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Abstract: Image classification is a fundamental task in machine learning that involves assigning labels or classes 

to images based on their content. It is often performed using convolutional neural networks (CNNs). These networks 

are capable of learning and generalizing patterns from large amounts of data. However, if the data is not sufficiently 

voluminous, overfitting can occur. In such cases, it is recommended to turn to classical machine learning techniques. 

Moreover, the data that was insufficient for deep learning may exceed the processing capacity of the machine. This 

can pose significant challenges in terms of storage, memory availability, and computational power required to 

perform the learning operations. Our proposed approach involves addressing these challenges by optimizing the 

content of the dataset. This optimization is performed while preserving the essential information necessary for 

classification. Indeed, identical or highly similar are identified, grouped together and represented by the most 

representative one among them. At the same time, their sizes can be reduced. Furthermore, another significant 

challenge in our proposed approach revolves around managing class imbalances within the dataset. Our approach 

has been evaluated and the results are promising.  

 

Keywords: Unsupervised linear/non-linear dimensionality reduction, data visualization technique unsupervised 

learning algorithm, dataset optimization  

 

 

Introduction 
 

In the contemporary digital age that defines our times, we find ourselves amidst a vast wealth of visual data, 

comprising a diverse array of images and graphical information. At the core of this visual content lies a fundamental 

challenge: how to accurately and efficiently extract meaningful information from these images? The answer to this 

question is pivotal for a multitude of applications, ranging from facial recognition to disease detection in medical X-

rays, as well as the classification of objects within complex scenes. Over the past few decades, machine learning and 

in particular deep learning have revolutionized the way we approach image classification. Deep neural networks, 

such as convolutional networks (CNN), have achieved remarkable performance in image recognition. However, 

beyond the power of the algorithms, a crucial element has emerged: the quality and composition of the dataset on 

which these models are trained. Moreover image classification using deep learning models on small datasets can be 

a difficult task, since these models typically require large amounts of data to generalize effectively. Although there 

are solutions to overcome this problem, such as data augmentation, transfer learning, etc., the performance of the 

image classifier may not be as high as with sets of larger data. However, there are several techniques and strategies 

that can be used to improve image classifier performance even with limited data. By carefully applying these 

techniques, it is still possible to create a reasonably effective image classifier with a small dataset. Imagine you are 
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training a machine learning model using data. You can compare it to a student learning from examples. The more 

examples (data) this student has, and the more diverse they are, the better they can generalize and make accurate 

decisions. That's why the quality and variety of data are essential. To optimize the model, it's necessary to carefully 

select the data, eliminate low-quality data, and ensure that the training dataset is representative of the real-world 

situations. 

 

In this paper, we will delve into an essential yet often overlooked aspect of image classification. We will explore 

why the composition of the dataset can impact the model's performance, as well as the efforts made by researchers 

and practitioners to enhance the accuracy, reliability, and generalization of results. We will discuss improving the 

quality of datasets and the tangible consequences of their optimization on model performance (Hinton & 

Salakhutdinov, 2006). We will demonstrate how subtle adjustments to the dataset can significantly affect an 

algorithm's ability to discern and categorize images with unparalleled precision. Beyond pixel nuances, dataset 

optimization also delves into semantic and contextual dimensions. This article will showcase sophisticated methods 

for preprocessing, data augmentation, and dataset cleaning deployed to address these challenges. This paper is 

organized as follow: In section 2, some dimensionality reduction algorithms, are briefly reviewed. The detailed 

description of the proposed approach can be found in Section 3. Section 4 presents experiments conducted to 

validate the efficacy of the proposed method, while Section 5 presents the conclusions and outlines future work. 

 

 

Related Works 
 

Keeping only the most important images or data points is a crucial step in dataset reduction. It helps to focus on the 

information that is relevant to the specific task, reducing noise and improving model efficiency. Representing data in 

a feature space that enhances class separability is fundamental in classification tasks. Feature engineering aims to 

transform the data into a format where different classes are distinguishable, making it easier for machine learning 

algorithms to make accurate predictions. The decision to keep or discard data should be a balance between data 

reduction and maintaining the essential information. It's essential to avoid overfitting (using too much data) and 

underfitting (using too little data) to ensure the model's generalization. The approach for dataset reduction and 

feature engineering can vary depending on the specific domain and problem. Different tasks may require different 

strategies. Overall, the statement emphasizes the importance of thoughtful data preprocessing, which can 

significantly impact the success of machine learning models, especially in classification tasks. 

