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Abstract: In modern computing environments, inter-process communication (IPC) plays a pivotal role in 

facilitating seamless interaction between software components. Named pipes, a form of IPC mechanism in 

Linux systems, offer a straightforward means of data exchange between processes. However, ensuring the 

confidentiality and integrity of data transmitted via named pipes is essential, particularly in environments where 

sensitive information is handled. This paper presents a comprehensive investigation into the performance 

characteristics of various encryption algorithms applied to named pipe communication within Linux systems. 

The efficiency of six encryption algorithms such as Caesar cipher, RSA, DES, AES-128, AES-192, and AES-

256 is examined in terms of their impact on data throughput, latency, and resource utilization within the named 

pipe communication. Through a series of systematic experiments, encompassing diverse datasets and 

transmission scenarios, the trade-offs between security and performance inherent in each encryption algorithm 

are analyzed. Our findings shed light on the relative strengths and weaknesses of different encryption 

techniques, providing valuable insights for system administrators and developers in selecting appropriate 

encryption methods based on specific application requirements and security considerations. This study 

contributes to the broader understanding of secure IPC mechanisms in Linux environments, offering a nuanced 

perspective on the interplay between encryption algorithms and system performance in the context of named 

pipe communication.  
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Introduction 

 

In the realm of digital security, cryptographic encryption methods serve as the cornerstone for safeguarding 

sensitive information and ensuring secure communication channels. This paper delves into a comparative 

analysis of encryption methods applied specifically to named pipes within the Linux environment. Named pipes, 

also known as FIFOs (First In, First Out), offer a means of inter-process communication (IPC), facilitating data 

exchange between unrelated processes. 

 

In the past, the performance of encryption methods has been examined and compared with each other many 

times. There are dozens of studies on these in the literature. In particular, AES and DES are the 2 standards that 

are most compared. In the study conducted at Galgotias University in 2015, performance calculations and 

comparisons of AES and DES were made, and in this study, the variation and simulation time of these 2 

encryption algorithms were focused on (Bhat et al., 2015). In another paper comparing AES and DES, the 

encryption times and CPU usage of these algorithms were discussed in the same way as this study (Rihan et al., 

http://www.isres.org/
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2015). The originality of this study is that Caesar cipher is included in the comparison and the system is tested 

using named pipe in inter-process communication in Linux structure. 

 

The study methodically investigates the performance of three encryption algorithms: Caesar Cipher, Data 

Encryption Standard (DES), and Advanced Encryption Standard (AES). These algorithms are scrutinized across 

three key phases: research and comprehension of cryptographic methods, implementation within the named pipe 

infrastructure, and comprehensive performance measurements. Additionally, the RSA algorithm has been 

chosen as the key determination method in all these encryption methods. In practical applications, all key 

generation is done using the RSA algorithm. 

 

The research phase entails a thorough exploration of each encryption and decryption method, including key 

generation techniques. This foundational understanding forms the basis for subsequent algorithm development 

and integration into the Linux environment's named pipe structure.Subsequently, the study focuses on the 

practical implementation of the encryption algorithms within the named pipe framework. This phase involves 

the successful execution and evaluation of RSA, Caesar Cipher, DES, and AES algorithms, highlighting their 

applicability and efficiency in the Linux environment. 

 

Finally, comprehensive measurements are conducted to assess the performance of the encryption methods. Time 

measurements provide insights into the encryption duration of each algorithm, while CPU utilization 

measurements offer a glimpse into the resource consumption during encryption operations. By systematically 

examining the performance of these encryption methods within the Linux environment's named pipe 

infrastructure, this study aims to provide valuable insights into selecting suitable encryption algorithms for 

ensuring secure communication channels in digital systems. 

 

 

Material 
 

Named Pipe 

 

Inter-process communication (IPC) forms the cornerstone of effective multitasking in operating systems. Named 

pipes, also known as FIFOs (First-In-First-Out), offer a well-established method for IPC, particularly within 

Unix-like systems (Gaikwad,2023). They build upon the traditional pipe concept by introducing a crucial 

distinction: persistence. 

