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Abstract: When metallic implants are present within the human body, they frequently introduce metallic 

artifacts into X-ray CT images. These artifacts can lead to significant distortions, obscuring critical information 

and potentially degrading the quality of the CT images, thereby impacting diagnostic accuracy for clinicians. In 

recent years, there has been extensive research aimed at mitigating the challenges posed by metallic artifacts, 

resulting in the development of multiple solutions to address this issue. In this study, we present an efficient 

approach for artifact removal. Our method involves utilizing the image reconstructed from a sinogram affected 

by artifacts to generate a synthesized sinogram, deviating from the conventional acquisition of sinogram data. 

The key stages of our approach encompass segmentation, sinogram gap-filling, and subsequent image 

enhancement. To achieve rapid segmentation, we employed a K-means classification method. For the retrieval 

of missing data, we utilized an interpolation algorithm based on a penalized least squares method. In the final 

phase of image reconstruction enhancement, we implemented an advanced contrast equalization technique to 

restore image intensities to their inherent dynamic range. Through rigorous verification using both simulated 

and clinical data, our method consistently demonstrates a remarkable improvement in image quality.  

 

Keywords: Computed tomography, Image reconstruction, Metal artifact, Segmentation, Inpainting sinogram, 

Contrast enhancement.  

 

 

Introduction 

 

Implanted medical devices like dental fillings and orthopedic implants can give rise to artifacts in computed 

tomography (CT) images. These artifacts are introduced through processes such as scattering, partial volume 

effects, aliasing, beam hardening, and photon starvation (Bamberg et al., 2011; King et al., 2022). In the field of 

medicine, the increasing use of high-density metallic inserts within the human body, such as dental implants, 

surgical clips, and steel hip or shoulder prostheses, has led to the occurrence of metallic artifacts in tomographic 

image scans and reconstructions. This phenomenon presents a significant challenge, making it challenging to 

conduct accurate analyses of specific anatomical regions within the human body (Usman et al., 2020). 
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Mainly, we can categorize artifacts into the following three forms (Frederique, 2017): a) Streak artifacts, 

recognizable by the presence of excessive lines in the image. These artifacts stem from errors in mitigation 

processes resulting from abrupt transitions between two projections or equipment malfunctions. b) Shadow 

artifacts, marked by a reduction in image intensity. They tend to manifest near high-contrast objects and occur 

due to deviations in detector responses from expected attenuation values. c) Ring artifacts, characterized by the 

emergence of ring-shaped patterns within the image. These artifacts arise from errors in one or more detectors, 

typically due to defects in the detectors themselves or mechanical issues. Typically, the quality of images 

reconstructed using the conventional filtered back projection algorithm is sufficient for medical diagnosis under 

normal conditions. However, in specific instances, such as the presence of metal-induced artifacts, the integrity 

of the scanner signal can be compromised, rendering the assumptions underlying this method inapplicable. 

Consequently, the resultant image may exhibit pronounced artifacts and provide inaccurate CT data. To address 

these challenges and minimize such artifacts, various correction methods have been developed over the past two 

decades. Nevertheless, it's worth noting that this issue remains unresolved to date (Müller et al., 2009). Metal 

artifact reduction algorithms can typically be categorized into four primary groups: correction of physical 

effects, interpolation within the projection field, iterative reconstruction, and methods grounded in deep learning 

techniques (Zhang et al., 2018). In the first group, referred to as direct artifact reduction methods, physical 

effects are corrected directly. These methods aim to mitigate artifacts caused by phenomena like beam 

hardening, which occurs in polychromatic X-ray computed tomography when metal is present, without 

compromising the integrity of the anatomical images. However, in cases involving metals with a high atomic 

number, the errors can be substantial enough that the aforementioned corrections may not yield satisfactory 

results (Park et al., 2016). The second group focuses on projections that pass through metallic objects. In these 

methods, it is assumed that portions of the projections passing through metal objects are missing and are 

replaced by substitutes, essentially treating metallic objects as completely opaque (Zhang et al., 2011), 

