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Abstract: Industrial robots have been extensively used in various industrial applications due to a number of 

advantages such as accuracy and speed in performing tasks. To achieve complex applications with industrial 

robots, sophisticated controllers should be developed; henceforth, precise model of the industrial robots must be 

obtained by using multibody modelling softwares. The purpose of this paper is to create an ABB IRB120 

industrial robot representation for simulating and analyzing dynamics and kinematics of the industrial robots by 

using MapleSim. In addition, this paper presents how linear and nonlinear models of the robot can be obtained 

and makes available them to public. Therefore, it will be possible to design linear and nonlinear controllers for 

ABB IRB 120 industrial robot by using the developed models, without requiring any multibody modeling 
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Introductıon 
 

Industrial robots are able to perform various tasks such as picking, placing and palletizing which humans have 

traditionally carried out. To achieve these operations efficiently, specific control algorithms should be developed 

for the industrial robots. However, to analyze and improve designed control algorithms, a model of the physical 

system is required, where the models either can be created with pen and paper for simple systems or using 

modelling softwares for more complex systems. Modelling softwares are extensively preferred due to effective 

and rapid solutions instead of time consuming, tedious modelling with pen and paper [1]. A great number of 

multibody modeling softwares such as SimMechanics, Robotran, and MapleSim are available.  
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SimMechanics  is a simulation software that provides three-dimensional model of mechanical systems. This 

software works in the Simulink environment and has extensive component library to represent mechanical 

systems. In this software, mechanical systems are represented by connected block diagrams that are different 

from Simulink blocks representing mathematical operations with geometric and  kinematic relationship of 

physical systems directly. In this way, it saves time and effort to obtain the equations of systems. However, 

SimMechanics requires more time to simplify the equation [2-3]. In addition, it does not provide the linear, 

nonlinear ordinary differential equations (ODE), which are basically models of the represented physical or 

mechanical systems. 

 

Another modelling software Robotran is  developed  at the University of Catholique de Louvain to  create model 

of various multi-body systems. It produces full symbolic generation of the reduced direct-inverse dynamic and 

kinematics of the systems. It can also generate the model of the multi-body system in the symbolic format and 

this symbolic format can be utilized with a number of numerical programs such as Matlab [4-5]. However, this 

software has bugs and also getting technical help from the developers is not generally possible. 

 

MapleSim is a multi-body modelling software developed by Maplesoft Inc. that allows easy modelling of a 

physical system with its extensive component library. As shown in Figure 1, it is able to model various 

electrical, electronic, mechanical, hydraulic and magnetic systems. In MapleSim, the symbolic computation 

technique provides to generate easy and flexible models. In addition, it simplifies the modelling process and 

reduces the processing time. Symbolic computation technique provides flexibility to develop models quickly and 

leads to optimal results faster. It enables modeling of multi-body systems from humanoid robots to industrial 

robots and leads to symbolic inverse and forward kinematics [7]. Therefore, due to these advantages, to obtain 

linear and nonlinear model of ABB IRB120 industrial robot, MapleSim software is preferred in this paper. 

 

 
Figure 1. MapleSim applications 

 

In the literature, the mathematical and mechanical modelling of  ABB IRB120 industrial robot is performed with 

various modelling software or manually. However, these robot models do not contain Six-DOF real parameters 

and generally, three-DOF is used for modelling process. Henceforth, we focus on complete representation of 

ABB IRB 120 and getting its accurate linear-nonlinear model in this paper. 

 

In the rest of the paper, section 2 introduces overall MapleSim architecture and presents step by step 

representation of ABB IRB120 industrial robot in MapleSim. Section 3 explains nonlinear model generation 

process and section 4 states linear model generation process of the represented ABB IRB120 in MapleSim. 

Finally, the last section presents conclusion and future works. 

 

 

Modelling Abb Irb120 Industrial Robot 

 

In this part of the paper, initially MapleSim multi-body modelling software is briefly introduced and then a 

realistic model of ABB IRB 120 industrial robot is performed step by step.  

 

 



International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey 
 

275 

 

2.1   MapleSim: An Overview  

 

It is possible to model various higher order, complex and coupled mechanical systems by using sophisticated 

Modelica based MapleSim library. To build a mechanical system in MapleSim, related components of the 

mechanical systems are taken from the MapleSim library and added  to  the MapleSim worksheet. For example, 

to design a simple unstable pendulum; one fixed reference frame, two links, one mass and one joint are dragged 

from the library into the MapleSim worksheet and then they are connected to each other as in physical world. 

