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Abstract:  In this paper, we extend the concept of lcem matrices beyond the classical domain of natural 

integers into the domain of unique factorization domains. We investigate the structure of these matrix types when 

applied to both arbitrary sets and gced-closed sets. Furthermore, we find the determinant, the trace and the 

inverse of such matrices. To simplify these ideas, we employ domains such as the Gaussian integers domain and 

the domain of polynomials defined over finite fields. 
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Introduction 

 

An integer 𝑑 = 𝑝1
𝑎1𝑝2

𝑎2 . . . 𝑝𝑘
𝑎𝑘 , 𝑝𝑖  is prime, is an exponential divisor of 𝑚 = 𝑝1

𝑏1𝑝2
𝑏2 . . . 𝑝𝑘

𝑏𝑘 if 𝑎𝑖 ∣ 𝑏𝑖 for every 

1 ≤ 𝑖 ≤ 𝑘 and is denoted by 𝑑 ∣𝑒 𝑚. By convention, 1 ∣𝑒 1 and 1 is not an exponential divisor for every 𝑚 > 1. 

If 𝑛 and 𝑚 have the same prime factors, then they have a common exponential divisor. Let gced (𝑚, 𝑛) (resp. 

lcem(𝑚, 𝑛)) be the greatest common exponential divisor (resp. the least common exponential multiple) of two 

integers 𝑚 and 𝑛, aslo denoted by (𝑚, 𝑛)𝑒  (resp. [𝑚, 𝑛]𝑒). By convention, (1,1)𝑒 = [1,1]𝑒 = 1 and (1,𝑚)𝑒 and 

[1,𝑚]𝑒 do not exist for every 𝑚 > 1. If 𝑚 = 𝑝1
𝑏1𝑝2

𝑏2 . . . 𝑝𝑘
𝑏𝑘 and 𝑛 = 𝑝1

𝑐1𝑝2
𝑐2 . . . 𝑝𝑘

𝑐𝑘, then 

 

(𝑚, 𝑛)𝑒 = 𝑝1
𝑔𝑐𝑑(𝑏1,𝑐1)𝑝2

𝑔𝑐𝑑(𝑏2,𝑐2). . . 𝑝𝑘
𝑔𝑐𝑑(𝑏𝑘,𝑐𝑘) 

 

and 

 

[𝑚, 𝑛]𝑒 = 𝑝1
[𝑏1,𝑐1]𝑝2

[𝑏2 ,𝑐2]. . . 𝑝𝑘
[𝑏𝑘,𝑐𝑘] 

 

with [𝑏𝑖 , 𝑐𝑖] is the least common multiple of 𝑏𝑖 and 𝑐𝑖. Two integers 𝑚 = 𝑝1
𝑏1𝑝2

𝑏2 . . . 𝑝𝑘
𝑏𝑘 and 𝑛 = 𝑝1

𝑐1𝑝2
𝑐2 . . . 𝑝𝑘

𝑐𝑘 are 

exponentially coprime if gcd(𝑏𝑖 , 𝑐𝑖) = 1 for every 1 ≤ 𝑖 ≤ 𝑘. 

 

If 𝑇 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a well-ordered set of 𝑛 distinct positive integers with 𝑥1 < 𝑥2 <. . . < 𝑥𝑛, then the gcd 

(resp. lcm) matrix on 𝑇 is an 𝑛 × 𝑛 matrix defined as (𝑇) = gcd(𝑥𝑖 , 𝑥𝑗) (resp. [𝑇]𝑚×𝑚 = [𝑥𝑖 , 𝑥𝑗]. The 𝑛 × 𝑛 

power gcd (resp. power lcm) matrix on 𝑇 is (𝑇𝑟) = gcd(𝑥𝑖 , 𝑥𝑗)
𝑟
 (resp. [𝑇𝑟] = [𝑥𝑖 , 𝑥𝑗]

𝑟
), where 𝑟 is any real 
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number. A set 𝑇 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is said to be a factor closed (resp. a gcd-closed) set if 𝑥 is an element of 𝑇 for 

any divisor 𝑥 of 𝑥𝑖 (resp. if gcd(𝑥𝑖 , 𝑥𝑗) for all 𝑥𝑖 and 𝑥𝑗) in 𝑇.  

 

Smith (Smith, 1875) showed that if 𝑇 = {1,2, . . . , 𝑛}, then det(𝑇) = 𝜙(1)𝜙(2). . . 𝜙(𝑛) and det[𝑇] =
𝜙(1)𝜋(1)𝜙(2)𝜋(2). . . 𝜙(𝑛)𝜋(𝑛), where 𝜙 is Euler’s totient function and 𝜋 is a multiplicative function such that 

𝜋(𝑝𝑘) = −𝑝, 𝑝 is a prime number. Moreover Smith showed that his results are true for factor-closed sets. Beslin 

and Ligh (Beslin, 1989b), factorized the gcd matrices and showed that it is non-singular. In Beslin and Ligh 