Mehranian et al., 2013). One commonly used technique in this group is linear interpolation (LI), where the 

missing data are estimated through linear interpolation from neighboring unaffected projections for each 

projection view. The third group of methods allows for the iterative reconstruction of images based on weighted 

or corrected projections (Chang et al., 2019). The fourth group involves metal artifact reduction (MAR) methods 

that rely on deep learning. These methods apply corrections for metal-induced beam hardening either in the 

projection domain or in the image domain (Arabi et al., 2021). However, it's important to note that the creation 

of a successful deep learning model requires a substantial amount of annotated data. Training a deep learning 

neural network with insufficient data can lead to inaccurate results. Consequently, this process demands 

significant time and computing power for effective training. 

 

However, given the inherent complexity associated with diverse metal materials, varying sizes, and positions of 

metallic objects, achieving consistently satisfactory results using a single artifact reduction strategy can be 

challenging. Therefore, our approach introduces a novel, rapid, and effective method for the removal of metallic 

artifacts, including streak and shadow artifacts. Our primary contributions lie in the areas of segmentation, gap 

filling techniques, and image enhancement. In our methodology, we employ a swift segmentation technique 

based on K-means classification, which takes into account the global characteristics of the entire image. To 

recover lost data, we utilized an interpolation algorithm based on a penalized least squares method. This 

technique enables robust smoothing of equidistant data in one dimension and beyond. Furthermore, for 

enhancing the reconstructed image, we utilize an improved contrast equalization method designed to restore 

image intensities to their natural dynamic range. 

 

In summary, this article is structured as follows: Section 2 provides an in-depth exploration of the proposed 

methodology, encompassing segmentation, sinogram inpainting, and the enhancement of the reconstructed 

image. Section 3 delves into the results achieved through experimentation, encompassing both synthetic and 

real-world images. Finally, in Section 4, we present our concluding remarks. 

 

 

Methods 

 

Image Segmentation 

 

The conventional K-means algorithm typically initiates by selecting cluster centers randomly or following 

specific protocols. Each cluster center serves as a representative for the cluster it encompasses. The K-means 

method proceeds through iterative steps. In the initial iteration, every data point within the dataset is assigned to 

a cluster based on its proximity to the cluster centers. Subsequently, in each subsequent iteration, the cluster 

centers are recalculated, taking into consideration the average values of the features (or values if the feature is a 

vector) belonging to the cluster elements. Following the recalculation of cluster centers, the memberships for 
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each data point are updated in accordance with the values of the new cluster centers. If there is no further 

alteration in the cluster centers, the algorithm concludes its execution. 

 

Let 𝐼𝑔𝑟𝑎𝑦={𝑝1𝐺,𝑝2𝐺,...,𝑝𝑛𝐺} be the set of the gray level values of the pixels of the input image 𝐼, so that 𝑝𝑖𝐺 is the 

gray level value of the pixel 𝑝𝑖, where 𝑖 = 1, 2 ..., 𝑛, and 𝐶𝐺={𝑐1𝐺,𝑐2𝐺,...,𝑐𝑘𝐺} the centers of the clusters in the 

grayscale space where the specified number of clusters is 𝑘. The value of the distance (𝑝𝑖𝐺, 𝐶𝐺) between the gray 

value of the pixel 𝑖th and the cluster center 𝑗th
 is calculated by equation (1). 

 

                                                                   (1) 

 

An ordinary image comprises a multitude of individual pixels. In accordance with the classical K-means 

approach, calculating the distance between each pixel and every clustering center during each iteration can be 

highly time-consuming. A more efficient method involves the utilization of the grayscale image's histogram. 

The grayscale histogram of a digital image is divided into a set of bins, each representing an integer grayscale 

value ranging from 0 to 255. Within the histogram, each bin corresponds to a specific integer value, indicating 

the count of pixels with the same grayscale value (Amorim et al., 2016; Lin et al., 2014). The rapid K-means 

algorithm, which relies on the grayscale histogram, ensures a significant acceleration of the process. With this 

approach, the algorithm computes distance values to the cluster centers 256 times, as opposed to 𝑛 times, for 

each iteration. A comprehensive breakdown of the steps is provided below: 

 

1.Let's consider the presence of K clusters, with each cluster containing n central vectors 

 

                                                              (2) 

With k = 1, 2,..., K. 