These are illustrated in Figure 2.   

 

 
Figure 2.Simple mechanical system representation with MapleSim 

 

Represented systems in MapleSim can be symbolically or numerically analyzed by using Maple software 

properties. To perform various analysis of mechanical systems in time domain or frequency domain, Maple 

based custom components are available. For example, nonlinear ODE of the mechanical system can be obtained 

and in terms of creating sub-systems, the nonlinear model of the system can be linearized around equilibrium or 

operating points [8]. In order to obtain mathematical model of a mechanical system, MapleSim follows three 

steps as explained next. 

 

 

2.1.1 MapleSim Architectures 

 

As shown in Figure 3, MapleSim architecture consists of three stages; representation of a physical system, 

generation of nonlinear equations of the physical system and creation of the nonlinear ODE based model.  
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Figure 3.The maplesim architecture 

 

When representing multi-body systems in MapleSim, symbolic values can be assigned for the components of the 

physical system; so that symbolic nonlinear equations of the system can be generated. This is an important 

advantage for accurate system representation since numeric based models cause numerical errors and summation 

of this error leads to significant modelling error, which cannot be eliminated and can be a detrimental drawback 

for designing efficient controllers. Therefore, model of multi-body mechanical systems should be generated 

symbolically and numerical values should be assigned when numerical simulation is performed.  

 

It is important to note that the duration of the simulation for a particular system depends on various points. For 

example, if the generated model contains unnecessary mathematical representations such as insignificant poles 

and zeros, then numerical simulation takes longer time. To address this problem, MapleSim is able to simplify 

the generated equations at certain amount. In MapleSim, to represent  higher order, complex and coupled 

systems such as industrial robots, certain steps must be followed. These steps are explained in next section for 

ABB IRB120 industrial robot. 

 

 

2.2 Representation of ABB IRB 120 With MapleSim 

 

In this section, six DOF ABB IRB120 industrial robot is represented in MapleSim by taking into account the 

necessary physical constraints and laws. The corresponding steps are as follows: 

1. Firstly, click on MapleSim icon; then, MapleSim worksheet will appear. Save it as ABBIRB120.msim into 

a designated file. Now, as a first step, add a reference frame, which is called as  ‘Fixed Frame’ in the 

MapleSim library.  

 
Figure 4. The fixed frame from maplesim library 

 
2.   As a second step, the base of the industrial robot should be located at the top of the reference frame. To 

represent the base as a physical system in MapleSim, consider it as a single link pendulum without a joint. To do 

that, select two links and one mass from the MapleSim library, and then drag them into the worksheet. In real 

life, a system like a pendulum has a link and a mass where the mass is located at the center of the link. To 

represent this system in MapleSim, we need to use two links rather than one link to locate the mass at the centre 
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of the real link. Now, the links and mass can be connected as shown in Figure 5. After the   fixed frame is added, 

the base of the six DOF industrial robots is placed in workspace.  

 

 
Figure 5.Base link 

 
To simplify physical appearance of the base, a sub-system called as ‘Base’ can be created.  

 

3.   After connection of the base components, length of the links and mass of the base are assigned. To do that, 

initially direction of the base length in real physical robot is decided. Then, corresponding MapleSim axis is 

determined by using MapleSim visualization tool. Now, symbolic length and mass variables are written into the 

dedicated areas. These symbolic length and mass must be introduced into the ‘parameters view’ section. It is 

important to note that to assign full length of the base, the two links must have half of the full length where the 

left link has positive sign whereas the right link has negative sign. Therefore, with respect to the centre of the 

mass, the overall length of the base is the real base length. The Figure 6 illustrates how the symbolic length of 

the left link is assigned.   

 

 
Figure 6.Assigning length parameter of the base for the left link 

 
Similarly, the other length is assigned and mass value is written to the dedicated area. This is shown in Figure 7. 
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Figure 7. Assigning length parameter of the base for the right link 

 

As stated before, the connection of the links and mass for the base can be located into a sub-system as can be 

seen from Figure 8. 

 
Figure 8.Base link subsystem with reference frame 

 

1. After creating the base of the robot, a joint should be chosen. Since ABB IRB120 has revolute joints with 

motion constraints, a revolute joint from the MapleSim library is selected. The direction of the movement 

of the joint is determined based on the movement of the real robot. Since the physical industrial robot has 

revolute joints for motion, we add a revolute joint on the top of the base. The base of the robot with the 

first revolute joint is shown in Figure 9.  