 

The field of dimensionality reduction offers a range of techniques, each with its strengths and applications (Dutta & 

Ghosh, 2016). t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008), independent 

component analysis (ICA) (Comon, 1994), and multidimensional scaling (MDS) (Cox & Cox, 1994) are indeed 

some of the well-established and widely used methods, but there are many others, including Isomap (Tenenbaum et 

al., 2000), LLE (Roweis & Saul, 2000), and autoencoders (Wang et al., 2020), to name a few. The choice of 

dimensionality reduction method often depends on the specific problem, the nature of the data, and the goals of the 

analysis. For instance, some methods are excellent for linear dimensionality reduction, while others are often 

preferred for visualizing high-dimensional data in a lower-dimensional space. In t-SNE, the main idea is to visualize 

and cluster high-dimensional data while preserving local similarities, making it effective for revealing data structure 

in lower dimensions (Zhang & Izquierdo, 2006). However, it can be computationally expensive and slow for very 

large datasets, limiting its practicality in such cases. Independent Component Analysis is commonly used in blind 

source separation, but it may not perform well when the underlying assumptions about source independence are 

violated in the data. One of its disadvantages is its sensitivity to these underlying assumptions, which may not 

always hold in real-world data, potentially leading to inaccurate results. Multidimensional Scaling is a technique for 

visualizing high-dimensional data while preserving data point distances, but it can be computationally demanding 

for large datasets. This computational intensity makes it less practical for very large datasets, potentially leading to 

longer processing times. Isomap, Locally Linear Embedding (LLE), and autoencoders are all dimensionality 

reduction techniques used to map high-dimensional data into lower-dimensional spaces. Isomap and LLE emphasize 

preserving local data structures, while autoencoders utilize neural networks to learn efficient representations. 

However, these methods may require careful tuning and can be sensitive to the choice of hyperparameters and the 

specific characteristics of the dataset, making them less straightforward for some applications. Some of these 

methods have been combined to create new techniques, including Uniform Manifold Approximation and Projection 

(UMAP) (McInnes et al., 2018). UMAP combines elements from Isomap and t-SNE and is recognized for its 

capability to capture both local and global structures within data. However, it is computationally intensive and 
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sensitive to hyperparameter choices, which can affect result quality and introduce non-deterministic behavior. 

Dimensionality reduction techniques discussed and so on, such as Isomap, LLE, t-SNE, and UMAP, have been used 

effectively for data visualization (Yousaf et al., 2020; Hajibabaee et al., 2021) and classification (Milošević et al., 

2022; Shi et al., 2019) tasks. These techniques can provide encouraging results when applied to well-structured and 

low-noise data. However, as the statement correctly points out, their performance can be less reliable when 

confronted with noisy or real-world data, where the data may be less well-behaved or exhibit more complex 

structures. In such cases, additional data preprocessing or specialized methods may be required to mitigate the 

impact of noise and improve performance. 

 

 

Proposed Approach 
 

Large image datasets have become increasingly common across various fields, necessitating the reduction of image 

datasets to improve the efficiency and computational performance of image processing tasks. These tasks encompass 

activities like classification, object detection, and image retrieval. The primary objective when working with these 

datasets is to optimize dimensionality while retaining crucial information (as depicted in Figure 1). By reducing 

dimensionality, algorithms become more computationally efficient, resulting in faster and more manageable 

processing, all while preserving essential image details. A multitude of techniques for dimensionality reduction has 

been developed, and the choice of the most suitable method depends on the specific characteristics of the dataset and 

the desired outcome of the image processing task. Our approach serves as a preprocessing step, conducted prior to 

commencing the image classification process (Figure 1). In this paper, we introduce two distinct optimization 

approaches for reducing the image dataset: Horizontal and Vertical optimizations. These strategies are tailored to 

address the challenges posed by the dataset's volume 

 
Figure 1. Image classification process using an optimized dataset 

 

 

Vertical Optimization  

 

Principal Component Analysis (PCA) and clustering are two distinct techniques commonly employed in data 

analysis and machine learning. They can be effectively used in conjunction to comprehend and structure data. PCA, 

as elucidated by Jolliffe and Cadima (2002), stands as a widely adopted linear dimensionality reduction method 

celebrated for its ease of implementation and versatile applications across various domains. PCA operates by 

harnessing eigenvectors to capture linear variations within high-dimensional data. It adeptly unveils the underlying 

lower-dimensional structure of data points distributed along or in proximity to a linear subspace. This is achieved by 

identifying linear combinations of the original variables, referred to as principal components, which encapsulate a 

significant portion of the data's variance (as depicted in Figure 1). As a result, PCA emerges as a potent technique 

for dimensionality reduction and the extraction of pivotal insights from extensive datasets." 

