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Abstract: In this research paper, we introduce the concept of partial metric spaces of hyperbolic type. When it 

comes to hyperbolic spaces, they are mostly studied in the context of metric spaces. A partial metric space is a 

generalization of a metric space, where self-distance is not necessarily zero. This concept became particularly 

interesting when Kumar et al. (2017) introduced and studied convex partial metric spaces. His result were useful 

in defining partial metric spaces of hyperbolic type, which is the kickoff point of our paper. After this, we focus 

our study in providing a proof of the existence of a fixed point for a non-self-mapping of a specific contracting 

type that was first introduced by Ćirić (2006). Our result is a generalization of the results of Ćirić and other cited 

authors. In the end an example is provided. This example serves to illustrate the applicability of our fixed point 

theorem and shows that results from metric spaces of hyperbolic type can be extended to partial metric spaces of 

hyperbolic type.  
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Introduction 

 

Fix point theory is a branch of mathematics that arouses interest with its various applications in different fields 

such as nonlinear analysis, integral and differential equations, dynamic systems, fractals etc. The Banach 

Contraction Principle is well known as a useful tool with wide applications. It states that if (𝑋, 𝑑) is a complete 

metric space, and the self- mapping 𝑇: 𝑋 → 𝑋 satisfies 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where 0 < 𝜆 < 1, 

then 𝑇 has a unique fixed point. This classical theorem has been generalized and studied extensively. Ćirić 

(1974) introduced and studied self-mappings on 𝐾, a nonempty closed subset of 𝑋, which satisfies: 

 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆 max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}, where 0 < 𝜆 < 1. 
 

Whereas Boyd and Wong (1969) investigated mappings that satisfy the condition: 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(𝑑(𝑥, 𝑦)), 

where 𝜑: 𝑅+ → 𝑅+, called a comparison function, is upper semi-continuous from the right and satisfies the 

condition 𝜑(𝑡) < 𝑡 for all 𝑡 > 0. Subsequently, Ćirić (2006) extended these finding to non- self-mappings and 

proved some theorems related to fixed points on hyperbolic type metric spaces. Izadi demonstrated in 2012 that 

Ćirić’s findings are also applicable to quasi-metric spaces of hyperbolic type.  

 

Partial metric spaces, as a generalization of metric spaces, were introduced by Matthews (1992). In these type of 

spaces, the distance from a point to itself might not always be zero. In other words, there may be self-distances 

𝑑(𝑥, 𝑥) that may not be zero. In generalizing the metric space in this way some of its properties may be lost, but 

Matthews proved that the well- known Banach Contracting Principle can be extended to partial metric spaces as 

well. Since then partial metric spaces, their properties, fixed points and their applications have been the focus of 

many studies, especially in the field of computer science.  Refer for example to Alghamdi et al. (2013) and Han 

et al. (2017) and Bugajewski et al. (2022) and the references there in. 

http://www.isres.org/
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In recent years the study of partial metric spaces has shifted to the study of convexity. In 2017, Kumar et al. 

studied some properties of metrically convex partial metric spaces and proved some results on fixed points in 

these spaces. He did so by generalizing the following definition: 

 

Definition 1.1. (Assad & Kirk, 1972- Menger) A metric space (𝑋, 𝑑) is metrically convex if 𝑋 is such that for 

each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 there exists 𝑧 ∈ 𝑋, 𝑥 ≠ 𝑧 ≠ 𝑦 such that: 

 

𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) = 𝑑(𝑥, 𝑦). 
 

If (𝑋, 𝑑) is a metrically convex metric space and 𝑥, 𝑦 ∈ 𝑋, a metric segment is defined by: 

 

𝑠𝑒𝑔[𝑥, 𝑦] ≔ {𝑧 ∈ 𝑋: 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) = 𝑑(𝑥, 𝑦)}. 
 

In our paper we will be referring to a type of metrically convex metric spaces, as defined by Kirk (1982). 

 

Definition 1.2. (Kirk, 1982)  A metric space (𝑋, 𝑑)  is called a metric space of hyperbolic type if it contains a 

family 𝐿 of metric segments such that: 

 

a) each two points 𝑥, 𝑦 ∈ 𝑋 are endpoints of exactly one member 𝑠𝑒𝑔[𝑥, 𝑦] ∈ 𝐿, and 

b) if 𝑢, 𝑥, 𝑦 ∈ 𝑋 and 𝑧 ∈ 𝑠𝑒𝑔[𝑥, 𝑦] is such that 𝑑(𝑥, 𝑧) = 𝜆𝑑(𝑥, 𝑦) for 𝜆 ∈ [0,1], then𝑑(𝑢, 𝑧) ≤ (1 −
𝜆)𝑑(𝑢, 𝑥) + 𝜆𝑑(𝑢, 𝑦) 

 

The purpose of our paper is to generalize this concept for partial metric spaces and show that Ćirić (2006) fixed 

point results can be extended to the partial metric space of hyperbolic type. Thus we demonstrate that despite the 

generalization certain properties of metric spaces of hyperbolic type can be preserved. 

  

With this in mind we start our paper by recalling some useful basic definitions from partial metric spaces and by 

using some preliminary results from Kumar et al. (2017).  In the main section of the paper we define the partial 

metric space of hyperbolic type and prove a fixed point theorem on this type of partial metric space. Our result 

is a generalization of Ćirić (2006) and Izadi (2012) results. 