(1989a,1992) factorized the gcd matrices if 𝑇 is a gcd-closed set over the domain of integers and computed their 

determinants. Bourque and Ligh (1992) extended Smith’s result on lcm matrices by showing that the determinant 

of the lcm matrix defined on a gcd-closed set 𝑇 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} is the product ∏ 𝑥𝑘
2𝑚

𝑘=1 𝛽𝑘 where 𝛽𝑘 =

∑ 𝑔𝑑∣𝑥𝑘
𝑑∤𝑥𝑡, 𝑥𝑡<𝑥𝑘

(𝑑), with the arithmetical function 𝑔 defined by 𝑔(𝑛) =
1

𝑛
∑ 𝜇𝑑∣𝑛 (𝑑) and the function 𝜇 is the well-

known Mobius function. Borque and Ligh (1995) conjectured that the lcm matrix on a gcd-closed set is 

invertible. In (Hong, 1999) Hong did systematic research on the conjecture of Bourque-Ligh and he showed that 

the Bourque-Ligh conjecture is true only for 𝑛 ≤ 7. Also, Hong proved that this conjecture is true for a certain 

class of lcm-closed sets, see (Hong, 2005). Hong showed that if 𝑛 ≤ 3, then for any lcm-closed set 𝑇 =
{𝑥1, 𝑥2, . . . , 𝑥𝑛}, the gcd matrix on 𝑇 divides the lcm matrix on 𝑇 in the ring 𝑀𝑛(𝐙) of the 𝑛 × 𝑛 matrices over the 

integers. For 𝑛 ≥ 4, there exists a lcm-closed set 𝑇 such that the gcd matrix on 𝑇 does not divide the lcm matrix 

on 𝑇 in the ring 𝑀𝑛(𝐙), see Hong (2002). Beslin and El-Kassar (1989) expanded the notion of gcd matrices and 

Smith’s determinant to Unique Factorization Domains (UFDs). Furthermore, there have been analogous 

adaptations of gcd and lcm matrices to Principal Ideal Domains (PIDs) and Euclidean domains (Eds). For further 

details, readers can consult Awad et al. (2020, 2023), as well as El-Kassar et al. (2009, 2010). 

 

A set 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} is called an exponential factor closed (resp. a gced-closed) set if the exponential 

divisor of every element of 𝑇 belongs to 𝑇 (resp. if (𝑥𝑖 , 𝑥𝑗)𝑒 ∈ 𝑇  for every 𝑥𝑖 , 𝑥𝑗  ∈ 𝑇). If 𝑇 is an exponential 

factor closed set of distinct positive integers that are arranged in increasing order, then the 𝑛 × 𝑛 matrix (𝑇)𝑒 

(resp. [𝑇]𝑒)= 𝑡𝑖𝑗 having 𝑡𝑖𝑗 = (𝑥𝑖 , 𝑥𝑗)𝑒 (resp. [𝑥𝑖 , 𝑥𝑗]𝑒), as its 𝑖𝑗𝑡ℎ entry is called the gced (resp. lcem) matrix 

defined on 𝑇. 

 

It is well known that (𝐙+\{1}, |𝑒) is a poset under the exponential divisibility relation but not a lattice, since the 

gced does not always exist. More details are given in the next section. Korkee and Haukkanen (2009) embedded 

this poset in a lattice and studied the lcem matrices as an analogue of the lcm matrices. Raza and Waheed, 

(2015a, 2015b, 2012) gave structure theorems and calculated the determinant of gced and lcem matrices defined 

on an ordered set 𝑇. Zeid et al. (2022) extended the gced matrices from the domain of natural integers to the 

unique factorization domain and gave the structure of these types of matrices defined on both arbitrary sets and 

gced-closed sets. 

 

In this paper, we study the lcem matrices as an analog of the gced matrices. Examples are given in the domains 

𝐙[𝑖] and 𝐙𝑝[𝑥], where 𝑝 is a prime integer, to describe what has been done. 

 

Throughout this paper, the following notations will be used 

 

• 𝐷 is a unique factorization domain (UFD) 

• 𝑝𝑖  is a prime element in 𝐷. 

• 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are positive integers. 

• 𝑧~𝑤 means 𝑧 and 𝑤 are two associates. 

• 𝑇 = 𝑥1, 𝑥2, … , 𝑥𝑛 is a finite ordered set (in increasing order) of nonzero, non-unit, and non-associate elements 

in 𝐷. 
 