 

 
Figure 1. Generating PCA dimensions 
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In the context of image processing, an image can be regarded as a high-dimensional dataset, where each pixel 

represents a feature. When applying PCA to images, we treat them as matrices, with pixel intensity values 

corresponding to the matrix elements. The PCA algorithm then analyzes the covariance matrix of the image data and 

computes the associated eigenvectors and eigenvalues. These eigenvectors, often referred to as principal 

components, represent the directions of maximum variance in the image data, effectively forming a set of basis 

vectors spanning the image space. The corresponding eigenvalues indicate the significance or weight of each 

eigenvector in representing the image data. 

 

By selecting a subset of principal components with the largest eigenvalues, we can effectively reduce the 

dimensionality of the image data while preserving the most significant information. In summary, PCA in image 

processing offers a way to reduce dimensionality while retaining essential information. The fundamental concept 

behind this technique is to decrease dataset dimensionality while preserving as much variability, both statistical and 

strategic information, as possible (Jolliffe & Cadima, 2002). 

 

PCA can be used as a preprocessing step before applying clustering algorithms to data. A lower number of principal 

components that explain a significant portion of the variance are typically selected (e.g., 95% of the variance). The 

clustering algorithm is applied to the transformed data after reducing its dimensionality. Thus, the clustering 

algorithm will group similar data points based on the principal components instead of the original features (Figure 

2). As a result, the results of clustering can be interpreted in the lower-dimensional space, which make it easier to 

understand the structure of data and the relationships between clusters. By combining PCA and clustering, it is 

possible to potentially improve the quality of clusters, reduce the impact of noise, and gain a better understanding of 

data. 

 

 
Figure 2. PCA clustering 

 

 

Horizontal Optimization 

 

K-means (Garbade & Michael, 2018) stands as a widely used unsupervised clustering technique with applications 

spanning various domains, including image processing and computer vision. Its significance is prominently visible 

in tasks like image segmentation and classification. The central objective of K-means is to partition a dataset into 'k' 

distinct groups or clusters, ensuring that images within the same cluster share similarities while those across 

different clusters exhibit dissimilarities (Figure 3). In the realm of K-means, each observation is represented as a 

point in an n-dimensional space, with 'n' signifying the number of descriptive variables or features. The algorithm's 

mission is clear: group similar data points and unveil concealed patterns in the dataset. This is achieved by 

identifying a fixed number of clusters ('k') within the dataset. The K-means algorithm embarks on this journey with 

an initial set of centroids, randomly selected as the starting points for each cluster. It then iteratively calculates to 

optimize the positions of these centroids. 

 

Utilizing K-means clustering to eliminate redundant images presents a pragmatic method for mitigating data 

redundancy within an image dataset. First, relevant features are extracted from each image using Ho-LBP (Gafour et 

al., 2020). These features will serve as the basis for comparing and clustering images. Then, the K-means clustering 

algorithm is applied to the feature vectors extracted from the images. The number of clusters (K) chosen will 
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determine the level of image redundancy reduction. Within each cluster created by K-means, images that are similar 

to each other are considered to be potentially redundant or near-duplicates. Determining which images are redundant 

depend on the similarity threshold. Images with feature vector similarities that exceed this threshold are considered 

duplicates. Once duplicates are identified within clusters, redundant images are eliminated. Reducing the number of 

images in a dataset using K-means can be a challenging task. In practice, our objective is not the complete removal 

of redundant images but rather the reduction of dataset size. It's worth noting that eliminating all redundancy entails 

the deletion of a portion of the data, which could result in valuable information loss. This is especially critical when 

the deleted data plays a significant role in analysis or addresses class balancing concerns. 

 

 

K-means Algorithm for Dataset optimization: 

 

 Feature Extraction: Initially, we extract meaningful features from input images by employing the Ho-LBP 

descriptor. 

 Vectorize Images: The extracted features are transformed into a suitable format for K-means clustering. 