 

Unlike standard, anonymous pipes that vanish with their creator process, named pipes exist as named entities 

within the file system. This characteristic allows them to transcend the lifespan of their originating process, 

enabling communication between processes that might not be running concurrently. Named pipes function as 

special files, accessible by processes through familiar file operations like opening, reading, writing, and closing 

(Adegeo, n.d.), A defining feature of named pipes is their adherence to the FIFO principle. Data written to the 

pipe by one process is retrieved by another process in the exact order it was written. This ensures the integrity of 

messages and streamlines communication flow. 

 

 
Figure 1. A representation of named pipe (Gaikwad, 2023) 
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The specific implementation details of named pipes vary across operating systems. In Unix-like environments, 

commands like mkfifo create named pipes, while functions like open and read/write handle data exchange (linux 

manual page, n.d). In conclusion, named pipes provide a robust and user-friendly mechanism for inter-process 

communication. Their persistence, adherence to FIFO principles, and ability to bridge communication between 

independent processes make them a valuable tool for various IPC applications. 

 

 

Development and Test Environment 
 

The encryption algorithms with named pipes were developed, compiled, and executed on a single computer to 

maintain consistent and precise comparisons. This computer operates on a Linux-based virtual machine running 

Ubuntu-20.04.1, utilizing a 64-bit architecture with x86_64 and a 5.15.0-101-generic kernel. All of the 

developments such as creating named pipe, RSA, DES, AES cryptosystems were developed with C 

programming language and compiled using gcc version 9.4.0. 

 

 

Method 

 

The methodology of this study, in which the performances of the encryption methods used on the named pipe 

are compared, is carried out in 3 main steps. The first of these is to research and learn these encryption and 

decryption methods in the field of cryptology. These also include generating keys. Following this research, we 

will develop and successfully run these encryption algorithms on the named pipe structure established in the 

Linux environment. Finally, several measurements are made on these structures for performance observation, 

which is the main purpose of the study. 

 

 

Cryptographic Encryption Methods 

 

Rivest, Shamir and Adleman (RSA) Cryptosystem 

 

The RSA method is a frequently used asymmetric encryption technology for safe data transport. RSA, named 

after its founders Rivest, Shamir, and Adleman, encrypts data with a public key that can be freely transmitted, 

whereas decryption requires a private key that the receiver keeps secret. RSA's security is predicated on the 

practical difficulty of factoring the product of two large prime numbers, making it a key component of digital 

security in applications such as safe online browsing, email, and corporate data protection. 

 

RSA encryption uses two keys: a public key for encryption and a private key for decryption. Its security arises 

from the difficulty of factoring huge numbers into primes, which is computationally expensive for large 

numbers. RSA is used to ensure secure data transmission, digital signatures, and key exchange. Its effectiveness 

is determined by key size, with longer keys providing higher security but needing more processing resources. 

RSA's use in SSL/TLS protocols for secure web connections demonstrates its importance in current 

cryptography. 

 

Considering one letter sized plain text, letter B to be encrypted. The number representation of B is 2. Let public 

key for encryption is defined as (5, 14). Thus, cipher text is calculated  (mod 14) ≡ 4 in this case. Then, the 

letter equivalent of this is D. Also, private key for decryption is chosen as (11, 14). When back-propagation is 

applied, original text can be reconstructed.  (mod 14) ≡ 2 (B). 

 

In RSA, keys are generated by selecting two large prime numbers (p and q), calculating their product (n), and 

then determining a number (e) that is coprime with (n) and the product of the primes' decrements. The public 

key consists of (n) and (e), but the private key is composed of (n) and a number (d) that solves a certain modular 

equation involving (e). The procedure assures that public and private keys are mathematically connected, 

allowing for secure encryption and decryption processes. 

 

Let us choose p= 2 and p= 7. n= p*q= 14 in this case. This value will be the modulo in encryption and 

decryption keys. Remainder numbers which are coprime with n (sharing no common factors with n) which are 

1, 3, 5, 9, 11 and 13 in this case. In real scenario, p and q might be enormous, so calculating coprime would be 

difficult. The number of remainder numbers is equal to Ø(n)= 6. This term can be also obtained as Ø(n)= (p-

1)*(q-1). Then, choosing number e under two conditions:  
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 1 < e < Ø(n) 

 Coprime with n, Ø(n)  

 

5 can be chosen from four options (2, 3, 4, 5), because only 5 is coprime with n and Ø(n). Then the next step is 

determining number d for private key. Choosing d: d*e (mod Ø(n)) ≡ 1. In this case, 11 can be chosen from all 

options (4, 11, 18, 25…). Finally, public, and private keys for RSA cryptosystem is generated. 