 

2.Calculate the Euclidean distance of each level value to the center of cluster ck and assign each cluster level 

value to its nearest center. For example, the Euclidean distance between the value of level r and the cluster 

center ck of the k
th

 cluster vector is: 

 

                              (3) 

 

Where  k = 1, 2,..., K. The r value of the gray level scale is assigned to the cluster  from its nearest center. 

 

3. Calculate the mean value of the levels of each cluster and take it as the new center for each cluster. 

4. If the new cluster center is similar to the original one, stop the loop; otherwise, repeat steps 1 to 3. 

 

 

Sinogram Inpainting 

 

The fast K-means algorithm's output yields segmented images of metallic objects. Subsequently, we project the 

segmented image of the metallic artifact into the sinogram domain. Then, we subtract the original sinogram, 

constructed from the unaltered image containing the metallic objects, from the sinogram of the metallic artifact. 

This subtraction process effectively removes the corrupted projection data. To restore the missing projection 

data, we employ a gap-filling technique. Our proposed sinogram inpainting technique is an automated 

smoothing method grounded in penalized least squares regression, specifically based on the discrete cosine 

transform (DCT-PLS). This technique is utilized for predicting missing values within the sinogram. In this 

context, we adapt it to fill the gaps, seeking the most suitable sinogram for the restoration of the missing 

projection data (Wang et al., 2012; Garcia et al., 2010). In a recent study, the author (Bamberg et al., 2011) 

demonstrated that least squares regression (PLS) can be effectively formulated using DCT, which represents 

data as a sum of cosine functions oscillating at various frequencies. We provide a brief overview of the DCT-

PLS algorithm here, with detailed information available in reference. Consider X as a spatiotemporal dataset 

containing gaps (missing values), and W as a binary array of identical dimensions indicating the presence or 

absence of missing values. The DCT-PLS algorithm seeks an X̂ that minimizes the following expression: 

 

                                                         (4) 
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Where ‖.‖ is the Euclidean norm, ∇2
 represents the Laplace operator. s is a positive scalar which controls the 

degree of smoothing: the more s increases, the more the smoothing of increases, W is the diagonal matrix (Wi) 

which contains the weights Wi∈ [0,1] corresponding to the data Xi. Note that in the presence of missing values, 

W is simply defined by Wi = 0 if Xi is missing, while an arbitrary finite value is assigned to Xi. In this case, the 

algorithm performs both smoothing and interpolation. Unlike conventional methods which generally work with 

local linear or cubic interpolations, missing data is assigned to values that are estimated using the data set 

(Wang et al., 2012). The  can be easily achieved by rewriting equation (5) in the form. 

 

                              (5) 

 

Where DCT and IDCT denote the discrete cosine transform and the inverse discrete cosine transform, 

respectively, RF is a relaxation factor. 

 

 

 

 

 

 

 

Figure 1. (a) Image of sinogram with removed corrupted projection (metallic objects) from the original 

sinogram, (b) Inpainted sinogram, The bleu dotted lines in the sinogram images represent the central profiles at 

the 50
th

 view, (c) corrupted projection at the 50
th

 view,  (d) corrected projection. 

 

 

Enhancement of Reconstructed Images 

 

Images generated by various CT scanners often suffer from reduced contrast effects due to inherent limitations. 

The contrast equalization technique was originally developed as an integral processing step for a novel face 

recognition system by (Tan et al., 2010). A refined version of this technique has been introduced to enhance 

SEM images (scanning electron microscopy) for the purpose of achieving visually appealing results (Al-Ameen, 

2018). This modification was carried out through empirical experimentation to afford greater control over the 

enhancement procedure. 