 

Over Unique Factorization Domains  
 

As in the integer case, a non-zero element 𝑑 = 𝑝1
𝑎1𝑝2

𝑎2 . . . 𝑝𝑘
𝑎𝑘 in 𝐷 is an exponential divisor of 𝑚 = 𝑝1

𝑐1𝑝2
𝑐2 . . . 𝑝𝑘

𝑐𝑘 

if  𝑎𝑖 ∣ 𝑐𝑖 for every 1 ≤ 𝑖 ≤, denoted by 𝑑 ∣𝑒 𝑚. Note that a unit 𝑢 in 𝐷 is not an exponential divisor for any 

nonzero, non-unit element 𝑚 in 𝐷 and by convention 𝑢 ∣𝑒 𝑣 for any unit 𝑣 in 𝐷. Two elements 𝑎 and 𝑏 in 𝐷 are 

associates if 𝑎 = 𝑢𝑏, where 𝑢 is a unit in 𝐷. Two elements in 𝐷 have a common exponential divisor if and only if 

they have the same prime factors. By convention, (𝑢, 𝑣)𝑒 and [𝑢, 𝑣]𝑒 does not exist for any non-zero, non unit 

element 𝑎 in 𝐷. A subset 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} of 𝐷 is a gced-closed set if (𝑥𝑖 , 𝑥𝑗)𝑒 is also an element of 𝑇 for all 
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𝑥𝑖, 𝑥𝑗 in 𝑇, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For example, the subset 𝑇 = {1 + 3𝑖, −2 + 4𝑖, −1 + 7𝑖, −12 − 16𝑖} of 𝐙[𝑖]  is a gced-

closed set, while the set 𝑅 = {−2 + 4𝑖, −1 + 7𝑖, −12 − 16𝑖} is not. 

 

 

Exponential Convolution 

 

Consider the two functions 𝑓 and 𝑔 defined on 𝐷. Define the exponential convolution of 𝑓 and 𝑔 of a non-zero 

element 𝑚 = ∏ 𝑝𝑖
𝑐𝑖𝑘

𝑖=1  in 𝐷 as: 

 

(𝑓 ⊙ 𝑔)(𝑚) = ∑ .

𝑎1𝑏1=𝑐1

. . ∑ 𝑓

𝑎𝑘𝑏𝑘=𝑐𝑘

(𝑝1
𝑎1𝑝2

𝑎2 . . . 𝑝𝑘
𝑎𝑘)𝑔(𝑝1

𝑏1𝑝2
𝑏2 . . . 𝑝𝑘

𝑏𝑘). 

 

Using the Möbius inversion exponential formula, 

 

𝑔(𝑚) = ∑ 𝑓

𝑑|𝑒𝑚

(𝑑)𝜇(𝑒) (
𝑚

𝑑
) 

 

if 𝑓(𝑚) = ∑ 𝑔𝑑∣𝑒𝑚
(𝑑), and 𝜇(𝑒)(𝑢) = 1 and 𝜇(𝑒)(𝑚) = 𝜇(𝑐1)𝜇(𝑐2). . . 𝜇(𝑐𝑘). 

 

 

Ordering 

 

In our study, we consider the two particular domains, the domain of Gaussian integers 𝐙[𝑖] and the domain of 

polynomials over finite fields 𝐙𝑝[𝑥]. It is well known that these two domains are not ordered. We use a well-

defined linear ordering defined on these domains so that any two elements are comparable. 

 

 

Ordering in 𝐙[𝒊] 
 

Let 𝑇 = {𝑧1, 𝑧2, … , 𝑧𝑛} be a subset of 𝐙[𝑖]. Define an ordering on 𝑇 as follows: If 𝑞(𝑧𝑖) < 𝑞(𝑧𝑗), then 𝑧𝑖 < 𝑧𝑗. If 

𝑞(𝑧𝑖) = 𝑞(𝑧𝑗), where 𝑧𝑖~𝑎 + 𝑖𝑏, and 𝑧𝑗~𝑐 + 𝑖𝑑, such that 𝑎 𝑏, 𝑐, 𝑑 ≥ 0, then 𝑧𝑖 < 𝑧𝑗 if 𝑏 < 𝑑. The valuation 

function 𝑞 is defined as 𝑞(𝑎 + 𝑖𝑏) = 𝑎2 + 𝑏2. In this case, the relation < is a well-defined linear ordering on 𝑇. 

 

 

Ordering in 𝐙𝒑[𝒙] 

 

Let 𝑇 = {𝑓1, 𝑓2, … , 𝑓𝑛} be a subset of 𝐙𝑝[𝑥], where 𝑝 is a prime integer. Define an ordering on 𝑇 as follows: if 

deg(𝑓𝑖) < deg(𝑓𝑗), then 𝑓𝑖 < 𝑓𝑗 and if deg(𝑓𝑖) = deg(𝑓𝑗) with 𝑓𝑖 = 𝑥𝑛  + 𝑎𝑛−1𝑥
𝑛−1+. . . +𝑎1𝑥 + 𝑎0 and 

𝑓𝑗 = 𝑥𝑛  + 𝑏𝑛−1𝑥
𝑛−1+. . . +𝑏1𝑥 + 𝑏0 with 0 ≤ 𝑎𝑗 , 𝑏𝑗 ≤ 𝑝 − 1, then 𝑓𝑖(𝑥) < 𝑓𝑗(𝑥) if 𝑎𝑗0 < 𝑏𝑗0 , where 𝑗0 is the 

smallest index 𝑗 such that 𝑎𝑗 ≠ 𝑏𝑗 . Again, the relation < is a well-defined linear ordering on 𝑇. 

Note that an non-zero element 𝑎 in 𝐷 is positive if 0 < 𝑎, where 0 is the zero element in 𝐷 and < is the ordering 

defined on 𝐷. 
 