 

 

Caesar (Shift) Cipher 

 

The Caesar cipher is one of the most simple and well-known encryption methods. It is a type of substitution 

cipher in which each letter in the plaintext is shifted a set number of positions down or up the alphabet. For 

example, with a shift of one, 'A' would be replaced by 'B', 'B' by 'C', and so on. Also, spaces and punctuations 

are reserved. This approach is named after Julius Caesar, who allegedly used it to communicate with his 

generals. The Caesar cipher's simplicity makes it easy to comprehend, but equally easy to break, restricting its 

practical relevance to modern security requirements. 

 

For an n-letter alphabet; P, C, K ∈ Zn, encryption EK(P) = P + K (mod n), decryption DK(P) = C – K (mod n). 

Let consider the K (shift key) is 4, and plain text is “This is an encrypted message.”, cipher text can be created 

from the alphabet table in the figure above. For example, the letter T becomes X since the key is 4, so cipher 

text becomes: “XLMW MW ER IRGVCTXIH QIWWEKI.”. 

 

The Caesar cipher's simplicity is also its primary drawback. It is vulnerable to frequency analysis, which 

involves an attacker comparing the frequency of letters or groups of letters in the ciphered text to known 

frequencies in the original message's language. Because the cipher does not dramatically modify these 

frequencies, it is quite simple to calculate the shift and decrypt the message. Furthermore, because there are only 

25 potential shifts in the English alphabet, an attacker can easily try all combinations to decrypt the message. 

 

The Caesar cipher is quite simple to decipher. The original data can be accessed by methods such as analysis of 

the most repeated characters, determining other characters by selecting one character as plaintext, or vice versa. 

Caesar cipher was chosen as the simplest encryption method in this study. The performance of Caesar 

encryption, which has a very simple structure compared to Advanced Encryption Standard (AES) and Data 

Encryption Standard (DES), has been observed. 

 

 

Data Encryption Standard (DES) 

 

The Data Encryption Standard (DES) is a symmetric-key block encryption algorithm created by IBM in the 

1970s and later standardized by NIST. Its principal function is to encrypt and decrypt digital data with a 

common secret key. DES encrypts and decrypts plaintext blocks, which are typically 64 bits in size, using a 56-

bit key. Although DES has been mostly replaced by more secure algorithms such as AES, knowing its operation 

provides insight into the fundamentals of modern encryption. 

 

 
Figure 2. DES structure (Shorman & Qatawneh, 2018) 
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The first stage in DES is key generation, which converts the 56-bit key into 16 subkeys, each 48 bits long. The 

procedure starts with an initial permutation and then separates the key into two 28-bit halves. Circular left shifts 

are made to each half, and subkeys are formed by selecting specified groups of bits using a technique known as 

key scheduling. These subkeys are subsequently used for further encryption and decryption operations (Schneier 

& Diffie, 2015). 

 

 
Figure 3. Key generation for DES algorithm (Sharmal & Garg, 2016) 

 

DES encryption involves 16 rounds of processing for each plaintext block. Each round includes multiple 

operations such as substitution, permutation, and key mixing. The plaintext block is first permuted, then 

transformed in a sequence of rounds. Each round, the block is divided into two halves, expanded, XORed with a 

subkey, substituted using S-boxes, permuted, and XORed with the other half. This procedure scrambles 

plaintext into ciphertext in a reversible manner using the proper key. 

 

 
Figure 4. Single round of DES algorithm (Takieldeen et al.,  2012) 
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DES decryption is the same as encryption, but in reverse. The ciphertext is initially permuted, then the subkeys 

are applied in reverse order across 16 rounds of processing. Each round involves the identical operations as 

encryption, except the subkeys are used in the reverse order. After the final round, the ciphertext block is treated 

to an inverse initial permutation, yielding the original plaintext block. Despite its historical relevance, DES has a 

number of flaws that make it unsuitable for modern cryptography applications. Its small key length renders it 

vulnerable to brute-force assaults, in which all potential keys can be checked within a reasonable timeframe. 