 

With the use of a single parameter, denoted as μ, the outcome of the two-step regularization process is adjusted 

in a specific manner. Subsequently, when the subsequent two-step mapping process is applied, it fine-tunes the 

output to generate results characterized by desirable brightness and contrast. Consequently, the μ parameter 

plays a crucial role in fine-tuning perceived brightness and contrast, subject to the following conditions: (μ > 0), 

where a higher μ value contributes to enhanced contrast and brightness regularization, whereas a lower μ value 

results in outcomes with less-than-ideal brightness and contrast. To achieve optimal results, an operator should 

manually adjust the μ value, starting with a specific value and gradually increasing it until satisfactory results 

are attained. This process is operator-dependent. The modified two-step regularization process is computed 

using equations (6) and (7), as outlined below: 

 

(a)                                         (b) 

(c)                                         (d) 
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                                                          (6) 

 

where, I(x,y)  is the input degraded image; x and y are spatial coordinates;  is the transposed version of 

the image I(x,y) ; K(x,y) is the image resulting from the first regularization step: 

 

                                                   (7) 

 

 is the transposed version of the image K (x, y); L (x, y) is the image resulting from the second 

regularization step. To further improve the contrast of the regularized image re-map the image intensities in a 

non-linear and linear fashion, The first step is to use a modified standard logistic function (MSLF), which is a 

non-linear function for improving contrast. The Conventional Standard Logistics Function (CSLF) is 

determined using Equation (8): 

 

                                                                 (8) 

 

Where, G(x, y) is the resulting image of the CSLF. In this study, an MSLF is used to allow a better control of the 

apparent brightness and contrast. The modification is curried out to raise the CSLF to the power of μ as in 

equation (9). 

 

                                                         (9) 

 

Where, Ĝ(x,y) is the resulting image of the MSLF. The output of the above function is an image with altered 

contrast and attenuated extreme values. To get the final image, the output of equation (9) is normalized to 

reassign the image intensities to the full dynamic range, which is the second processing step in the proposed 

new two-step mapping process. This can be done using equation (10). 

 

                                                   (10) 

 

Where, N(x,y) is the final image resulting from the proposed technique. The proposed technique comprises two 

primary phases: The first phase involves a two-step regularization process aimed at standardizing the intensities 

within the input image. The second phase incorporates a two-step mapping process, designed to enhance 

contrast and restore the image intensities to their original dynamic range. Figures 2b and 2c visually depict the 

outcomes of the tomographic image enhancement technique in relation to the parameter μ. Notably, the image 

quality exhibited significant improvement when the value of μ was set to 2.5 (Figure 2c). 

    

 
Figure 2. Results obtained by the proposed image enhancement technique, (a) Input image, (b) Enhanced image 

with μ = 1, (b) Enhanced image with μ = 2.5. 

 

 

The Proposed Method 

 

The proposed metal artifact reduction algorithm is structured around four fundamental steps: 

(a)                                      (b)                                           (c) 
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Step 1: Image Segmentation In the initial step, the input image undergoes segmentation to extract metallic 

objects. This is achieved through a rapid algorithm grounded in K-means classification, resulting in the isolation 

of the metallic region within the image. 

 

Step 2: Sinogram Gap Filling In this phase, the metallic area within the image is transformed into the sinogram 

domain, leading to the acquisition of a metallic trace within the sinogram. Subsequently, by identifying the 

metallic trace, the corrupted projection data originating from metallic objects is removed from the original 

sinogram. Finally, a restoration method based on the discrete cosine transform (DCT) is employed to recover the 

values within the deleted areas. 

 

Step 3: Image Reconstruction and Metallic Object Integration This step involves the reconstruction of the image 

using the conventional filtered backprojection (FBP) method. Simultaneously, it includes the reintegration of the 

metallic objects into the reconstructed image. 

 

Step 4: Image Enhancement Through Contrast Equalization The final step focuses on enhancing the 

reconstructed image by employing a contrast equalization technique. This process is aimed at restoring image 

intensities to their natural dynamic range. 

 

The overall structure of the proposed algorithm is visually depicted in Figure 3, with each step elaborated in 

further detail below. 