 

LCEM Matrices Over Unique Factorization Domains 
 

Let 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a subset of 𝐷. Again, the lcem matrix [𝑇](𝑒) defined on 𝑇  is the 𝑛 × 𝑛 matrix whose 

𝑖𝑗𝑡ℎ entry is (𝑥𝑖𝑗)(𝑒) = [𝑥𝑖 , 𝑥𝑗]𝑒 , the least common exponential multiple of 𝑥𝑖 and 𝑥𝑗 in D. Let 

𝑅 = {𝑦1, 𝑦2, … , 𝑦𝑚} be the minimal gced-closed set containing 𝑇 (gced closure of 𝑇), such that 𝑦1 < 𝑦2 < ⋯ <
𝑦𝑚. Define the function 𝑓(𝑤) as follows: 

 

𝑓(𝑤) = ∑ .

𝑎1𝑏1=𝑐1

. . ∑
1

𝑝1
𝑎1𝑝2

𝑎2 . . . 𝑝𝑟
𝑎𝑟

𝑎𝑟𝑏𝑟=𝑐𝑟

𝜇(𝑒)(𝑝1
𝑏1𝑝2

𝑏2 . . . 𝑝𝑟
𝑏𝑟), 

 

where 𝑤 = 𝑝1
𝑐1𝑝2

𝑐2 . . . 𝑝𝑟
𝑐𝑟 ∈ 𝐷. 
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Theorem 3.1.  Let 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a gced-closed set in 𝐷. Then, ∑

(

 
 
∑ 𝑔𝑑|𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 

𝑥𝑘|𝑒(𝑥𝑖,𝑥𝑗)𝑒
=

∑ 𝑔𝑑|𝑒(𝑥𝑖,𝑥𝑗)𝑒
(𝑑). 

 

Proof. Let 𝑑 ∣𝑒 (𝑥𝑖 , 𝑥𝑗)𝑒 and let 𝑆 = {𝑥𝑘1 , 𝑥𝑘2 , . . . , 𝑥𝑘𝑟} be an ordered subset of 𝑇 such that 𝑥𝑘𝑚 ∣𝑒 (𝑥𝑖 , 𝑥𝑗)𝑒 and 

𝑑 ∣𝑒 𝑥𝑘𝑚  for every 1 ≤ 𝑚 ≤ 𝑟. Then 𝑑 ∣𝑒 (𝑥𝑘1 , 𝑥𝑘2 , . . . , 𝑥𝑘𝑟)𝑒
 which is an element in 𝑇 as 𝑇 is a gced-closed set. 

Since 𝑇 is an ordered set, then (𝑥𝑘1 , 𝑥𝑘2 , . . . , 𝑥𝑘𝑟)𝑒
= 𝑥𝑘1 . But 𝑑 ∣ 𝑥𝑘1and 𝑑 ∤𝑒 𝑥𝑟  whenever 𝑥𝑟 < 𝑥𝑘1  as 𝑥𝑘1 is 

the minimal element in 𝑆. So, each divisor of (𝑥𝑖 , 𝑥𝑗)𝑒 is found once in the sum. Hence, 

 

∑

(

 
 
 
 

∑ 𝑔
𝑑|𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 

𝑥𝑘|𝑒(𝑥𝑖,𝑥𝑗)𝑒

= ∑ 𝑔

𝑑|𝑒(𝑥𝑖,𝑥𝑗)𝑒

(𝑑). 

 

Theorem 3.2.  [𝑇](𝑒) = 𝐶𝛷𝐶𝑡, where the 𝑛 × 𝑚 matrix 𝐶 = (𝑐𝑖𝑗) is defined as: 𝑐𝑖𝑗 = {
𝑥𝑖 , if 𝑦𝑗 ∣

𝑒
𝑥𝑖

0, else
, and 𝛷 is 

an 𝑚 ×𝑚 diagonal matrix define as: 𝛷 = 𝑑𝑖𝑎𝑔

(

 
 
∑ 𝑓𝑑|𝑒𝑦1

(𝑑), ∑ 𝑓𝑑|𝑒𝑦2
𝑑∤𝑒𝑦1

(𝑑), . . . , ∑ 𝑓𝑑|𝑒𝑦𝑚
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦𝑚

(𝑑)

)

 
 
. 

 

Proof. The 𝑖𝑗𝑡ℎ entry of 𝐶𝛷𝐶𝑡 is 

 

(𝐶𝛷𝐶𝑡)𝑖𝑗 =∑𝑐𝑖𝑘

𝑚

𝑘=1

(

 
 
 
 

∑ 𝑓
𝑑|𝑒𝑦𝑘
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦𝑘

(𝑑)

)

 
 
 
 

𝑐𝑗𝑘 = ∑ 𝑥𝑖
𝑦𝑘|𝑒𝑥𝑖
𝑦𝑘|𝑒𝑥𝑗

𝑥𝑗

(

 
 
 
 

∑ 𝑓
𝑑|𝑒𝑦𝑘
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦𝑘

(𝑑)

)

 
 
 
 

= 𝑥𝑖𝑥𝑗 ∑

(

 
 
 
 

∑ 𝑓
𝑑|𝑒𝑦𝑘
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦𝑘

(𝑑)

)

 
 
 
 

𝑦𝑘|𝑒(𝑥𝑖,𝑥𝑗)𝑒

= 𝑥𝑖𝑥𝑗 ∑ 𝑓

𝑑|𝑒(𝑥𝑖,𝑥𝑗)𝑒

(𝑑).