Furthermore, developments in cryptanalysis have revealed flaws in the DES algorithm, reducing its security. As 

a result, DES has been replaced by more powerful encryption protocols such as AES, which provide higher 

security assurances and improved performance. 

 

 

Advanced Encryption Standard (AES) 

 

AES (Advanced Encryption Standard) is a symmetric encryption algorithm that has become an essential 

component of modern cryptographic protocols. AES was developed to replace the outdated Data Encryption 

Standard (DES) and was adopted as a standard by the United States National Institute of Standards and 

Technology (NIST) in 2001 following a rigorous selection process. Unlike asymmetric encryption algorithms, 

which use separate keys for encryption and decryption, AES uses a single key for both operations, resulting in a 

symmetric encryption method. This key is shared by the communicating parties and must be kept secure in order 

to ensure the secrecy of the encrypted data (Hioureas, 2023). 

 

AES's processing on data blocks is crucial to its functionality. Each block is made up of 128 bits, or 16 bytes, 

and if the plaintext is not a multiple of this block size, padding is used to ensure consistency. AES provides key 

sizes of 128, 192, and 256 bits, with bigger key sizes providing more security at the expense of computational 

complexity. The algorithm uses a substitution-permutation network (SPN) to perform its operations. These 

procedures take place over numerous rounds, with the number of rounds varied according to the key size: 10 

rounds for AES-128, 12 rounds for AES-192, and 14 rounds for AES-256. 

 

 
Figure 5. AES structure (Abdelrahman et al., 2017) 

 

The AES encryption process begins with key expansion, which converts the initial key into a series of round 

keys, one for each round of encryption. Each round of AES encryption consists of four major steps: SubBytes, 

ShiftRows, MixColumns, and AddRoundKey. In the SubBytes step, each byte in the input block is replaced 

with a corresponding byte from a substitution table, introducing non-linearity into the encryption process. 

ShiftRows is the process of cyclically shifting the bytes within each row of the block, which contributes to data 

diffusion. MixColumns treats the block's columns as polynomials and multiplies them with fixed polynomials 

modulo an irreducible polynomial. Finally, AddRoundKey applies bitwise XOR to merge the state and round 

key (Daemen & Rijmen, 2002). 

 

SubBytes are the first stages in each round of AES encryption. It aims is to replace each byte in the input block 

with a corresponding byte from a prepared substitution table, known as the S-box. This replacement is a 

nonlinear process that causes confusion in the data. The S-box is a fixed 16x16 matrix with pre-computed 

values. Each byte in the input block is replaced with the value from the relevant row and column in the S-box. 

This transformation ensures that even minor changes in the input block cause huge changes in the output, 

making it difficult for attackers to identify patterns. 
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Figure 6. SubBytes act on the individual bytes of the state (“SubBytes”, 2024) 

 

ShiftRows is the next stage in each round of AES encryption. This procedure consists of cyclically shifting the 

bytes within each row of the block. The bytes in the second row are shifted one position to the left; those in the 

third row are shifted two places to the left; and those in the fourth row are shifted three positions to the left. This 

phase adds to data diffusion by spreading each byte's influence across numerous columns. ShiftRows ensures 

that neighboring bytes interact with one another during successive encryption steps, hence improving the 

algorithm's overall security. 

 

MixColumns follows ShiftRows with the exception of the final round of AES encryption. This procedure treats 

the block's columns as polynomials over the finite field GF( ). MixColumns multiplies each byte in a column 

by a fixed polynomial modulo an irreducible polynomial. The result replaces the original byte, yielding a linear 

transformation of the data. This process further distributes the data and ensures that each byte of the output is 

dependent on multiple bytes from the input. By creating this reliance, MixColumns improves the overall 

security of AES encryption, making it more resistant to cryptanalytic attacks. 

 

 
Figure 7. MixColumns operates on the columns of the state (“MixColumns”, 2024) 

 

The last step in each round of AES encryption is AddRoundKey. In this stage, the block's current state is joined 

with a round key generated from the main encryption key. Each byte of the state is bitwise XORed with its 

matching byte from the round key. The round key created during key expansion is unique to the current round of 

encryption. AddRoundKey ensures that each round of encryption is separate and depends on the key by 

introducing the round key's unique effect into the state. This phase further obscures the relationship between the 

plaintext and the ciphertext, which improves the security of AES encryption. 