 

 
Figure 3. Flowchart of the proposed method 

 

 

Results and Discussion 
 

To validate the proposed computational approach, a series of experiments were conducted, encompassing both 

simulated phantom data (utilizing the Shepp-Logan model) and real clinical computed tomography (CT) scans. 

These tests incorporated images of various dimensions, ranging from 256 × 256 to 512 × 512 pixels. The 

effectiveness of the newly devised Metal Artifact Reduction (MAR) algorithm was assessed using synthetic 

images containing metallic implants generated through the Iradon method. The acquisition conditions closely 

mirrored those found in actual CT scans, aligning with the parallel beam geometry characteristic of simulated 

CT imagery. In the reconstruction phase of the experiments, the Filtered Back Projection (FBP) technique was 

employed, incorporating the Shepp-Logan filter to suppress high-frequency components. The algorithm's 

performance was evaluated across a spectrum of progressively intricate phantoms, with Figure 4a illustrating a 

256 × 256 phantom featuring two small artifacts. Figure 4b presents the outcome of the proposed method 

without any enhancement, while Figure 4c showcases the results achieved with image enhancement techniques 

applied.  
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Figure 4. (a) Simulation of a shepp-logan phantom with four metallic artefacts, (b) Result using the proposed 

correction method, (c) Result of image enhancement technique (μ = 2.5) 

 

Figure 5 depicts the outcomes of our proposed algorithm, with Figure 5(a) showcasing the original phantom 

containing two substantial metal regions, while Figure 5(b) exhibits the phantom's appearance after being 

affected by metallic artifacts during the image acquisition process. In our observations, we identified two 

distinct types of artifacts: hypo-signal and hyper-signal. The results of our algorithmic correction are vividly 

presented in Figures 5(c) and 5(d). When dealing with multiple metallic regions, the challenge lies in addressing 

considerably larger gaps in the image, as opposed to the scenario involving a single metallic region. 

Consequently, a significant amount of information is lost rather than being interpolated. It's worth noting that 

our proposed algorithm effectively mitigated artifacts in both hypo-signal and hyper-signal areas, as 

demonstrated in Figure 6. 

 

 
Figure 5.  (a) Original Shepp-Logan phantom with two rectangular metallic objects (iron), (b) the original 

phantom with the influence of metallic artifacts in the acquisition, Results of the proposed algorithm: (c) images 

corrected without improvement, (d) image corrected with improvement in intensity. 

 

 
Figure 6. (a) Zoom of Figure 5 on the area of metal artifacts, (b) Results of the proposed algorithm. 

 

In Figure 6a, we present a close-up view of the region affected by the presence of metal during the acquisition 

process of the tested object. This region experiences a phenomenon where the minimum and maximum 

absorptions of the two materials overlap, leading to a zone of uncertainty that results in the partial loss of the 

incident beam. Notably, this issue manifests as a hyper-signal, originating from the subband of lost energies 

(rays absorbed prematurely within the material), and a hypo-signal, arising due to the measured overcurrent in 

comparison to the theoretical intensity (visible as shadows in the image). Figure 6b illustrates the compelling 

results achieved by our proposed method in effectively mitigating both the hyper-signal and hypo-signal 

artifacts, thereby enhancing the overall image quality. Since there lacks a standardized quantitative approach for 

assessing CT MAR performance (Zhao et al., 2000), we have employed the peak signal-to-noise ratio (PSNR), a 

widely accepted criterion in the realm of image inpainting, to evaluate the algorithm's effectiveness. 

 

                                                          (11) 

 

Here, 'Imag' represents the image following inpainting, while 'Imag0' denotes the original image.  
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Figure 7.  Numerical simulation results using the proposed correction method.  

 

The first, second and third rows respectively show the images with artefacts, images corrected by the proposed 

method without enhancement and the images corrected with enhancement of their intensities. The first column 

is clinical CT image of pelvis with the two disk-shaped numerical metallic objects (titanium). Second column: 

jaw phantom with four disc-shaped metal objects. Third column: clinical CT images of the skull with three 

metallic objects. 