Typically, each image is represented as a feature vector in a high-dimensional space based on these 

extracted features. 

 K-means Clustering: Apply the K-means algorithm to cluster the feature vectors associated to images into 

'k' clusters. The choice of 'k' depends on how many images are to be retained in the reduced dataset (or to 

eliminate from the input dataset). 

 Cluster Centroids: After K-means clustering, 'k' cluster centroids are obtained. These centroids represent 

the most representative images in each cluster. 

 Cluster Labeling: After clustering, each image is assigned to one of the 'K' clusters based on its similarity 

to the cluster's centroid. 

 Thresholding: A similarity threshold is set to determine when two images are considered duplicates. 

Images with feature vector similarities exceeding this threshold are marked as duplicates. 

 Duplicate Detection: Within each cluster, images that are very similar are likely duplicates or near-

duplicates. Images within the same cluster are compared to identify and flag potential duplicates. 

 Selecting Representative Images: To reduce the dataset, one (or more) image(s) can be chosen from each 

cluster to represent that cluster. These selected images will form the reduced dataset.  

 Eliminate Duplicates: The elimination process concerns images having probable duplicates or near-

duplicates. This elimination is done according to the degree of similarity. the images with the greatest 

degree of similarity will be the first candidates to be eliminated. 

 

 
Figure 3. How data is displayed on two-dimensional space 

 

It is necessary to know that the K-means algorithm is applied in our approach in a somewhat specific way. In its 

original version, the algorithm attempts to organize the dataset into a specified number of clusters. But Image 

Datasets are already organized into clusters (classes). So what is the role of this algorithm in our proposal approach? 
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As said above, our aim is the deduplication of similar images, more precisely, those containing the same information 

or almost. In this case, k-means is not applied globally but in a particular way. This means that the same class is 

divided into clusters to eliminate redundant images. 

 

 

Hybrid Solution 

 

In the preceding subsections, we explored two approaches to dataset optimization: horizontal and vertical. As 

previously discussed, the central challenge lies in optimizing the dataset while preserving vital strategic information. 

Both Principal Component Analysis (PCA) and K-means are powerful techniques for dataset optimization, each 

with its own unique strengths and applications. 

 

In horizontal optimization, PCA takes center stage. Its primary role is to reduce data dimensionality, effectively 

reducing the number of variables in a dataset while retaining critical information. This can be particularly valuable 

for mitigating noise, enhancing model performance, and simplifying complexity. However, a key consideration is 

the potential loss of strategic image information if the number of principal components becomes excessively small. 

In contrast, vertical optimization involves the use of K-means, a clustering algorithm aimed at partitioning data into 

coherent groups or clusters based on similarity. This approach is instrumental in uncovering underlying patterns and 

trends within the data, facilitating a deeper understanding of dataset characteristics. Nevertheless, it carries the risk 

of losing the images themselves, which are deemed strategic information. 

 

Recognizing these challenges and trade-offs, we have explored the concept of hybridization as a viable solution. Our 

goal is to synergize the advantages of both approaches, leveraging PCA's proficiency in reducing dimensionality and 

K-means' expertise in cluster analysis. This hybrid solution strives to produce cleaner datasets with diminished noise 

levels, offering the potential for a well-organized cluster framework, ultimately augmenting modeling effectiveness. 

 

 

Experimental Studies 
 

In the forthcoming section, we will showcase the results of our experiments, in which we assess the performance of 

our approaches. We utilized the Ho-LBP descriptor and employed the SVM classification algorithm. These methods 

were implemented using The Extended Yale Face Database B. The experiments were executed on a system with a 

2.5 GHz Intel Core i5 CPU, 8GB of RAM, and a 64-bit Windows operating system.  

 

 

Dataset 

 

The Extended Yale Face Database B (EYFB) is a renowned resource in the realm of computer vision and facial 

recognition. It features grayscale images of individuals captured under diverse lighting conditions, offering a 

challenging dataset for testing and advancing face recognition algorithms. With images of numerous subjects, each 

portrayed in varying poses and lighting scenarios, EYFB presents a real-world complexity that makes it a 

benchmark for evaluating the robustness and accuracy of facial recognition systems. Researchers frequently employ 

this dataset to assess and enhance the performance of algorithms for face detection, feature extraction, and identity 

verification. The Extended Yale Face Database B comprises a collection of 16,128 grayscale face images featuring 

28 human subjects. Each subject is portrayed in 9 distinct poses and under 64 varying illumination conditions. These 

images are presented at a resolution of 192x168 pixels. 

