artificial bee colony (ABC) for determining the optimal route in an environment with various obstacles through
data collection over the network. The proposed algorithm was found to provide energy efficiency and packet
transmission efficiency.

Tlili et al. (2022) proposed an Al-supported model for detecting errors and abnormalities during cyberattacks on
UAVs. The model used the Long Short-Term Memory (LSTM) algorithm, resulting in accuracy values of 0.955
in attack detection and 0.824 in error tolerance. Boone et al. (2023) ran a ML algorithm to detect buildings in
aerial images obtained from low-flying UAVs. Through image processing on maps, the model achieved a mean
Average Precision (mAP) of 0.3 and an Intersection of Union (loU) accuracy of 88%.

Method

In this study, an image processing application was developed using a classification algorithm, which is one of
the Al technologies. A deep neural network model was constructed in order to classify low-resolution images
available in the Keras and Tensorflow libraries through ML, and images were tested. The CIFAR-10 dataset was
used as the dataset. The CNN algorithm was employed as the classification algorithm. The application's
computer software was coded in the Python programming language.

Dataset

The CIFAR-10 dataset, created by the Canadian Institute for Advanced Research, was utilized. This dataset
consists of 10 different object classes and contains 60,000 image sets for training and 10,000 image sets for
testing, each with a size of 32x32 pixels. These images have pixel values ranging from 0 to 255. The dataset is
well-suited for performing analyses as successful as those conducted by humans using Al methods (Hope et al.,
2017). During the application, the value ranges were normalized to the range of 0 to 1 to process the data more
effectively.

Image Classification Algorithm

In the digital environment, images are modeled as numerical three-dimensional matrices. The image processing
process is carried out on this matrix using mathematical and statistical computations. CNN is a neural network
based mainly on image or video type media data models. This network is an extended version of ANN used to
extract features by creating a grid-like matrix structure on visual datasets.

The basic components of the architecture of the method include the 1% layer convolutional layer, 2™ layer
pooling layer and 3™ fully connected layer. How many of these layers will be used may vary depending on the
type of data to be processed and the purpose of the application. Here is a mathematical model of a CNN: In this
equation, X represents the input data, F represents filters, W represents the weight matrix, b represents bias, and
o represents the activation function, producing output Y. Convolution and pooling operations can be further
detailed with parameters defining dimensions and indices.

Convolutional Layer

Convolutional layers perform the convolution of special filters on input data. Mathematically, in these layers,
each filter conducts a dot product with the input data. The result is called feature maps. Mathematically, the
convolution process can be expressed as follows. X is the input data, F represents the filters, * represents the
convolution process, and Y represents the feature map. The mathematical calculation model of this process is
given in Formula 1.
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Y=X=xF (1)

Pooling Layer

Pooling layers are used to downsize feature maps and highlight important features. The most commonly used
pooling operation is max-pooling. Mathematically, max-pooling can be expressed as:

Yi,j = max(Xi',j") (2)

Fully Connected Layers

These layers flatten feature maps and connect them with consecutive layers. Mathematically, these layers
produce an output by multiplying the input vector with a weight matrix and applying an activation function. The
first fully connected layer often includes an activation function (Raitoharju, 2022).

Yi,j = a(WX + b) @3)

In Formula 3, Y is the output function, W is the weight matrix of the image, X is the input vector, and b is the
bias. Additionally, o represents the activation function. CNNs typically include these basic components and
often consist of multiple convolution and pooling layers. When combined, these layers can extract and classify
complex image features.

Fully

Convolution Connected

Pooling .-
Input .-

\ J\

Feature Extraction Classification

Figure 5. Schematic diagram of a basic CNN architecture (Phung & Rhee, 2019)

CNNs have distinct advantages over other pattern recognition algorithms as they integrate both feature
extraction and classification processes. Figure 5 illustrates a basic schematic representation of the image
processing procedure using a fundamental CNN algorithm. Figure 5, a simplified diagram of the image
processing process, consists of five different layers. The number of layers varies depending on the application
type and image complexity. These layers are assessed within two distinct segments. The first segment involves
feature extraction and the second segment pertains to classification.

The feature extraction segment includes image resizing, weight matrix creation, and size reduction without
losing the basic information of the image. At the end of this process, the feature map of the image is created.
The second segment is created to classify image features. In this process, for each object category, there is an
output neuron that represents the classified version of the image (Phung & Rhee, 2019).

Computer Algorithm of the Model

In calculating the accuracy of the model, the number of iterations was determined as 10. Then, coding process in
Python language was started. The pseudo code of the application is presented below as Algorithm_1.

8
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Algorithm_1. Pseudo code of the Image Processing Application

N =

8.

9.