 

 

By Möbius inversion exponential formula we have, 

 

∑ 𝑓

𝑑|𝑒𝑚

(𝑑) =
1

𝑚
. 

 

Hence, 

 

(𝐶𝛷𝐶𝑡)𝑖𝑗 =
𝑥𝑖𝑥𝑗

(𝑥𝑖 , 𝑥𝑗)𝑒

= [𝑥𝑖 , 𝑥𝑗]𝑒. 

 

 

Theorem 3.3. The determinant of the matrix [T](e) is given by  
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𝑑𝑒𝑡([𝑇](𝑒)) = ∑ (𝑑𝑒𝑡(𝐶(𝑘1,𝑘2,...,𝑘𝑛)))
2

1≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

∏

(

 
 
 
 
 

∑ 𝑓
𝑑|𝑒𝑦𝑘𝑖
𝑑∤𝑒𝑦𝑘𝑟
𝑦𝑘𝑟<𝑦𝑘𝑖

(𝑑)

)

 
 
 
 
 

𝑛

𝑖=1

, 

 

where 𝐶(𝑘1,𝑘2,...,𝑘𝑛) is the submatrix of 𝐶 consisting of 𝑘1
𝑡ℎ, 𝑘2

𝑡ℎ, . . . , 𝑘𝑛
𝑡ℎ columns of 𝐶. 

 

Proof. Let 𝐷𝑒  be an extension field of 𝐷(𝑥), the field of fractions of 𝐷, in which 
√
∑ 𝑓𝑑∣𝑒𝑦𝑘𝑖

𝑑∤𝑒𝑦𝑘𝑟
𝑦𝑘𝑟<𝑦𝑘𝑖

(𝑑) exists.  

 

[𝑇](𝑒) = 𝐶𝛷𝐶𝑡 = 𝐸𝐸𝑡, where 𝐸 = 𝐶𝛷
1

2. Apply the Cauchy-Binet formula to get 

 

𝑑𝑒𝑡([𝑇](𝑒)) = ∑ (𝑑𝑒𝑡(𝐸(𝑘1,𝑘2,...,𝑘𝑛)))

1≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

(𝑑𝑒𝑡(𝐸(𝑘1,𝑘2,...,𝑘𝑛)
𝑡 ))

  = ∑ (𝑑𝑒𝑡𝐸(𝑘1,𝑘2,...,𝑘𝑛))
2

1≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

,
 

 

where 𝐸(𝑘1,𝑘2,...,𝑘𝑛) is the submatrix of 𝐸 consisting of 𝑘1
𝑡ℎ, 𝑘2

𝑡ℎ, . . . , 𝑘𝑛
𝑡ℎ columns of 𝐸. Moreover, 

 

𝑑𝑒𝑡𝐸(𝑘1,𝑘2,...,𝑘𝑛) = 𝑑𝑒𝑡𝐶(𝑘1,𝑘2,...,𝑘𝑛)

√
  
  
  
  
  
  
  
 

∏

(

 
 
 
 
 

∑ 𝑓
𝑑∣𝑒𝑦𝑘𝑖
𝑑∤𝑒𝑦𝑘𝑟
𝑦𝑘𝑟<𝑦𝑘𝑖

(𝑑)

)

 
 
 
 
 

𝑛

𝑖=1

. 

 

Hence, 

 

𝑑𝑒𝑡([𝑇](𝑒)) = ∑ (𝑑𝑒𝑡𝐶(𝑘1,𝑘2,...,𝑘𝑛))
2

1≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

∏

(

 
 
 
 
 

∑ 𝑓
𝑑|𝑒𝑦𝑘𝑖
𝑑∤
𝑒
𝑦𝑘𝑟

𝑦𝑘𝑟<𝑦𝑘𝑖

(𝑑)

)

 
 
 
 
 

𝑛

𝑖=1

. 

  
 

Remark 1.  If < is the ordering defined on 𝐷, then ∑ 𝑓𝑑∣𝑒𝑦𝑘𝑖
𝑑∤𝑒𝑦𝑘𝑟
𝑦𝑘𝑟<𝑦𝑘𝑖

(𝑑) > 0. 

     
Example 3.1.  Let 𝑇 = {−2 + 4𝑖, −1 + 7𝑖, −12 − 16𝑖} which is not gcd-closed set in 𝐙[𝑖]. Its gcd-closure is  

𝑅 = {1 + 3𝑖, −2 + 4𝑖, −1 + 7𝑖, −12 − 16𝑖}. The lcm matrix [𝑇](𝑒) defined on 𝑇 is: 

 

[𝑇](𝑒) = [
−2 + 4𝑖 −8 + 6𝑖 −12 − 16𝑖
−8 + 6𝑖 −1 + 7𝑖 −12 − 16𝑖
−12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖

]. 