 
Figure 9. Base of the robot with first revolute  joint 

 
2.   The representation of the other links, masses and joints follow the same procedure. It is crucial to note that 

the most important point to take into account when representing a multi-body system such as robot is the 
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determination of the axes of the lengths and directions of the joints. The overall representation of the ABB 

IRB120 industrial robot is shown in Figure 10.   

 
Figure 10.ABB IRB120 industrial robot representation with MapleSim 

 

1. Once the system is represented in MapleSim, 3D view becomes available as shown in Figure 11.  

 
Figure 11.ABB IRB120 3D View 

 
For more realistic view of the robot, CAD components can be added; however, this does not affect the dynamics 

or nonlinear, linear model of the system.  
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Figure 12.3D view of ABB IRB120 model using CAD models 

 

Since the representation of the robot is available, the next step is determination of nonlinear equations of the 

robot. 

 

 

Attaining Nonlinear Equations of the Robot 

 

Having accurate nonlinear equations of a physical system is crucial for designing model based nonlinear 

controllers. To have nonlinear equations of the robot, symbolic variables must be replaced with their correct 

values. To have accurate model, real parameters such as lengths and masses of the robot must be substituted with 

their symbolic values. Table 1 shows the lengths and masses of the ABB IRB 120.   

 

Table 1. Real parameters of ABB IRB120 industrial robot 

Parameter Name  Value  Description 

Ly0 0.145 Base length in y direction  

Ly1 0.145 Link1 length in y direction 

Ly2 0.27 Link2 length in y direction  

M0 6,215 Mass of the base  

M1 3,060 Mass of the link1  

M2 3,908 Mass of the link2  

M3 2,940 Mass of  the link 3 

Lx3 0.134 Link3 length in x direction 

Ly3 0.07 Link3 length in y direction 

Lx4 0.168 Link 4 length in x direction  

M4 1,320 Mass of link 4  

M5 0.546 Mass of Link 5  

Lx5 0.072 Link 5 length in x direction  

Le 0.02 End effector length in x direction  

M6  0.0136 End effector Mass  

 

To obtain the nonlinear equations or model, initially the physical representation of the robot is transferred to a 

worksheet. Various approaches, such as Newtons second law and Lagrange, are available in literature to derive 

nonlinear ODE of a physical system. Maple uses Lagrange equations, which is based on the difference between 
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kinetic and potential energies, to derive nonlinear ODE. Next section presents a verification example to show 

that it is possible to have exact nonlinear equation of a simple system. 

 

 

Verification Example 

 

As an example, nonlinear equation of a simple pendulum, shown in Figure 13, will be derived by using Lagrange 

method and then this analytically obtained nonlinear ODE will be compared with the one provided by 

MapleSim. 

 
Figure 13.Simple pendulum 

 
Assume that the parameters of the simple pendulum are as follows;  

l : length, 

m : mass, 

g : gravity,  

θ : position angle of the pendulum with respect to vertical line. 

Firstly, kinetic (T) and potential (U) energies of simple pendulum are expressed.  

  
 

 
    

     
 

 
     ̇                                                                                                                                                                                                                         

Eq. 1 

    
 where      ̇  

       

                                                                                                                                                                                        
Eq. 2 

where             

Then, Lagrangian function (L) can be formed as;  

      
 

 
                                                                                                                                                      

Eq. 3 
The next step is to use Lagrangian formulation defined as;  
 

  

  

  ̇
 

  

  
                                                                                                                                                                            

Eq. 4       

After simplification process, the nonlinear equation of the simple pendulum is obtained as;  

 

 ̈     
 

 
                                                                                                                                                                               

Eq. 5 
This result should be compared with the derived by MapleSim.  
  

   
       

 

 
                                                                                                                                                                                

Eq. 6 

As can be seen from the equations Eq. 5 and Eq. 6 , the results are identical. Therefore, it can be deduced that 

MapleSim is capable to represent physical systems accurately.  

 

 

Forced Nonlinear ODE of ABB IRB 120 

 

Similar to the  simple pendulum, MapleSim is able to derive nonlinear equations of more complex systems such 

as industrial robot in this form;  
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     ̈   (   ̇) ̇                                                                                                                                                    

Eq. 7 

where      is  the mass matrix or inertia matrix,  (   ̇) is the centrifugal or Coriolis matrix ,      is the 

gravitional forces matrix , u is the control signal and B is the control signal coefficient. For the sake of simplicity 

all t  terms are suppressed. 

It is not possible to obtain centrifugal and Coriolis matrix together with gravitational forces matrix directly in 

MapleSim. Thus, extra Maple code must be written to obtain them.  