 

 

Preliminaries  
 

We will start by recalling some basic definitions and properties of partial metric spaces.  

 

Definition 2.1. (Matthews, 1992) Let 𝑋 be a nonempty set. A partial metric is a function 𝑝: 𝑋 × 𝑋 → 𝑅+ such 

that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following axioms are satisfied: 

 

p1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦), 

p2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦), 

p3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥), 

p4) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦). 

 

The pair (𝑋, 𝑝) is called partial metric space and 𝑝(𝑥, 𝑥) is called size of 𝑥. A closer look on these axioms 

reveals that if 𝑥 = 𝑦 then 𝑝(𝑥, 𝑦) might not be zero. 

 

According to Matthews (1994), every partial metric 𝑝 induces a metric 𝑑𝑝: 𝑋 × 𝑋 → 𝑅+ defined by:  

 

𝑑𝑝(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦) − 𝑝(𝑥, 𝑥) − 𝑝(𝑦, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 

 

An example of a partial metric space is (𝑋, 𝑝) with 𝑋 = 𝑅+and 𝑝(𝑎, 𝑏) = max{𝑎, 𝑏} , ∀ 𝑎, 𝑏 ≥ 0. In this case the 

derived metric is 𝑑𝑝(𝑎, 𝑏) = |𝑎 − 𝑏|. For other examples see Bukatin et al. (2009) and Matthews (1994). 

 

Definition 2.2. (Matthews, 1994) Let (𝑋, 𝑝) be a partial metric space and {𝑥𝑛} a sequence in 𝑋. Then  

 

a) {𝑥𝑛} converges to 𝑥 ∈ 𝑋 if and only if lim𝑛→∞ 𝑝(𝑥𝑛 , 𝑥) = 𝑝(𝑥, 𝑥). 

b) {𝑥𝑛} is called a Cauchy sequence if and only if lim𝑛→∞ 𝑝(𝑥𝑛 , 𝑥𝑚) exists and is finite. 
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c) if  every Cauchy sequence {𝑥𝑛} converges to 𝑥 ∈ 𝑋, meaning that lim𝑛→∞ 𝑝(𝑥𝑛 , 𝑥𝑚) = 𝑝(𝑥, 𝑥), then (𝑋, 𝑝) 

is said to be a complete partial metric space. 

 

It should be noted that the limit of a sequence in partial metric space is not necessary unique. 

 

Each partial metric 𝑝 on 𝑋 generates a 𝑇0- topology 𝑇(𝑝) on 𝑋 which has as a base the family of open 𝑝- balls 

{𝐵𝑝(𝑥, 𝜀): 𝑥 ∈ 𝑋, 𝜀 > 0}, where 𝐵𝑝(𝑥, 𝜀) = {𝑦 ∈ 𝑋: 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥) + 𝜀} for all 𝑥 ∈ 𝑋 and 𝜀 > 0. 

 

Definition 2.3. Let (𝑋, 𝑝) be a partial metric space and 𝐴 a subset of 𝑋. 

 

1) 𝐴 is called an open set if for 𝑥 ∈ 𝐴 there exists 𝐵𝑝(𝑥, 𝜀) such that 𝐵𝑝(𝑥, 𝜀) ⊂ 𝐴. 

2) 𝐴 is called a closed set if its complement is open.  

3) A point 𝑥 ∈ 𝐴 is called a limit point of 𝐴 if there exists a sequence {𝑥𝑛} ⊂ 𝐴 such that lim𝑛→∞ 𝑝(𝑥𝑛 , 𝑥) =
𝑝(𝑥, 𝑥). The set 𝐴 together with all its limit points is called closure of 𝐴.   

4) The boundary of 𝐴 is denoted by 𝜕𝐴 and is the intersection of the closure of 𝐴 with the closure of its 

complement.  

5) 𝐴 is called bounded if there exists 𝑀 > 0 such that 𝑝(𝑥, 𝑦) ≤ 𝑀, for every 𝑥, 𝑦 ∈ 𝐴.  

6) If 𝐴 is bounded then 𝑑𝑖𝑎𝑚(𝐴) = sup{𝑝(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝐴} < +∞ is called the diameter of 𝐴. 

 

Next we turn to the results of Kumar et al. (2017) for the definition and some useful properties of metrically 

convex partial metric spaces. 

 

Definition 2.4. (Kumar et al., 2017) A partial metric space (𝑋, 𝑝) is said to be metrically convex if the 

corresponding metric space (𝑋, 𝑑𝑝) is metrically convex.  

 

If (𝑋, 𝑝) is a metrically convex partial metric space and 𝑥, 𝑦 ∈ 𝑋, then following the results of Kumar et al. 

(2017) we can define a metric segment (isometric image of a real line segment) to be: 

 

𝑠𝑒𝑔[𝑥, 𝑦] ≔ {𝑧 ∈ 𝑋: 𝑝(𝑥, 𝑦) + 𝑝(𝑧, 𝑧) = 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦)}. 
 