 

The matrix 𝐶 is 
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𝐶 = [
−2 + 4𝑖 −2 + 4𝑖 0 0
−1 + 7𝑖 0 −1 + 7𝑖 0
−12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖

] , 

 

 

And 

 

𝛷 =

[
 
 
 
 
 
 
 

1

1 + 3𝑖
0 0 0

0
−1

5
+

𝑖

10
0 0

0 0
−3

25
+
4𝑖

25
0

0 0 0
19

100
+
2𝑖

25]
 
 
 
 
 
 
 

. 

 

Then,  

 

𝐶𝛷𝐶𝑡 = [
−2 + 4𝑖 −8 + 6𝑖 −12 − 16𝑖
−8 + 6𝑖 −1 + 7𝑖 −12 − 16𝑖
−12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖

] = [𝑇](𝑒). 

 

det[𝑇](𝑒) = |
−2 + 4𝑖 −2 + 4𝑖 0
−1 + 7𝑖 0 −1 + 7𝑖
−12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖

|

2

 × ∑ 𝑓

𝑑|𝑒𝑦1

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦2
𝑑∤𝑒𝑦1

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦3
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦3

(𝑑)

 + |
−2 + 4𝑖 −2 + 4𝑖 0
−1 + 7𝑖 0 0
−12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖

|

2

∑ 𝑓

𝑑|𝑒𝑦1

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦2
𝑑∤𝑒𝑦1

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦4
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦4

(𝑑)

 + |
−2 + 4𝑖 0 0
−1 + 7𝑖 −1 + 7𝑖 0
−12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖

|

2

∑ 𝑓

𝑑|𝑒𝑦1

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦3
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦3

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦4
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦4

(𝑑)

 + |
−2 + 4𝑖 0 0

0 −1 + 7𝑖 0
−12 − 16𝑖 −12 − 16𝑖 −12 − 16𝑖

|

2

∑ 𝑓
𝑑|𝑒𝑦2
𝑑∤𝑒𝑦1

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦3
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦3

(𝑑) ∑ 𝑓
𝑑|𝑒𝑦4
𝑑∤𝑒𝑦𝑟
𝑦𝑟<𝑦4

(𝑑)

= 2968 − 5176𝑖.

 

        
Corollary 3.4.  Let 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a gced-closed subset of 𝐷. Then, 

 

𝑑𝑒𝑡[𝑇](𝑒) =∏𝑥𝑘
2

𝑛

𝑘=1

(

 
 
 
 

∑ 𝑓
𝑑|𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 

. 

 

Proof. Since 𝑇 is is gced-closed set, the matrix 𝐶 is lower triangular with diagonal (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑛. As a result, 
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𝑑𝑒𝑡[𝑇](𝑒) =∏𝑥𝑘
2

𝑛

𝑘=1

(

 
 
 
 

∑ 𝑓
𝑑|𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 

. 

 

  
Corollary 3.5.  Let 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a subset of 𝐷, then 𝑡𝑟([𝑇](𝑒)) = ∑ 𝑥𝑖

𝑛
𝑖=1 . 

 

Theorem 3.6.  Let 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a subset of 𝐷. Then, 

 

𝑑𝑒𝑡([𝑇](𝑒)) =∏𝑥𝑘
2

𝑛

𝑘=1

(

 
 
 
 

∑ 𝑓
𝑑|𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 

 

 

if and only if 𝑇 is gced-closed. 

 

Proof. The necessary condition follows from Corollary 3.4. Now, assume that 𝑇 is not a gced-closed set and the 

equality holds. Theorem 3.3 gives 

 

𝑑𝑒𝑡([𝑇](𝑒)) = ∑ (𝑑𝑒𝑡𝐶(𝑘1,𝑘2,...,𝑘𝑛))
2

1≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

∏

(

 
 
 
 
 

∑ 𝑓
𝑑|𝑒𝑦𝑘𝑖
𝑑∤𝑒𝑦𝑘𝑟
𝑦𝑘𝑟<𝑦𝑘𝑖

(𝑑)

)

 
 
 
 
 

𝑛

𝑖=1

. 

 

This sum runs over the all combinations of the 𝑘𝑖
𝑡ℎ columns of the matrix 𝐶, where 1 ≤ 𝑖 ≤ 𝑛. In each 

combination we get a new term in this sum, as 𝑦𝑘𝑖  related to the chosen column 𝑘𝑖. Since 𝑇 is a subset of 𝑅, then 

 

𝑑𝑒𝑡([𝑇](𝑒)) =∏

(

 
 
 
 

∑ 𝑓
𝑑∣𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 𝑛

𝑘=1

+ 𝑠, 

 

where 𝑠 > 0. Consequently, 

 

𝑑𝑒𝑡([𝑇](𝑒)) >∏

(

 
 
 
 

∑ 𝑓
𝑑∣𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 𝑛

𝑘=1

 

 

which contradicts the necessary condition that equality holds.             
 