 

The higher the PSNR value, the more favorable the performance. PSNR serves as a standard metric for 

quantifying the resemblance between an inpainted image and its genuine counterpart, rendering it a valuable 

benchmark. The PSNRin value for the image in Figure 5b registers at 14.5. Upon applying the proposed 

correction method (Figure 5c), we observe an improvement, resulting in a PSNRout of 18.26. Subsequent 

enhancement further elevates the PSNR to 20.04, as depicted in Figure 5d. Figure 7 illustrates the clinical 

computed tomography images. We do not know the original images, so it is not possible to calculate their 

PSNRs. The first, second and third row respectively show the images with artefacts, images corrected by the 

proposed method without enhancement and the images corrected with enhancement of their intensities. The 

proposed method makes it possible to successfully remove the streak artifacts without losing the morphological 

information, as shown in figure 6 (third row). 

 

The outcomes of our study demonstrate the efficacy of the proposed algorithm in mitigating shadow and streak 

artifacts across various image types. The correction technique we've introduced successfully eradicates beam 

hardening artifacts without relying on sinogram data. Importantly, it operates independently of any prior 

knowledge regarding the energy spectra of the incident X-ray beam. 

 

 

Conclusion  
 

In this article, we have introduced a novel approach to mitigating metallic artifacts in CT images. Our proposed 

method encompasses four primary steps: image segmentation, gap filling within sinograms, image 

reconstruction, and enhancement of the reconstructed image. In the initial step, we employ a rapid algorithm 

based on K-means classification to extract metallic objects, thereby generating an image specifically 

highlighting metallic regions. The subsequent step involves the transformation of the metallic region image into 

the sinogram domain, allowing us to derive a trace of metallic elements within the sinogram. Through the 

identification of this trace, we effectively eliminate the corrupted projection caused by metallic objects from the 

original sinogram. To restore the values in the deleted regions, we apply a discrete cosine transform (DCT)-

based method. Moving on to the third step, we reconstruct the image using the Filtered Back Projection (FBP) 
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technique while reintroducing the metallic objects into the image. Lastly, in the fourth step, we enhance the 

reconstructed image by equalizing contrast, thereby restoring the image intensities to their natural dynamic 

range. Our extensive numerical simulations and clinical applications have convincingly demonstrated the 

remarkable efficacy of our proposed method in significantly reducing metal artifacts and improving the overall 

image quality. 

 

 

Scientific Ethics Declaration 
 

The authors declare that the scientific ethical and legal responsibility of this article published in EPSTEM 

journal belongs to the authors. 

 

 

Acknowledgements or Notes 
 

* This article was presented as an poster presentation at the International Conference on Technology, 

Engineering and Science ( www.icontes.net ) held in Antalya/Turkey on November 16-19, 2023. 

 

 

References 
 

Al-Ameen, Z., (2018). An improved contrast equalization technique for contrast enhancement in scanning 

electron microscopy images, Wiley Periodicals, Inc. Microsc Res Tech.1–11. 

Amorim, R.C., & Makarenkov, V., (2016). Applying subclustering and Lp distance in weighted K-means with 

distributed centroids, Neurocomputing, (173), 700–707.  

Arabi H. & Zaidi H., (2021). Deep learning–based metal artefact reduction in PET/CT imaging, European 

Radiology, https://doi.org/10.1007/s00330-021-07709-z. 

Bamberg, F., Dierks, A., Nikolaou, K., Reiser, M.F., Becker, C.R., Johnson T.R., (2011). Metal artefact 

reduction by dual energy computed tomography using monoenergetic extrapolation, Eur Radiol, 7, 

1424-1429. 

Chang, Z., Ye, D. H., Srivastava, S., Thibault, J. B., Sauer K., & Bouman C. (2019). Prior-guided metal artifact 

reduction for iterative X-ray computed tomography, IEEE Transactions on Medical Imaging, 38(6). 

Frederique L., (2017). Identification et réduction de l’artefact métallique en tomographie à rayons X, Thesis, 

https://tel.archives-ouvertes.fr/tel-01537663. 

Garcia D., (2010). Robust smoothing of gridded data in one and higher dimensions with missing values”, 

Comput Stat Data Anal. 1, 54(4), 1167–1178. 