As an example, we revisit the partial metric space (𝑅+, 𝑝), where 𝑝(𝑎, 𝑏) = max{𝑎, 𝑏} , ∀ 𝑎, 𝑏 ∈ 𝑅+. This space 

is also metrically convex because the derived metric space (𝑅+, 𝑑𝑝), where 𝑑𝑝(𝑎, 𝑏) = |𝑎 − 𝑏|, ∀ 𝑎, 𝑏 ∈ 𝑅+, is 

metrically convex. 

 

Lemma 2.5. (Kumar et al., 2017) Let 𝐾 be non-empty closed subset of a metrically convex partial metric space 

(𝑋, 𝑝). If and 𝑥 ∈ 𝐾 and 𝑦 ∉ 𝐾 then there exists 𝑧 ∈ 𝜕𝐾, such that 𝑝(𝑥, 𝑦) + 𝑝(𝑧, 𝑧) = 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦). 

 

Definition 2.6. The function 𝜑: 𝑅+ → 𝑅+ is called an ultra- altering distance if:  

 

1) 𝜑 is non- decreasing, 

2) 𝜑(0) = 0 and 𝜑(𝑡) < 𝑡 for 𝑡 > 0. 

 

A 𝜑-contractive condition alone does not guarantee the existence of a fixed point, unless additional conditions 

are assumed. Therefore, to ensure the existence of a fixed point under the contractive condition of an ultra-

altering distance 𝜑, various authors have employed the following additional conditions on 𝜑: 𝜑  is upper semi- 

continuous (Boyd & Wong, 1969) ; 𝜑  is non- decreasing and continuous from the right (Park & Roades, 1981); 

𝜑  is non- decreasing and 
𝑡

𝑡−𝜑(𝑡)
 is non- decreasing (Carbone et al., 1989); 𝜑  is non- decreasing and 

lim𝑛→∞ 𝜑𝑛(𝑡) = 0 for all 𝑡 > 0 (Jachymski, 1994). In our paper we will be working with an ultra- altering 

distance that is lower semi- continuous and such that lim𝑛→∞(𝑡 − 𝜑(𝑡)) = +∞ (Ćirić, 2006). 

 

 

Main Results 
 

We introduce the partial metric space of hyperbolic type. 

 

Definition 3.1. A partial metric space (𝑋, 𝑝) is called a partial metric space of hyperbolic type if the 

corresponding metric space (𝑋, 𝑑𝑝) is of hyperbolic type.  
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We note that a partial metric space of hyperbolic type is metrically convex. 

 

Lemma 3.2. Let (𝑋, 𝑝) be a partial metric space of hyperbolic type. If 𝑢, 𝑥, 𝑦 ∈ 𝑋 and 𝑧 ∈ 𝑠𝑒𝑔[𝑥, 𝑦] is such that 

𝑑𝑝(𝑥, 𝑧) = 𝜆𝑑𝑝(𝑥, 𝑦) for 𝜆 ∈ [0,1], then 𝑑(𝑢, 𝑧) ≤ 2 max{𝑑(𝑢, 𝑥), 𝑑(𝑢, 𝑦)}. 

 

Proof. By the definition 3.1 and 1.2, for 𝑢, 𝑥, 𝑦 ∈ 𝑋 and 𝑧 ∈ 𝑠𝑒𝑔[𝑥, 𝑦] is such that 𝑑𝑝(𝑥, 𝑧) = 𝜆𝑑𝑝(𝑥, 𝑦) for 

𝜆 ∈ [0,1], we have 

 

𝑑𝑝(𝑢, 𝑧) ≤ (1 − 𝜆)𝑑𝑝(𝑢, 𝑥) + 𝜆𝑑𝑝(𝑢, 𝑦) 

 

2𝑝(𝑢, 𝑧) − 𝑝(𝑢, 𝑢) − 𝑝(𝑧, 𝑧) ≤ (1 − 𝜆)[2𝑝(𝑢, 𝑥) − 𝑝(𝑢, 𝑢) − 𝑝(𝑥, 𝑥)] + 𝜆[2𝑝(𝑢, 𝑦) − 𝑝(𝑢, 𝑢) − 𝑝(𝑦, 𝑦)] 
 

2𝑝(𝑢, 𝑧) − 𝑝(𝑧, 𝑧) ≤ (1 − 𝜆)[2𝑝(𝑢, 𝑥) − 𝑝(𝑥, 𝑥)] + 𝜆[2𝑝(𝑢, 𝑦) − 𝑝(𝑦, 𝑦)]. 
 

Since 𝑝 is e partial metric, by the Definition 2.1 we have that  

 

𝑝(𝑢, 𝑧) − 𝑝(𝑧, 𝑧) ≥ 0             0 ≤ 𝑝(𝑢, 𝑥) − 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑢, 𝑥)           0 ≤ 𝑝(𝑢, 𝑦) − 𝑝(𝑦, 𝑦) ≤ 𝑝(𝑢, 𝑦). 
 