 

AES is a symmetric key algorithm, which means it uses the same key for encryption and decoding. This differs 

from asymmetric key methods, which use two separate keys (public and private) for encryption and decryption. 

Symmetric key methods are often faster and more efficient for large volumes of data; nevertheless, key 

management can be difficult because securely communicating the key with the intended recipient is critical.  

 

AES operates on fixed-size data blocks (128 bits). Different modes of operation can be used to encrypt data that 

does not fit into a single block, or to encrypt numerous blocks with increased security, such as Electronic 

Codebook (ECB), Cipher Block Chaining (CBC), or Galois/Counter Mode (GCM). These modes specify how 

the plaintext is divided into blocks and how the encryption process is performed on each block. Electronic 

Codebook (ECB) encrypts each block separately with the same key, which can reveal patterns in the ciphertext 
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if the plaintext contains repeated data. It is typically regarded as less secure and not recommended for most 

purposes. On the other hand, Cipher Block Chaining (CBC) creates a dependency between blocks by XORing 

the previous block's ciphertext with the current block's plaintext prior to encryption. The first block uses an 

Initialization Vector (IV) to add randomization. This mode offers more security than ECB, but it is vulnerable to 

certain attacks if the IV is predictable or overused. 

 

AES is regarded extremely secure and is widely used in a variety of applications, including government, 

military, and commercial use. The algorithm's security stems mostly from its key size, which makes it resistant 

to brute-force attacks. Brute-force attacks attempt to decrypt the ciphertext by trying every conceivable key 

combination; however, with AES key sizes (128, 192, or 256 bits), the number of possible possibilities is so 

huge that it is currently deemed impossible to break AES encryption using this technique. 

 

AES is a cornerstone of digital security, with use ranging from government communications to commercial 

transactions nowadays. Its exceptional resilience against brute-force attacks, combined with key size versatility 

(128, 192, and 256 bits), ensures strong defense mechanisms for sensitive information protection. AES's 

efficiency and security have won it a key role in global standards and protocols, making it a must have tool in 

the fight against cybersecurity threats. As we traverse the digital age, AES's importance grows, emphasizing its 

important role in protecting digital assets and communications around the world. 

 

 

Development of the Named Pipe and Encryption Algorithms 
 

Linux Inter-Process Communication with Named Pipe 

 

In C programming on Linux systems, named pipes, often known as FIFOs (First In, First Out), provide a means 

for inter-process communication (IPC) that allows unrelated programs to share data. Unlike anonymous pipes, 

which are commonly used for parent-child process communication, named pipes exist independently of the 

processes that utilize them and persist in the file system, offering a path for communication between any 

processes that have access to the filesystem. To create a named pipe, use the mkfifo system function or 

command. This method creates a FIFO special file with the specified name in the filesystem. The required C 

libraries for mkfifo command are ‘types.h’ and ‘stat.h’ in the sys directory (Stevens & Rago, 2014).  

 

The mkfifo command in the C programming language has an integer return value and 2 arguments. These 

arguments are the ‘pathname’ as a constant char pointer and ‘mode’ with the type of ‘mode_t’. The pathname 

represents the name of the directory of the FIFO to be created and “mode” specifies the permissions for the 

FIFO. The “mode” is specified as an octal (base-8) number and represents the file’s permission bits. It’s similar 

to the permissions used for regular files and directories. The “mode” is influenced by the process’s ‘umask’, 

which may restrict the permissions set during the creation of the FIFO. The “mode” parameter is composed of 

three groups of permissions: 

 

 Owner permissions: What actions the owner of the file can perform. 

 Group permissions: What actions users who are members of the file’s group can perform. 

 Other permissions: What actions all other users can perform. 

 

Each group can have permissions for reading (r), writing (w) and execution (x), represented by octal numbers: 

 

 4 (100 in binary) stands for read permission. 

 2 (010 in binary) stands for write permission. 

 1 (001 in binary) stands for execute permission. 

 0 stands for no permission. 

 

These permissions are added to together to get the total permission value for each group. The final mode is a 

concatenation of these values for the owner, group and others in that order. 