 

Inverse of the LCEM Matrix 

 

Let 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a gced-closed subset of 𝐷 and let the 𝑛 × 𝑛 matrix 𝐶 = (𝑐𝑖𝑗) be defined as 
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𝑐𝑖𝑗 = {
𝑥𝑖 , if 𝑦𝑗|𝑒𝑥𝑖
0, else

 

 

Theorem 3.1.1.  The inverse of 𝐶 is the 𝑛 × 𝑛 matrix 𝑊 = (𝑤𝑖𝑗) with 

 

𝑤𝑖𝑗 =

{
 
 

 
 
1

𝑥𝑗
∑ 𝜇(𝑒)

𝑑|𝑒
𝑥𝑖
𝑥𝑗

𝑑∤𝑒
𝑥𝑟
𝑥𝑗

, 𝑥𝑟<𝑥𝑖

(𝑑), if 𝑥𝑗|𝑒𝑥𝑖

0, else

. 

 

Proof. The 𝑖𝑗𝑡ℎ entry of 𝐶𝑊 is given by 

 

(𝑐𝑤)𝑖𝑗 =∑𝑐𝑖𝑘

𝑛

𝑘=1

𝑤𝑘𝑗 = ∑
𝑥𝑖
𝑥𝑗𝑥𝑘∣𝑒𝑥𝑖

𝑥𝑗∣𝑒𝑥𝑘

(

 
 
 
 
 
 
 

∑ 𝜇(𝑒)

𝑑∣𝑒
𝑥𝑘
𝑥𝑗

𝑑∤𝑒
𝑥𝑟
𝑥𝑗

𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 
 
 
 

=
𝑥𝑖
𝑥𝑗

∑

(

 
 
 
 
 
 
 

∑ 𝜇(𝑒)

𝑑∣𝑒
𝑥𝑘
𝑥𝑗

𝑑∤𝑒
𝑥𝑟
𝑥𝑗

𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 
 
 
 

𝑥𝑘
𝑥𝑗
∣𝑒
𝑥𝑖
𝑥𝑗

. 

 

A similar argument to that given in Theorem 3.3, 

 

∑

(

 
 
 
 
 
 
 

∑ 𝜇(𝑒)

𝑑∣𝑒
𝑥𝑘
𝑥𝑗

𝑑∤𝑒
𝑥𝑟
𝑥𝑗

𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 
 
 
 

𝑥𝑘
𝑥𝑗
∣𝑒
𝑥𝑖
𝑥𝑗

= ∑ 𝜇(𝑒)

𝑑∣𝑒
𝑥𝑖
𝑥𝑗

(𝑑). 

 

Therefore, 

 

𝑥𝑖
𝑥𝑗
∑ 𝜇(𝑒)

𝑑∣𝑒
𝑥𝑖
𝑥𝑗

(𝑑) =
𝑥𝑖
𝑥𝑗
𝜇2 (

𝑥𝑖
𝑥𝑗
) = {

1, if 𝑥𝑗 = 𝑥𝑖
0, else

. 

 

   
Theorem 3.1.2.  The inverse of the lcem matrix [𝑇](𝑒) is the matrix [𝑀](𝑒) = (𝑚𝑖𝑗)(𝑒) which is defined as: 

 

(𝑚𝑖𝑗) =
1

𝑥𝑖𝑥𝑗
∑

(

 
 
 
 

∑ 𝜇(𝑒)

𝑑∣𝑒𝑥𝑘 𝑥𝑖⁄

𝑑∤𝑒𝑥𝑟 𝑥𝑖⁄
𝑥𝑟<𝑥𝑘

(𝑑)
1

∑ 𝑔𝑑∣𝑒𝑥𝑘
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑘

(𝑑)
∑ 𝜇(𝑒)

𝑑∣𝑒𝑥𝑘 𝑥𝑗⁄

𝑑∤𝑒𝑥𝑟 𝑥𝑗⁄

𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 

𝑥𝑖∣𝑒𝑥𝑘
𝑥𝑗∣𝑒𝑥𝑘

. 

 

Proof. [𝑀](𝑒) = [𝑇](𝑒)
−1 = (𝐶𝛷𝐶𝑡)−1 = 𝑊𝑡𝛷−1𝑊, where 𝑊 = 𝐶−1 and 
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𝛷−1 = 𝑑𝑖𝑎𝑔

(

 
 1

∑ 𝑓𝑑∣𝑒𝑥1
(𝑑)
,

1

∑ 𝑓𝑑∣𝑒𝑥2
𝑑∤𝑒𝑥1

(𝑑)
, . . . ,

1

∑ 𝑓𝑑∣𝑒𝑥𝑛
𝑑∤𝑒𝑥𝑟
𝑥𝑟<𝑥𝑛

(𝑑)

)

 
 

. 