Import necessary libraries: TensorFlow, Keras and Matplotlib libraries
Load CIFAR-10 dataset
Define class names:
Create a list of class names for the CIFAR-10 dataset, representing different categories like 'Airplane,’
‘Automobile,’ 'Bird,’" etc.
Normalize the data:
Scale the pixel values of the images in both training and test datasets to be between 0 and 1 by dividing
by 255.
Create a convolutional neural network (CNN) model:
Create the model: tf.keras.models.Sequential().
Conv2D layers add with ReLU activation functions and MaxPooling layers to build the CNN layers.
Flatten the data and add Dense layers for classification.
The final Dense layer has 10 units, representing the 10 different classes.
Compile the model as a matric:
optimizer, cross-entropy loss-gain, and determine 'accuracy’
Model’s training:
Use the training images and labels to train the model for 10 epochs with model.fit().
The model's performance is evaluated on the test dataset during training.
Evaluate the test model's performance:
The test loss and test accuracy using model.evaluate() calculate, and print the test accuracy.
Make predictions:
Use the trained model to make predictions on the test images.

10. Visualize predictions and true labels:

Create a 5x5 grid for displaying test images with their predicted and true labels.
Loop through the test images, plot them, and label each image with its predicted and true class names.
Use 'green' for correct predictions and 'red’ for incorrect predictions.

11. Display the plot using plt.show().

Ship (Ship)

Ship (Ship)

Frog (Frog)

.

Dog (Dog) Horse (Horse)

Airplane (Airplane)

¥

Tuck (Automobile)

Ship (Ship)

E
Horse (Horse) Bird (Airplane) Deer (Deer) ) Tuck (Truck) Deer (Dog)
Figure 6. Object recognition matrix obtained from image processing with CNN algorithm

Dog (Dog)

4
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After training, the accuracy of the model is evaluated on test images. In such applications, where recognition is
attempted with Al algorithms on the dataset of images obtained from camera images, the quality of the UAV's
image capture and recording features directly affects the results. Therefore, the complexity and duration of the
UAV's flight mission may change its accuracy performance.

Results and Discussion

Based on the obtained results, the application was coded using the Python programming language. When the
relevant code was executed, the Al algorithm's image processing accuracy value (Test accuracy) was
determined to be 0.7106999754905701. As a result of the image processing, the obtained labeled abstract
matching image matrix is presented in Figure 6.

Figure 6 illustrates the results of the image predictions, with green labels indicating correct predictions and red
labels indicating incorrect predictions, with the true label provided in parentheses for the red ones. A lower
occurrence of red labels is desirable, signifying higher accuracy in predicting new images after the learning
process. This code snippet generates a 5x5 grid presenting 25 test images alongside their predicted and true
labels, highlighting correct predictions in green and incorrect ones in red. Similar structures can be employed to
include additional graphs. The accuracy graphs are outlined as follows.

Training and Test Accuracy

0900 1
—&— Training Accuracy

0875 4 —% TEest Accuracy

0:850 1

0825 +

0.800 1

Accuracy

0775 1
0750 1

0725 1

0700 1 %

] 2 4 & B
Epoch

Figure 7. Image processing result accuracy values graph

When the application code is run, it creates a graph with two underlines as shown in Figure 7. This graph shows
the "Training Accuracy" (in blue) and "Testing Accuracy” (in green) over trials (Epoch). These graphs show
how the accuracy values change with each epoch, helping to monitor the performance of your model during
training and testing.

Conclusion

In this study, an overview of Al technologies in conjunction with UAV was provided, along with contemporary
applications. Subsequently, an object recognition application was implemented using Al algorithms in the image
processing phase. The success rate was calculated as 0.7107.

The current structure of UAV systems imposes several constraints, including their weight, payload capacity,
energy consumption, remote control limitations, and potential obstacles encountered during missions. Some of
these obstacles can be overcome with pre-mission interventions, but others require real-time detection,
calculation, measurement, and evaluation to make autonomous decisions. This is where Al technologies come
into play, ensuring the optimal solution following a situation analysis.

Al technologies employed in UAV systems are primarily used in various stages of image processing, location
accuracy computation, range and route calculation, swarm optimization, energy efficiency control, and

10
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communication system enhancements. The variable structure, quality, and parametric size of the dataset in Al
applications directly impact the decision-making process of autonomous systems. In image processing
procedures, the accuracy and processing time are greatly influenced by the Al algorithm used, especially when
dealing with extensive data. Additionally, the technology and capacity of hardware components used in
computation and data transmission stages are also crucial.

Recent developments indicate the provision of hardware solutions aimed at enhancing computational
capabilities. Processors contributing to learning capabilities stand at the forefront of these solutions. New chip
technologies are developed to be energy-efficient and feature high data processing capacities. Processors like
Almotive aiWare3, AlphalC Real Al Processor-Edge, Huawei HiSilicon Ascend 310, and Tesla Full Self-
Driving (FSD) are specifically designed for autonomous vehicles, equipped with Al-supported computation and
algorithms.

The widespread use of IT offers opportunities for remote monitoring, control, and management. As the
drawbacks of these technologies are gradually eliminated, their usage expands, fostering a positive outlook. Al
technologies thus present an approach that mitigates 1T-related disadvantages, particularly in the context of
unmanned vehicles used for remote monitoring, control, and management on land, at sea, and in the air. These
Al-equipped unmanned vehicles contribute to reduced mission duration, energy consumption, and enhanced
mission success rates. The future of Al is being shaped by ongoing scientific and technological research,
developments, and user preferences. Notably, regulations related to legal and ethical aspects are required to
maximize the benefits of Al for humanity and minimize associated risks.
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