 

 

Opening the Named Pipe 

 

Once created, processes can open the named pipe using open(.), just as they would with regular files. A process 

can open the FIFO in read-only (RDONLY) or write-only (WRONLY) mode, depending on its role. The writer 
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process, which sends data into the FIFO, opens it for writing. Also, the reader one opens it for reading. When a 

process is done with the FIFO, it can close it using close(.), similar to files. 

 

Reading from and writing to a named pipe are accomplished with the read(.) and write(.) system methods, 

respectively. These calls halt the calling process: a read(.) call on an empty FIFO will block until there is data to 

read, and a write(.) call on a full FIFO will block until there is space to write new data. This blocking feature 

allows the producer and consumer processes to synchronize without the need for additional coordination code. 

 

 

Caesar, RSA, DES, and AES Algorithm in C 

 

Overview of the OpenSSL 

 

The OpenSSL project, a powerful, commercial-grade, and feature-rich toolkit for the Transport Layer Security 

(TLS) and Secure Sockets Layer (SSL) protocols, has expanded dramatically over time. One critical component 

of its evolution is the creation and improvement of its cryptography library, which includes a diverse set of 

cryptographic algorithms and capabilities like as AES, DES, and RSA. In subsequent releases, OpenSSL has 

continued to evolve, improving its support for these methods via its digital envelope library. 

 

 

Digital Envelope Library 

 

The digital envelope technique secures a communication by using asymmetric encryption to encrypt a 

symmetric key, which is then used to encrypt the message or data. This method combines the effectiveness of 

symmetric encryption algorithms (such as AES and DES) for large-scale data encryption with the security of 

asymmetric encryption algorithms (such as RSA) for safe key exchange (Viega et al., 2002).  

 

The EVP (Envelope) interface serves as the foundation for OpenSSL's digital envelope capabilities. The EVP 

interface provides a higher-level abstraction of the different cryptographic methods. It provides a uniform 

method to encryption and decryption, hashing, and digital signature operations using diverse algorithms. By 

abstracting the complexities of each cryptographic technique, the EVP interface makes it easier to integrate 

encryption into programs while also ensuring that the algorithms are utilized appropriately and securely. 

 

 

Usage in C and Named Pipes 

 

When implementing cryptographic operations in C with OpenSSL, developers use the EVP interface to execute 

encryption and decryption. This method enables a seamless transition between multiple algorithms (AES, DES, 

RSA) without requiring significant changes to the codebase. For example, developers can encrypt data with 

AES for efficiency and then use RSA to encrypt the AES key, resulting in a secure digital envelope (Stallings, 

2017).  

 

As it mentioned before, cryptography is essential in scenarios involving inter-process communication (IPC), 

such as when employing named pipes (FIFOs), to ensure the confidentiality and integrity of the data being 

transmitted. In Unix-like operating systems, named pipes can be built and accessed using functions such as 

mkfifo to simplify communication between processes running on the same machine. Developers can use 

OpenSSL's cryptographic capabilities to encrypt data before sending it via the pipe and decrypt it upon receipt. 

This method assures that even if the data is intercepted while in transit over the designated pipe, it is protected 

and unreadable without the correct decryption key.  

 

This combination of OpenSSL with named pipes for safe IPC is especially useful in applications that require 

secure transport of sensitive information between various components or services running on the same system. 

Using OpenSSL's digital envelope features ensures that data enclosed within a secure envelope is efficiently 

encrypted and securely sent, combining the strengths of symmetric and asymmetric cryptography.  

 

OpenSSL's digital envelope library, which supports the AES, DES, and RSA algorithms, is a powerful and 

versatile toolset for performing cryptographic operations in C, including secure inter-process communication via 

named pipes. By abstracting the intricacies of cryptographic operations and assuring secure key and data 

handling, OpenSSL allows developers to create more secure applications that can confidently protect sensitive 

information from interception and unwanted access. 
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Figure 8. Caesar encryption with RSA secured key 

 

 
Figure 9. DES encryption with RSA secured key 

 

 
Figure 10. AES encryption with RSA secured key 

 

 