Therefore, 

 

𝑝(𝑢, 𝑧) ≤ 𝑝(𝑢, 𝑧) + [𝑝(𝑢, 𝑧) − 𝑝(𝑧, 𝑧)] ≤ 2[(1 − 𝜆)𝑝(𝑢, 𝑥) + 𝜆𝑝(𝑢, 𝑦)] ≤ 2 max{𝑝(𝑢, 𝑥), 𝑝(𝑢, 𝑦)}. ■ 

 

Theorem 3.3. Let (𝑋, 𝑝) be a complete partial metric space of hyperbolic type, 𝐾 a nonempty closed subset of 𝑋 

and 𝑇: 𝐾 → 𝑋 a non- self mapping such that:  

 

(i) 𝑇(𝜕𝐾) ⊆ 𝐾, 

(ii) 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (
1

2
max{𝑝(𝑥, 𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦), 𝑝(𝑥, 𝑇𝑦), 𝑝(𝑦, 𝑇𝑥)}), where the function 𝜑 is an ultra- 

alternating distance, lower semi- continuous and such that lim𝑛→∞(𝑡 − 𝜑(𝑡)) = +∞.  

 

Then 𝑇 has a unique fixed point in 𝐾.  

 

Proof.  The theorem can be proved in five steps.  

 

Step 1. We start by constructing a sequence {𝑥𝑛}. First we choose 𝑥0 ∈ 𝜕𝐾. Then (i) implies that 𝑇𝑥0 ∈ 𝐾 and 

we set 𝑥1 = 𝑇𝑥0.  If 𝑇𝑥1 ∈ 𝐾, then 𝑥2 = 𝑇𝑥1. If 𝑇𝑥1 ∉ 𝐾, since we have that 𝑥1 ∈ 𝐾 and that (𝑋, 𝑝) is of 

hyperbolic type, Lemma 2.5 implies that there exists 𝑥2 ∈ 𝜕𝐾 such that 𝑥2 ∈ 𝑠𝑒𝑔[𝑥1, 𝑇𝑥1], i.e. such that  

 

𝑝(𝑥1, 𝑇𝑥1) + 𝑝(𝑥2, 𝑥2) = 𝑝(𝑥1, 𝑥2) + 𝑝(𝑥2, 𝑇𝑥1). 
 

Following this reasoning, we iteratively construct the sequences {𝑥𝑛} and {𝑇𝑥𝑛} in 𝐾 such that for all 𝑛 ≥ 2, 

 

𝑥𝑛 = 𝑇𝑥𝑛−1, if 𝑇𝑥𝑛−1 ∈ 𝐾  or 𝑥𝑛 ∈ 𝜕𝐾 and 𝑥𝑛 ∈ 𝑠𝑒𝑔[𝑥𝑛−1, 𝑇𝑥𝑛−1], if 𝑇𝑥𝑛−1 ∉ 𝐾. 

 

(i.e. 𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝑝(𝑥𝑛 , 𝑥𝑛) = 𝑝(𝑥𝑛−1, 𝑥𝑛) + 𝑝(𝑥𝑛 , 𝑇𝑥𝑛−1), if 𝑇𝑥𝑛−1 ∉ 𝐾.) 

 

Step 2. We show that the sequences we construsted are bounded. First, for 𝑛 ≥ 1, we define 

 

𝐴𝑛 = {𝑥𝑖} 𝑖=0
𝑛−1 ∪ {𝑇𝑥𝑖} 𝑖=0

𝑛−1  and  𝛼𝑛 = 𝑑𝑖𝑎𝑚(𝐴𝑛) 

 

If 𝛼𝑛 = 0, Definition 2.1. implies 𝑇𝑥0 = 𝑥0 and this proves the theorem. 

 

If 𝛼𝑛 > 0, we show that 𝛼𝑛 = 𝑝(𝑥0, 𝑇𝑥𝑘), for some 𝑘 ∈ {0,1, … , 𝑛 − 1}. We consider the following cases.  

 

Case 1.  Let 𝛼𝑛 = 𝑝(𝑥𝑖 , 𝑇𝑥𝑘) for some 𝑖, 𝑘 ∈ {0,1, … , 𝑛 − 1}. To prove that 𝑥𝑖 = 𝑥0, we suppose to the contrary 

that 𝑥𝑖 ≠ 𝑥0. Then 𝑥𝑖−1 ∈ {𝑥𝑛} ⊆ 𝐾 and 𝑇𝑥𝑖−1 is defined. 

 

(a) If 𝑇𝑥𝑖−1 ∈ 𝐾, then by construction of {𝑥𝑛}, 𝑥𝑖 = 𝑇𝑥𝑖−1. Thus by condition (ii) it follows that:  

 

𝛼𝑛 = 𝑝(𝑥𝑖 , 𝑇𝑥𝑘) = 𝑝(𝑇𝑥𝑖−1, 𝑇𝑥𝑘) 
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≤ 𝜑 (
1

2
max{𝑝(𝑥𝑖−1, 𝑥𝑘), 𝑝(𝑥𝑖−1, 𝑇𝑥𝑖−1), 𝑝(𝑥𝑘 , 𝑇𝑥𝑘), 𝑝(𝑥𝑖−1, 𝑇𝑥𝑘), 𝑝(𝑥𝑘 , 𝑇𝑥𝑖−1)}). 