 

The lighting conditions in the database vary from frontal lighting to extreme side lighting, including cast shadows. 

This wide range of lighting variations makes the database challenging and suitable for evaluating the robustness of 

face recognition algorithms. The Extended Yale Face Database B is often used by researchers and developers in the 

field of computer vision and face recognition to evaluate and compare the performance of their algorithms. It 

provides a standardized benchmark for testing face recognition methods under varying lighting conditions. It's worth 

noting that while the Extended Yale Face Database B is a useful resource for research and development, it's 

important to ensure that any use of the database complies with the licensing terms and conditions associated with its 

distribution. 
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Experimental Results and Discussion 

 

In practice, principal components are intricate combinations of features that adeptly represent data while preserving 

its unique characteristics, all while ensuring that information overlap is minimized. Original features often exhibit 

substantial redundancy, underscoring the effectiveness of Principal Component Analysis (PCA) in dimensionality 

reduction (Granato et al., 2018). When data is projected into a lower-dimensional subspace using principal 

components as axes, similar data points tend to naturally cluster together (as illustrated in Figure 2). This clustering 

phenomenon arises because the data representation explicitly aligns with axes that maximize variance (Granato et 

al., 2018). This approach facilitates the reduction of image sizes within the dataset, all while retaining representative 

samples. It proves particularly invaluable when dealing with large datasets, offering the means to create smaller, 

more manageable subsets for experimentation or the training of machine learning models. In a similar vein, K-

means clustering, another widely used technique, groups similar data points together, contributing to efficient data 

organization and analysis in various domains (Garbade & Michael, 2018). 

 

 

Scenario No. 1: Classification without Optimization 

 

This experimentation (classification without optimization) will be used to compare the results in Table 1 with the 

other experiments in which the dataset is optimized. The goal is to assess the effectiveness of each optimization 

type. 

 

Table 1. Classification result without dataset optimization 

Precision Time 

61.56 248.44 

 

 

Scenario No. 2: Classification after Applying PCA 

 

This time, we applied PCA to the dataset before classification. As shown in Table 2 describing the results, the 

parameter 'C' represents the number of components to describe the training data. With C = 2, the accuracy dropped 

to 19%. However, with C = 10, accuracy increased to 56%, though it remained lower than the results in Table 2 for 

classification without optimization. When using C = 20, we achieved the same accuracy as the unoptimized 

classification, which proves that strategic information has been well preserved. Simultaneously, the execution time 

has undergone noticeable changes. 

 

Table 2 Classification results after applying PCA 

C Precision (%) Time (sec) 

2 19.23 245.39 

10 56.40 244.56 

20 61.56 246.11 

 

 

Scenario No. 3: Classification after Applying K-Means Algorithm 

 

When applying K-means clustering for dataset reduction, it's crucial to make thoughtful choices regarding the 

features you use and the value of 'k,' which represents the number of clusters or groups in which the data will be 

partitioned. These choices can significantly impact the quality of the reduced dataset and its effectiveness for 

downstream tasks. 

 

In this scenario, we utilize K-means for dataset optimization. As depicted in Table 3, we observed a substantial 

reduction in computation time, amounting to 30 seconds and 40 seconds, respectively, for each experiment, while 

maintaining the same number of images to be eliminated. Specifically, with K = 9, we achieved a more significant 

reduction in computation time. Furthermore, it's worth noting that the accuracy remained unchanged, and the 

number of rows (images) was unaltered, even though the number of clusters was modified. It's essential to highlight 
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that the accuracy consistently remained at 59.67%. In each experiment, 290 rows (images) were removed from the 

final dataset (see Table 3). 

 

Table 3. Classification after applying K-means algorithm 

S K Nb of eliminated Img Precision (%) Time(sec) Clustering time 

0.2 9 290 59.67 211.23 231.35 

0.2 18 290 59.67 220.50 230.11 

 

 

Scenario No. 4: Classification after Applying PCA then K-Means Algorithm 

 

In this scenario, we considered re-running scenario 3 by incorporating PCA before implementing the K-means 

algorithm. We observed that the results were nearly identical, except for the clustering time, which was reduced by 

more than half. The significant advantage of this approach lies in the substantial reduction in the overall execution 

time of the process, as the clustering time accounts for a significant portion of the total duration, without affecting 

the other performance metrics. 