Measurements and Comparison of Algorithms 
 

After the encryption algorithms are researched, developed and compiled, the last stage in the study is to run the 

programs with these algorithms in a Linux environment and make the necessary measurements. The running 

times of the developments in this study and the resource consumption at run time are recorded and a comparison 

is made between the encryption algorithms. 
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Time Measurement 

 

The first measurement is to measure the time each cryptographic method spends on encryption. In order to 

measure this, 'time', a built-in function in the Linux environment, was used. The 'time' command expresses the 

time, in seconds, from the start to completion of the application run with it. On the other hand, although 

measuring an encryption process with the time command can give a value, a single value for comparison will be 

weak in terms of consistency. During this process, operations such as other applications running in the 

background, I/O waits, and network states cause deviations in the current time and performance. For this reason, 

a script was developed and run 1000 times for each encryption algorithm separately and averaged after saving 

each time output value in a file. In this way, the effect of deviations due to external factors is significantly 

reduced and consistency is increased. This script runs 1000 times for Caesar Cipher, DES and AES and transfers 

the results to a csv file. Then, a separate application called ‘averager’ presents the mean of these values as an 

output. 

 

 

CPU Utilization Measurement 

 

Another factor to be evaluated in the study is the CPU usage of the algorithms while they are running. Although 

all the algorithms in the study use RSA for key generation, the operations and structures they perform in each 

cycle are completely different, as explained above. For this reason, observing and comparing the use of 

resources will have an important role in the use of these algorithms. Just like in time measurement, data taken 

for a single trip will be insufficient in terms of consistency and accuracy. Both the difference in the resources 

the device allocates and uses for other processes at that moment and the difficulty of obtaining CPU values in a 

very short time have led to the need to take measurements during repetition many times. Each encryption 

algorithm was run 1000 times respectively with a prepared script and the values were saved in a csv file. The 

built-in function that this script uses to monitor CPU utilization is 'ps'. This command shows the list of processes 

actively running on that computer. By running the 'ps -p <pid> -o %cpu' command, the CPU usage of the 

process whose 'pid', that is, the process ID, is given among the processes listed with 'ps' can be observed. 

 

 

Results and Discussion 
 

Time Measurement Results 

 

Time measurements were noted through scripts as described in the method section. Afterwards, the averages of 

each 100 iterations were taken and graphed using a Python script. On a single graph, the time spent by AES, 

DES and Caesar encryption methods during encryption can be observed. Values in this measurement are in 

milliseconds. 

 

 
Figure 11. Time measurement graph 
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Table 1. Time measurement result recordings 

 Caesar Cipher DES AES 

Average of 1
st
 100 runs 3 ms 18 ms 15 ms 

Average of 2
nd

 100 runs 3 ms 17 ms 17 ms 

Average of 3
rd

 100 runs 4 ms 19 ms 14 ms 

Average of 4
th

 100 runs 5 ms 21 ms 15 ms 

Average of 5
th

 100 runs 4 ms 19 ms 15 ms 

Average of 6
th

 100 runs 4 ms 24 ms 13 ms 

Average of 7
th

 100 runs 3 ms 19 ms 14 ms 

Average of 8
th

 100 runs 3 ms 19 ms 15 ms 

Average of 9
th

 100 runs 4 ms 17 ms 15 ms 

Average of 10
th

 100 runs 4 ms 18 ms 16 ms 

 

According to the observed results, the Caesar encryption algorithm, which has a very simple working structure, 

completes transactions in 4-5 times shorter time compared to AES and DES. Data that can be easily encrypted 

can also be decrypted very easily through cyber-attacks. On the other hand, although the AES algorithm makes 

encryptions that are more difficult to decipher than DES, the running time of the DES algorithm is longer than 

AES, although there are not big differences. The small difference also varies depending on the size of the data to 

be encrypted. If very large data will be encrypted, it is appropriate to choose the AES algorithm. 

 

 

CPU Utilization Measurement Results 
 

CPU usage measurements were noted through scripts as described in the method section. Afterwards, 10 

different measurements are done and the results are taken notes. Then, a Python script is used to visualize them. 

On a single graph, the utilized CPU by AES, DES, and Caesar encryption methods during encryption can be 

observed. 