 

Since {𝑝(𝑥𝑖−1, 𝑥𝑘), 𝑝(𝑥𝑖−1, 𝑇𝑥𝑖−1), 𝑝(𝑥𝑘 , 𝑇𝑥𝑘), 𝑝(𝑥𝑖−1, 𝑇𝑥𝑘), 𝑝(𝑥𝑘 , 𝑇𝑥𝑖−1)} ⊂ 𝐴𝑛, the definition of 𝑑𝑖𝑎𝑚(𝐴𝑛) 

implies that 

 

max{𝑝(𝑥𝑖−1, 𝑥𝑘), 𝑝(𝑥𝑖−1, 𝑇𝑥𝑖−1), 𝑝(𝑥𝑘 , 𝑇𝑥𝑘), 𝑝(𝑥𝑖−1, 𝑇𝑥𝑘), 𝑝(𝑥𝑘 , 𝑇𝑥𝑖−1)} ≤ 𝛼𝑛. 
 

Furthermore, from Definition 2.6.1 (𝜑 is non-decreasing), we have 𝛼𝑛 ≤ 𝜑(𝛼𝑛), which contradicts Definition 

2.6.2. This contradiction proves that in this case 𝑥𝑖 = 𝑥0. 

 

(b) If 𝑇𝑥𝑖−1 ∉ 𝐾, then by construction of {𝑥𝑛}, 𝑖 ≥ 2 and 𝑥𝑖 ∈ 𝑠𝑒𝑔[𝑇𝑥𝑖−2, 𝑇𝑥𝑖−1] ∩ 𝜕𝐾. Since 𝑋 is a partial metric 

space of hyperbolic type, Lemma 3.2. implies that for 𝑥 = 𝑇𝑥𝑖−2, 𝑦 = 𝑇𝑥𝑖−1, 𝑧 = 𝑥𝑖 , 𝑢 = 𝑇𝑥𝑘  the following 

holds:  

 

𝑝(𝑇𝑥𝑘 , 𝑥𝑖) ≤ 2 max{𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−2), 𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−1)} 

 

If max{𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−2), 𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−1)} = 𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−2), then condition (ii) and Definition 2.6.2 implies: 

 

𝛼𝑛 = 𝑝(𝑇𝑥𝑘 , 𝑥𝑖) ≤ 2𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−2) 

 

≤ 2𝜑 (
1

2
max{𝑝(𝑥𝑘 , 𝑥𝑖−2), 𝑝(𝑥𝑘 , 𝑇𝑥𝑘), 𝑝(𝑥𝑖−2, 𝑇𝑥𝑖−2), 𝑝(𝑥𝑖−2, 𝑇𝑥𝑘), 𝑝(𝑥𝑘 , 𝑇𝑥𝑖−1)}) 

 
< max{𝑝(𝑥𝑘 , 𝑥𝑖−2), 𝑝(𝑥𝑘 , 𝑇𝑥𝑘), 𝑝(𝑥𝑖−2, 𝑇𝑥𝑖−2), 𝑝(𝑥𝑖−2, 𝑇𝑥𝑘), 𝑝(𝑥𝑘 , 𝑇𝑥𝑖−1)} 

 
= 𝛼𝑛 . 
 

We have reached once again a contradiction.  

 

Reasoning in the same way, if max {𝑝(𝑇𝑥𝑘 , 𝑇𝑖−2), 𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−1 )} = 𝑝(𝑇𝑥𝑘 , 𝑇𝑥𝑖−1), we would reach to the same 

contradiction (𝛼𝑛 < 𝛼𝑛) and prove once again that 𝑥𝑖 = 𝑥0. 

 

Thus we have shown that 𝛼𝑛 = 𝑝(𝑥0, 𝑇𝑥𝑘).  

 

Case 2. Let 𝛼𝑛 = 𝑝(𝑥𝑖 , 𝑥𝑘) for some 0 ≤ 𝑖 < 𝑘 ≤ 𝑛 − 1. 𝑘 > 0 implies that 𝑥𝑘−1 ∈ 𝐾 and 𝑇𝑥𝑘−1 is defined. 

 

(a) If 𝑇𝑥𝑘−1 ∈ 𝐾, then 𝑥𝑘 = 𝑇𝑥𝑘−1. Thus, Case 2(a) reduces to Case 1(a). 

(b) If 𝑇𝑥𝑘−1 ∉ 𝐾, then 𝑘 ≥ 2 and 𝑥𝑘 ∈ 𝑠𝑒𝑔[𝑇𝑥𝑘−2, 𝑇𝑥𝑘−1] ∩ 𝜕𝐾. Similarly, Case 2(b) reduces to Case 1(b). 

 

Case 3. Similarly 𝛼𝑛 = 𝑝(𝑇𝑥𝑖 , 𝑇𝑥𝑘) is also impossible, because  

 

𝛼𝑛 = 𝑝(𝑇𝑥𝑖 , 𝑇𝑥𝑘) ≤ 𝜑 (
1

2
max{𝑝(𝑥𝑖 , 𝑥𝑘), 𝑝(𝑥𝑖 , 𝑇𝑥𝑖), 𝑝(𝑥𝑘 , 𝑇𝑥𝑘), 𝑝(𝑥𝑖 , 𝑇𝑥𝑘), 𝑝(𝑥𝑘 , 𝑇𝑥𝑖)}) ≤ 𝜑 (

1

2
𝛼𝑛) ≤ 𝜑(𝛼𝑛), 

 

which contradicts Definition 2.6.2. 

 

This way we have shown that 𝛼𝑛 = max{𝑝(𝑥0, 𝑇𝑥𝑘): 𝑘 = 0,1, … , 𝑛 − 1}. To conclude the proof of this step we 

show that the sequence {𝐴𝑛} is bounded.  