 

So, 

 

𝑚𝑖𝑗 = (𝑊𝑡𝛷−1𝑊)𝑖𝑗 =∑𝑤𝑘𝑖

𝑛

𝑘=1

1

∑ 𝑓𝑑∣𝑒𝑥𝑘
𝑑∤
𝑒
𝑥𝑟

𝑥𝑟<𝑥𝑘

(𝑑)
𝑤𝑘𝑗

=
1

𝑥𝑖𝑥𝑗
∑

(

 
 
 
 
 
 
 

∑ 𝜇(𝑒)

𝑑∣𝑒
𝑥𝑘
𝑥𝑖

𝑑∤𝑒
𝑥𝑟
𝑥𝑖

𝑥𝑟<𝑥𝑘

(𝑑)
1

∑ 𝑔𝑑∣𝑒𝑥𝑘
𝑑∤
𝑒
𝑥𝑟

𝑥𝑟<𝑥𝑘

(𝑑)
∑ 𝜇(𝑒)

𝑑∣𝑒
𝑥𝑘
𝑥𝑗

𝑑∤𝑒
𝑥𝑟
𝑥𝑗

𝑥𝑟<𝑥𝑘

(𝑑)

)

 
 
 
 
 
 
 

𝑥𝑖∣𝑒𝑥𝑘
𝑥𝑗∣𝑒𝑥𝑘

.

 

                     
  

Example 3.1.1.  Let 𝑇 = {𝑥(𝑥 + 1), 𝑥(𝑥 + 1)2, 𝑥2(𝑥 + 1)2} which is gced-closed set in 𝐙2[𝑥]. The lcem matrix 

defined on 𝑇 is: 

 

[𝑇](𝑒) = [

𝑥(𝑥 + 1) 𝑥(𝑥 + 1)2 𝑥2(𝑥 + 1)2

𝑥(𝑥 + 1)2 𝑥(𝑥 + 1)2 𝑥2(𝑥 + 1)2

𝑥2(𝑥 + 1)2 𝑥2(𝑥 + 1)2 𝑥2(𝑥 + 1)2
]. 

  

Then,  

 

𝑚11 =
1

𝑥2(𝑥 + 1)2
(𝜇(𝑒)(𝑥(𝑥 + 1))

1

𝑓(𝑥(𝑥 + 1))
𝜇(𝑒)(𝑥(𝑥 + 1))

+𝜇(𝑒)(𝑥(𝑥 + 1)2)
1

𝑓(𝑥(𝑥 + 1)2)
𝜇(𝑒)(𝑥(𝑥 + 1)2)

+[𝜇(𝑒)(𝑥2(𝑥 + 1)) + 𝜇(𝑒)(𝑥2(𝑥 + 1)2)]
1

𝑓(𝑥2(𝑥 + 1)) + 𝑓(𝑥2(𝑥 + 1)2)
×

[𝜇(𝑒)(𝑥2(𝑥 + 1)) + 𝜇(𝑒)(𝑥2(𝑥 + 1)2)])

=
1

𝑥2(𝑥 + 1)
.

 

 

𝑚12 =
1

𝑥2(𝑥 + 1)3
(𝜇(𝑒)(𝑥(𝑥 + 1)2)

1

𝑓(𝑥(𝑥 + 1)2)
𝜇(𝑒)(𝑥(𝑥 + 1))

+[𝜇(𝑒)(𝑥2(𝑥 + 1)) + 𝜇(𝑒)(𝑥2(𝑥 + 1)2)]
1

𝑓(𝑥2(𝑥 + 1)) + 𝑓(𝑥2(𝑥 + 1)2)
𝜇(𝑒)(𝑥2(𝑥 + 1)))

= −
(𝑥 + 1)2

𝑥2(𝑥 + 1)3
=

1

𝑥2(𝑥 + 1)
.

 

 

𝑚13 =
1

𝑥3(𝑥 + 1)3
[𝜇(𝑒)(𝑥2(𝑥 + 1)) + 𝜇(𝑒)(𝑥2(𝑥 + 1)2)]

1

𝑓(𝑥2(𝑥 + 1)) + 𝑓(𝑥2(𝑥 + 1)2)
𝜇(𝑒)(𝑥(𝑥 + 1))

= 0

 

 

Completing the computation, we get 
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[𝑀](𝑒) =

[
 
 
 
 
 
 

1

𝑥2(𝑥 + 1)

1

𝑥2(𝑥 + 1)
0

1

𝑥2(𝑥 + 1)

𝑥2 + 𝑥 + 1

𝑥2(𝑥 + 1)3
1

𝑥(𝑥 + 1)3

0
1

𝑥(𝑥 + 1)3
1

𝑥2(𝑥 + 1)3]
 
 
 
 
 
 

. 

  

 

Conclusion  
 

In conclusion, the lcem matrices defined on gced closed and non-gced closed sets over a unique factorization 

domain 𝐷 were considered. A complete characterization of their structure, determinant, trace, and inverse was 

given. Furthermore, the work done in the literature used the classical domain (domain of natural integers), which 

is an example of a UFD and therefore the previous research can be viewed a special case with the domain of 

integers representing our chosen UFD. 
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