 

Table 4. Classification after applying PCA then K-means algorithm 

S C K Eliminated Img Precision (%) Time(sec) Clustering time 

0.2 2 9 290 59.67 212.55 75.13 

0.1 2 18 290 59.67 220.50 80.22 

 

Getting similar or nearly identical results in various scenarios is a positive indicator. This demonstrates that dataset 

reduction or optimization was carried out while preserving crucial information. 

 

 

Scenario No. 5: Classification after Applying PCA then K-Means Algorithm and then PCA 

 

In this final scenario, we incorporated PCA both before calculating the distances between images to identify 

duplicates and prior to the image classification process. The results, as depicted in Table 5, demonstrate a minimum 

calculation time of 82 seconds with a 51% precision rate for parameters s = 0.1, c = 2, and k = 18. When using s = 

0.05, c = 2, and k = 9, we achieved a precision of 56% with a calculation time of 121 seconds. It's important to note 

that outcomes vary depending on the parameter settings. In Figure 4, we visualize the optimization process for a 

dataset class. Each color corresponds to a cluster, with Y representing the centroids and X representing the 

redundant images. Figure 4 makes it evident that as images get closer in distance, the need for elimination becomes 

more pronounced. 

 

Table 5. Classification after applying PCA then K-means algorithm and then PCA 

S C K Eliminated Img Precision (%) Time(sec) Clustering time 

0.1 2 4 3994 52.08 85.00 72.30 

0.5 2 5 3660 56.07 100.42 94.17 

0.5 2 9 2994 56.25 121.99 96.08 

0.5 2 18 2101 57.85 154.11 120.15 

0.5 2 18 4070 51.67 82.47 117.43 

 

 
Figure 4. Kmeans clustering and images to be eliminated 
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In the context of our experiments, we observed the interplay between precision, computation time, and various 

optimization scenarios. Precision exhibited a slight, nearly negligible decrease, and computation time remained 

consistently variable, contingent on the specific test and its corresponding parameters. Among the scenarios tested, 

Scenario N°5 stood out as particularly intriguing due to its varying precision and computation time across different 

parameter values. In Scenario N°5, the distinction from Scenario N°4 lies in the reduction of image size within 

clusters through PCA. We then computed distances between these reduced images to eliminate duplicates. The 

introduction of PCA prior to clustering and distance calculation yielded a significant reduction in computation time. 

Furthermore, we noted that Scenarios N°4 and N°3 yielded nearly identical results since both involved the 

elimination of the same number of images. There was no discernible difference between the outcomes of Scenario 

N°2 and Scenario N°1. 

 

 

Conclusion and Future Works 
 

The combined use of PCA and K-means in dataset reduction presents a powerful approach for enhancing efficiency 

and maintaining data quality. PCA effectively reduces dimensionality by preserving essential information, and K-

means clustering refines dataset organization. This synergy optimizes data while minimizing redundancy. However, 

the choice of parameters and feature selection plays a pivotal role in achieving the desired results. When 

thoughtfully applied, this method streamlines data processing, accelerates computations, and streamlines machine 

learning models, making it a valuable asset in the realm of data optimization. 

 

Through these experiments, we have been able to observe the potential of eliminating redundant data. By using PCA 

thoughtfully, we achieved satisfactory results. It's worth noting that the success of this experiment could vary 

depending on the choice of dataset, algorithms, and implementations. Therefore, conducting a variety of 

experiments is essential to solidify our assessment of the proposed dataset optimization technique. 

 

The challenge of class imbalance is significant. It occurs when one or more classes have considerably fewer data 

samples than others, leading to an unequal distribution. This can result in models performing well on the majority 

class but poorly on the minority class, causing inaccurate and biased predictions. Addressing class imbalance is 

crucial for model fairness and accuracy. 

 

Notice that K-means clustering is just one of many techniques for identifying duplicate images. Depending on the 

size and characteristics of the dataset, we think using other methods like perceptual hashing (e.g., pHash) method 

may also be suitable for duplicate image detection. It's important to choose the right feature representation and 

similarity metric for comparing images, as this will affect the clustering results and the threshold for identifying 

duplicates. Also, the choice of 'K' should be guided by the diversity of the dataset and the expected number of 

distinct duplicate groups. 
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