 

By definition {𝛼𝑛} is non- decreasing. To prove that this sequence is bounded suffices to show that 

lim𝑛→∞ 𝛼𝑛 < +∞. 

 

Suppose to the contrary that lim𝑛→∞ 𝛼𝑛 = +∞. From the conditions of Theorem 3.3 we have that lim𝑛→∞(𝑡 −
𝜑(𝑡)) = +∞, so there exists a positive number 𝛿 > 0 such that for all 𝑡 > 𝛿, we have 

 

𝑡 − 𝜑(𝑡) > 𝑝(𝑥0, 𝑇𝑥0) − 𝑝(𝑇𝑥0, 𝑇𝑥0) > 0. 
 

By supposition, lim𝑛→∞ 𝛼𝑛 = +∞. This means that for 𝛿 > 0 there exists an integer 𝑛 such that 𝛼𝑛 > δ,  and 
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𝛼𝑛 − 𝜑(𝛼𝑛) > 𝑝(𝑥0, 𝑇𝑥0) − 𝑝(𝑇𝑥0, 𝑇𝑥0). 
 

For a fixed integer 𝑛 such that 𝛼𝑛 > δ, we know that 𝛼𝑛 = 𝑝(𝑥0, 𝑇𝑥𝑘(𝑛)), for some 𝑘(𝑛) ∈ {0,1, … , 𝑛 − 1} and 

we consider the following cases.  

 

Case 1. If 𝑘(𝑛) = 0, then 𝛼𝑛 = 𝑝(𝑥0, 𝑇𝑥0), and so {𝑥𝑛} and {𝑇𝑥𝑛} are bounded.  

 

Case 2. İf 𝑘(𝑛) > 0, then 𝛼𝑛 = 𝑝(𝑥0, 𝑇𝑥𝑘(𝑛)) and by using the triangle inequality, condition (ii), and the 

definition of 𝜑 it holds that:  

 

𝛼𝑛 = 𝑝(𝑥0, 𝑇𝑥𝑘(𝑛)) 

 

≤ 𝑝(𝑥0, 𝑇𝑥0) + 𝑝(𝑇𝑥0, 𝑇𝑥𝑘(𝑛)) − 𝑝(𝑇𝑥0, 𝑇𝑥0) 

 

≤ 𝑝(𝑥0, 𝑇𝑥0) + 𝜑 (
1

2
max{𝑝(𝑥0, 𝑥𝑘(𝑛)), 𝑝(𝑥0, 𝑇𝑥0), 𝑝(𝑥𝑘(𝑛), 𝑇𝑥𝑘(𝑛)), 𝑝(𝑥0, 𝑇𝑥𝑘(𝑛)), 𝑝(𝑥𝑘(𝑛), 𝑇𝑥0)})

− 𝑝(𝑇𝑥0, 𝑇𝑥0) 

 
𝛼𝑛 ≤ 𝑝(𝑥0, 𝑇𝑥0) + 𝜑(𝛼𝑛) − 𝑝(𝑇𝑥0, 𝑇𝑥0) 

 
𝛼𝑛 − 𝜑(𝛼𝑛) ≤ 𝑝(𝑥0, 𝑇𝑥0) − 𝑝(𝑇𝑥0, 𝑇𝑥0). 
 

This contradiction implies that lim𝑛→∞ 𝛼𝑛 = α < +∞, and we have thus proved that {𝑥𝑛} and {𝑇𝑥𝑛} are 

bounded.  

 

Step 3. İn this step we will show that both these sequences are Cauchy. We start by defining for 𝑛 ≥ 2,  

 

𝐵𝑛 = {𝑥𝑖}𝑖≥𝑛 ∪ {𝑇𝑥𝑖}𝑖≥𝑛  and  𝛽𝑛 = 𝑑𝑖𝑎𝑚(𝐵𝑛) 

 

The sequence {𝐵𝑛} is Cauchy if lim𝑛→∞ 𝛽𝑛 = 0. The definition of {𝛽𝑛} implies that this sequence is non- 

increasing and also it is bounded (because 𝛽𝑛 ≥ 0 for all 𝑛 ≥ 2). Thus {𝛽𝑛} is convergent and it converges to 

some point 𝛽 ≥ 0. To conclude the proof on this step we will show that 𝛽 = 0. Let us suppose that 𝛽 > 0. 

 

On the other hand we have that 𝛽𝑛 = 𝑑𝑖𝑎𝑚(𝐵) = sup{𝑝(𝑥𝑖 , 𝑇𝑥𝑗), 𝑝(𝑥𝑖 , 𝑥𝑗), 𝑝(𝑇𝑥𝑖 , 𝑇𝑥𝑗): 𝑖, 𝑗 ≥ 𝑛}.  

 

Applying a method similar to that used in Step 2, we can show that  

 

𝛽𝑛 = sup{𝑝(𝑥𝑛, 𝑇𝑥𝑘): 𝑘 ≥ 𝑛}. 
 

From the characteristic property of the supremum it holds that for every integer 𝑝 there exist an index 𝑘(𝑝) > 𝑝 

such that 𝛽𝑝 −
1

𝑝
< 𝑝(𝑥𝑝, 𝑇𝑥𝑘(𝑝)) < 𝛽𝑝. Thus, by taking the limit, we have lim𝑝→∞ 𝑝(𝑥𝑝 , 𝑇𝑥𝑘(𝑝)) = 𝛽.  