King, J., Whittam, S., Smith, D., Al-Qaisieh, B., (2022). The impact of a metal artefact reduction algorithm on 

treatment planning for patients undergoing radiotherapy of the pelvi, Physics and Imaging in 

Radiation Oncology, (24), 138-143. 

Lin, C.-H., Chen, C. C., Lee, H. L., & Liao, J. R., (2014). Fast K-means algorithm based on a level histogram 

for image retrieval, Expert Systems with Applications, 41(7), 3276–3283.  

Mehranian, A., Ay, M.R., Rahmim, A., & Zaidi, H. (2013). X-ray CT metal artifact reduction using wavelet 

domain L0 sparse regularization, IEEE Transactions on Medical Imaging, 32(9), 1707–1722 

Müller, J., & Buzug, T. M., (2009) Spurious structures created by interpolation-based CT metal artifact 

reduction, Medical Imaging 2009: Physics of Medical Imaging, 72581Y. 

Park, H. S., Hwang, D., & Seo J. K., (2016). Metal artifact reduction for polychromatic X-ray CT based on a 

beam-hardening corrector, IEEE Transactions on Medical Imaging, 35(2). 

Tan, X., & Triggs, B., (2010), Enhanced local texture feature sets for face recognition under difficult lighting 

conditions, IEEE Transactions on Image Processing, 19(6), 1635–1650. 

Usman Ghani, M., & Clem Karl W., (2020). Fast enhanced CT metal artifact reduction using data domain deep 

learning. IEEE Transactions on Computational Imaging, (6). 

Wang, G., Garcia, D., Liu, Y., Richard de Jeu, C.D., Johannes Dolman, A., (2012). A three-dimensional gap 

filling method for large geophysical datasets: Application to global satellite soil moisture 

observations, Environmental Modelling & Software, 30, 139-142. 

Zhang, Y., & Yu, H., (2018). Convolutional neural network based metal artifact reduction ( et al., 2022) in X-

ray computed tomography. IEEE Trans Med Imaging, 37(6), 1370-1381.  

Zhang, Y., Pu, Y.F., Hu J.R., Liu, Y., & Zhou, J.-L., (2011). A new ct metal artifacts reduction algorithm based 

on fractional-order sinogram inpainting, Journal of X-ray science and technology, 19(3), 373–384. 

. 

http://www.icontes.net/
https://doi.org/10.1007/s00330-021-07709-z
https://tel.archives-ouvertes.fr/tel-01537663


International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey 

779 

 

Zhao, S., Robertson, D. D., Wang, G., Whiting, B., and Bae, K. T., (2000). X-ray CT metal artifact reduction 

using wavelets: an application for imaging total hip prostheses, IEEE Transactions on Medical 

Imaging, 19(12), 1238–1247. 

 

 

Author Information 
Abdessalem Benammar 
Research Center in Industrial Technologies (CRTI), 

P.O.Box 64, Cheraga 16014, Algiers, Algeria. 

Contact e-mail: a.benammar@crti.dz 

 

Aicha Allag 
Research Center in Industrial Technologies (CRTI), P.O.Box 

64, Cheraga 16014, Algiers, Algeria. 

 

Imad Araar 
Research Center in Industrial Technologies (CRTI), 

P.O.Box 64, Cheraga 16014, Algiers, Algeria. 

 

Redouane Drai 
Research Center in Industrial Technologies (CRTI), 

P.O.Box 64, Cheraga 16014, Algiers, Algeria. 

Ahmed Benyahia 
Research Center in Industrial Technologies (CRTI), P.O.Box 

64, Cheraga 16014, Algiers, Algeria. 

 

 

 

 

To cite this article:  

 

Benammar, A., Allag, A., Araar, I., Benyahia, A. & Drai, R. (2023). Metal artifact reduction in CT images 

through sinogram data inpainting. The Eurasia Proceedings of Science, Technology, Engineering & 

Mathematics (EPSTEM), 26, 770-779.  

 

 

  

 