 

 
Figure 12. CPU utilization measurement graph 

 

Table 2. CPU utilization measurement result recordings 

 Caesar Cipher DES AES 

1
st
 measurement 1.0% 2.4% 2.5% 

2
nd

 measurement 0.8% 2.2% 2.5% 

3
rd

 measurement 0.7% 1.9% 2.4% 

4
th

 measurement 0.6% 2.1% 2.5% 

5
th

 measurement 0.7% 1.9% 2.6% 

6
th

 measurement 0.8% 2.0% 2.7% 

7
th

 measurement 0.8% 1.9% 2.6% 

8
th

 measurement 0.8% 2.2% 2.6% 

9
th

 measurement 0.9% 2.1% 2.6% 

10
th

 measurement 0.8% 2.0% 2.3% 
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According to the CPU usage measurement results, the Caesar encryption method uses minimum resources with 

its very simple structure, just like time measurements. It completes operations using less than half the CPU of 

AES and DES algorithms. To compare in terms of CPU usage, there is a difference of almost similar 

proportions to that in time measurements. The AES algorithm consumes slightly higher CPU during operations 

than DES, with a slight difference. This may determine the preference for platforms with very limited 

processing power. 

 

To summarize the results, these algorithms that encrypt communication on named pipes responded as expected. 

The Caesar algorithm, which can be solved very easily, has the highest performance in terms of resource 

consumption and time, but provides a very low level of security. AES and DES can be preferred in different 

ways according to different restrictions when they want to be used in inter-process communication. 

 

 

Conclusion  
 

In conclusion, this study has provided a comprehensive analysis of encryption methods applied to named pipes 

within a Linux environment, focusing on RSA, Caesar Cipher, DES, and AES algorithms. Through meticulous 

examination and performance measurements, several key findings have emerged.The RSA algorithm, renowned 

for its asymmetric encryption capabilities, demonstrates robust security features suitable for various 

applications, including secure data transmission and digital signatures. Its reliance on complex mathematical 

operations, such as prime number factorization, ensures high levels of encryption strength. However, RSA's 

computational demands are notable, impacting performance metrics such as encryption time and CPU 

utilization. 

 

Contrastingly, the Caesar Cipher, while simple and easy to implement, lacks the sophistication necessary for 

modern security standards. Its straightforward substitution method makes it vulnerable to frequency analysis and 

brute-force attacks. Nevertheless, the Caesar Cipher exhibits the lowest resource consumption and fastest 

encryption times among the algorithms studied, albeit at the expense of security. 

 

The Data Encryption Standard (DES), a symmetric-key block encryption algorithm, offers historical insights 

into encryption fundamentals but falls short in contemporary security contexts. Its small key size and 

susceptibility to brute-force attacks render it obsolete compared to more robust alternatives like AES. Advanced 

Encryption Standard (AES), heralded as a cornerstone of modern cryptography, emerges as the preferred choice 

for secure communication over named pipes. AES balances strong encryption with efficient performance, 

making it suitable for diverse applications ranging from government to commercial use. With key sizes of 128, 

192, and 256 bits, AES provides flexible security options tailored to specific needs while maintaining resistance 

against brute-force attacks. Performance measurements confirm AES's superiority in both encryption time and 

CPU utilization, albeit with marginal differences compared to DES. The Caesar Cipher, while significantly 

faster and less resource-intensive, lacks the requisite security for most applications. 

 

The measurements in the study overlap with the inferences found in similar studies in the literature. Very similar 

results were obtained with the results in the study comparing AES and DES, not only on named pipes. In this 

study, which considers both time and resource consumption, it was concluded that AES is faster and uses more 

CPU than DES (Rihan et al., 2015). Obtaining similar results with this study conducted without a named pipe 

indicates that the named pipe has no relative impact on the algorithm performance. 

 

In summary, the selection of encryption algorithm for named pipe communication hinges on a nuanced 

evaluation of security requirements, computational resources, and performance considerations. While the RSA 

algorithm offers unparalleled security, its computational overhead may limit practical applications. Conversely, 

the Caesar Cipher, while efficient, lacks the requisite security for modern encryption needs. DES, though 

historically significant, is overshadowed by AES's superior performance and security. Ultimately, AES emerges 

as the optimal choice, striking a balance between robust encryption and efficient resource utilization, ensuring 

secure communication over named pipes in Linux environments. 
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