 

Now we consider the following cases. 

 

Case 1. If 𝑥𝑝 = 𝑇𝑥𝑝−1, then by condition (ii) and Definition 2.6.1, it holds that: 

 

𝑝(𝑥𝑝, 𝑇𝑥𝑘(𝑝)) = 𝑝(𝑇𝑥𝑝−1, 𝑇𝑥𝑘(𝑝))

≤ 𝜑 (
1

2
max{𝑝(𝑥𝑝−1, 𝑥𝑘(𝑝)), 𝑝(𝑥𝑝−1, 𝑇𝑥𝑝−1), 𝑝(𝑥𝑘(𝑝), 𝑇𝑥𝑘(𝑝)), 𝑝(𝑥𝑝−1, 𝑇𝑥𝑘(𝑝)), 𝑝(𝑥𝑘(𝑝), 𝑇𝑥𝑝−1)}) 

 
≤ 𝜑(𝛽𝑛) 

 
Since 𝜑 is a lower semi continuous function, by taking the limit for 𝑝 → ∞ we would have 𝛽 ≤ 𝜑(𝛽), which is 

in contradiction with Definition 2.6.2. This means that in this case, 𝛽 = 0. 

 

Case 2. If 𝑥𝑝 ≠ 𝑇𝑥𝑝−1, then by construction of {𝑥𝑛} we have 𝑥𝑝 ∈ 𝑠𝑒𝑔[𝑇𝑥𝑝−2, 𝑇𝑥𝑝−1] ∩ 𝜕𝐾. Since 𝑋 is a partial 

metric space of hyperbolic type, Lemma 3.2 implies, for 𝑥 = 𝑇𝑝−2, 𝑦 = 𝑇𝑥𝑝−1, 𝑧 = 𝑥𝑝, 𝑢 = 𝑇𝑥𝑘(𝑝), that 
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𝑝(𝑇𝑥𝑘(𝑝), 𝑥𝑝) ≤ 2 max{𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−2), 𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−1)}. 

 

If max{𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−2), 𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−1)} =  𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−2), then condition (ii) and Definition 2.6.1 

implies: 

 

𝑝(𝑇𝑥𝑘(𝑝), 𝑥𝑝) ≤ 2𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−2) 

 

≤ 2𝜑 (
1

2
max{𝑝(𝑥𝑘(𝑝), 𝑥𝑝−2), 𝑝(𝑥𝑘(𝑝), 𝑇𝑥𝑘(𝑝)), 𝑝(𝑥𝑝−2, 𝑇𝑥𝑝−2), 𝑝(𝑥𝑝−2, 𝑇𝑥𝑘(𝑝)), 𝑝(𝑥𝑘(𝑝), 𝑇𝑥𝑝−2)}) 

 
< 𝛽𝑛, 
 

which by taking the limit for 𝑝 → ∞, leads to the contradiction 𝛽 < 𝛽. 

 

If max{𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−2), 𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−1)} =  𝑝(𝑇𝑥𝑘(𝑝), 𝑇𝑥𝑝−1), by following the above reasoning we get 

once again the contradiction  𝛽 < 𝛽. This contradiction proves again that 𝛽 = 0, which in turn shows that the 

sequences {𝑥𝑛} and {𝑇𝑥𝑛} are both Cauchy.  

 

Since 𝑋 is complete and 𝐾 is closed, both these sequences converge to some point 𝑢 ∈ 𝐾, meaning:  

 

lim
𝑛→∞

𝑝(𝑥𝑛, 𝑢) = 𝑝(𝑢, 𝑢) = lim
𝑛→∞

𝑝(𝑇𝑥𝑛 , 𝑢). 

 

Step 4. In this step we show that 𝑢 is a fixed point, i.e.  𝑇𝑢 = 𝑢 ⇔ 𝑝(𝑢, 𝑢) = 𝑝(𝑢, 𝑇𝑢) = 𝑝(𝑇𝑢, 𝑇𝑢).  

Suppose the contrary, which based on Definition 2.1 means that 𝑝(𝑢, 𝑇𝑢) > 0.  

 

Let 𝑛 be a fixed integer, and 𝑥𝑛 ∈ 𝐾. Then the following cases are possible. 

 

Case 1. If 𝑇𝑥𝑛 ∈ 𝐾, then 𝑝(𝑇𝑥𝑛 , 𝑇𝑢) ≤ 𝜑(max{𝑝(𝑥𝑛 , 𝑢), 𝑝(𝑥𝑛, 𝑇𝑥𝑛), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑥𝑛), 𝑝(𝑥𝑛 , 𝑇𝑢)}) 

By taking the limit we get the following contradiction 

 

𝑝(𝑢, 𝑇𝑢) ≤ 𝜑(max{𝑝(𝑢, 𝑢), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑢, 𝑢), 𝑝(𝑢, 𝑇𝑢)}) = 𝜑(𝑝(𝑢, 𝑇𝑢)). 
 