To attain the mass matrix of the nonlinear ODE; 

M := multi_body:-xM: 

To attain the matrix for gravitional forces; 

eqs := multi_body:-vF; 

map(coeffs, collect(eqs, [g], 'distributed'), [g]); 

To attain the matrix for centrifugal and Coriolis forces; 

NN := numelems(MB:-vQ); 

Mass := MB:-xM; 

eqs := MB:-vF; 

col_g := map(coeffs, collect(eqs, [g], 'distributed'), [g]); 

gTerms := Vector(NN);  

for i to NN do 

 if numelems([col_g[i]]) > 1 

 then gTerms[i] := col_g[i][-1] 

 end if 

end do; 

gTerms*g; 

 Vector[column](%id = 18446746608836023358) 

qdotTerms := simplify(-g*gTerms+eqs); 

It might be important to note that to extract these matrices the ABB IRB 120 representation in MapleSim must 

be converted into a subsystem with each joint has both the input and output as shown in Figure 14.  

 
Figure 14. Subsystem of ABB IRB120 with inputs and outputs 

 
Now, it is possible to perform linearization around operating points to obtain the linear model of the system. 

 

 

Linearization of Nonlinear Systems 

 

Linearization of nonlinear systems is necessary to design linear controllers, which are extensively studied and 

applied in industry. To understand linearization process, we assume that a general nonlinear model of a multi-

body system has  n state variables, m input and r output variables;  

  ̇                      
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  ̇                      
                       

                             
                       

This nonlinear model can be defined with vector notation as follows; 

 ̇         
         

where function f and g are often  assumed smooth enough which means having continuous derivatives to certain 

order. The linearization process based on the Taylor Series Expansion of a nonlinear function about a specified 

operating point. Taylor series expansion is given below; 

                                                                                                                                                                         
Eq. 8 

where the ex x x      is the change in position angle from the operating point. The Jacobian matrix is 

defined as; 

1 1 1

1 2

2 2 2

1 2

1 2
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d d d

df df df

d d d

J x

  

  

  

 
 
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 
 
 
 
 
 
 
 
 

 

As systems become more complex, representing them with differential equation becomes cumbersome. Thus, 

representing the systems with multiple inputs and outputs in state space form is more appropriate. The state 

space equation has a state equation and an output equation as follows; 

 ̇        

                                                                                                      

where the first equation is called state equation and the second equation is called output equation.  

The MapleSim program automatically performs the above-mentioned operations for multi-body systems. For 

this purpose, the linearization template shown in Figure 15 can be used. 

 
Figure 15.Maple linearization template 
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After the linearization process, A, B, C, D state space  matrices are obtained and given in appendix. After the 

linearization process, Bode, Nyquist, Root locus plots can be drawn to analyze linearized system and display the 

effects of different inputs on the outputs of ABB IRB120 robot. 

 

 

Conclusion 
 

Accurate modeling of industrial robots provides fast solution for testing and developing control algorithms. In 

this study, modeling of ABB IRB120 industrial robot is realized with MapleSim  software, nonlinear equations 

are generated and linearized by using real robot parameters. In future studies,  new model and learning-based 

control algorithms will be developed for this modelled robot. 
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APPENDIX 
 

State Space Matrices  

 
0 1 0 0 0 0 0 0 0 0 0 0

0 0 0,088385 0 1, 2609 0 0,03054 0 0, 452842 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 40,15217 0 29,5418 0 0,108109 0 1,133512 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 44, 287 0 108, 2842 0 0,56953 0 7, 27049 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0,12654 0 2,01236 0 1,614214 0 2, 47

A

 



  





5777 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 11,61132 0 186,517 0 7,514058 0 129,9011 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0,066928 0 1, 24236 0 1,58413 0 2,83914 0 0 0



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

0 0 0 0 0 0

16,52053 0,075275 0,35229 12,2955 3,515335 1,98881

0 0 0 0 0 0

0,075275 3,888116 8,51171 0,11933 11,05329 0,073043

0 0 0 0 0 0

0,35229 8,51171 25,92747 0,535638 58,6871 0,30182

0 0 0 0 0 0

12,2955 0,11933 0,535638 315,04

B

  

 

   

 



28 3,43332 304,069

0 0 0 0 0 0

3,515335 11,05329 58,6871 3,43332 785,6144 0,587171

0 0 0 0 0 0

1,98881 0,073043 0,30182 304,069 0,587171 337005,8

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

C 

 
 
 
 
 
 
 
 
 

 

 

 

 

 