Case 2. If 𝑇𝑥𝑛 ∉ 𝐾, then 𝑥𝑛+1 ∈ 𝑠𝑒𝑔[𝑇𝑥𝑛−1, 𝑇𝑥𝑛] ∩ 𝜕𝐾 and because 𝑋 is a partial metric space of hyperbolic 

type, by Lemma 3.2 it holds that 

 

𝑝(𝑇𝑢, 𝑥𝑛+1) ≤ 2 max{𝑝(𝑇𝑢, 𝑇𝑥𝑛−1), 𝑝(𝑇𝑢, 𝑇𝑥𝑛)}. 
 

If max{𝑝(𝑇𝑢, 𝑥𝑛−1), 𝑝(𝑇𝑢, 𝑇𝑥𝑛)} =  𝑝(𝑇𝑢, 𝑇𝑥𝑛−1), then  

 

𝑝(𝑇𝑢, 𝑥𝑛+1) ≤ 2 𝑝(𝑇𝑢, 𝑇𝑥𝑛−1) ≤ 2𝜑 (
1

2
max{𝑝(𝑢, 𝑥𝑛−1), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑝(𝑥𝑛−1, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑥𝑛−1)}) 

 
< max{𝑝(𝑢, 𝑥𝑛−1), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑝(𝑥𝑛−1, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑥𝑛−1)}. 
 

By taking the limit we get once more a contradiction as follows 

 

𝑝(𝑇𝑢, 𝑢) < max{𝑝(𝑢, 𝑢), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑢)} = 𝑝(𝑢, 𝑇𝑢). 
 

If max{𝑝(𝑇𝑢, 𝑥𝑛−1), 𝑝(𝑇𝑢, 𝑇𝑥𝑛)} =  𝑝(𝑇𝑢, 𝑇𝑥𝑛), then  by following the same reasoning as above we get the 

same contradiction. 

 

This contradiction shows that 𝑝(𝑢, 𝑢) = 𝑝(𝑢, 𝑇𝑢) = 𝑝(𝑇𝑢, 𝑇𝑢), and by definition of the partial metric we have 

𝑇𝑢 = 𝑢.  

 

Step 5. In this step we prove the uniqueness of the fixed point 𝑢. 
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Suppose to the contrary that there exists 𝑣 ∈ 𝐾, such that 𝑢 ≠ 𝑣 and 𝑇𝑣 = 𝑣. Thus, by the definition of the 

partial metric we have that 𝑝(𝑢, 𝑢) < 𝑝(𝑢, 𝑣), 𝑝(𝑣, 𝑣) < 𝑝(𝑢, 𝑣) and 𝑝(𝑇𝑣, 𝑇𝑣) = 𝑝(𝑇𝑣, 𝑣) = 𝑝(𝑣, 𝑣). Then by 

applying condition (ii) and Definition 2.6.2 we get  

 

𝑝(𝑢, 𝑣) = 𝑝(𝑇𝑢, 𝑇𝑣) 

 

≤ 𝜑 (
1

2
max{𝑝(𝑢, 𝑣), 𝑝(𝑢, 𝑇𝑢), 𝑝(𝑣, 𝑇𝑣), 𝑝(𝑣, 𝑇𝑢), 𝑝(𝑢, 𝑇𝑣)}) 

 
≤ 𝜑(max{𝑝(𝑢, 𝑣), 𝑝(𝑢, 𝑢), 𝑝(𝑣, 𝑣), 𝑝(𝑣, 𝑢), 𝑝(𝑢, 𝑣)}) 

 

= 𝜑(𝑝(𝑢, 𝑣)). 
 

This contradiction shows that 𝑝(𝑢, 𝑢) = 𝑝(𝑢, 𝑣) = 𝑝(𝑣, 𝑣), and by definition 𝑢 = 𝑣.  ■ 

 

Remark 1. Theorem 3.3 is a generalization of Theorem 2.1 from Ćirić (2006) for partial metric spaces of 

hyperbolic type. For the functions 𝜑𝑖 (where 𝑖 = 1,2,3,4,5), in Theorem 2.1,  we can find 𝜑 = max𝑖=1,…,5{𝜑𝑖}, 

which also satisfies the same conditions as each of 𝜑𝑖.  

 

Remark 2.  As mentioned in the preliminaries, several authors have proven interesting fixed point results using 

𝜑- contracting conditions. Theorem 3.3 shows that it is possible the generalize results gained from these type of 

conditions from metric spaces of hyperbolic type to partial metric spaces of hyperbolic type.  

 

Remark 3. By taking 𝜑(𝑡) = 2𝜆𝑡, where 0 < 𝜆 < 1, we get the following corollary. 

 

Corollary 3.4. Let (𝑋, 𝑝) be a complete partial metric space of hyperbolic type, 𝐾 a nonempty closed subset of 

𝑋 and 𝑇: 𝐾 → 𝑋 a non- self mapping such that 𝑇(𝜕𝐾) ⊆ 𝐾, and  

 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜆 ∙ max{𝑝(𝑥, 𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦), 𝑝(𝑥, 𝑇𝑦), 𝑝(𝑦, 𝑇𝑥)} 

 

Then 𝑇 has a unique fixed point in 𝐾. 

 

Example 3.5.  Consider the complete metrically convex partial metric space (𝑅+, 𝑝) where 𝑝(𝑥, 𝑦) =

max{𝑥, 𝑦}, for all 𝑥, 𝑦 ≥ 0. This space is also of hyperbolic type because the derived metric space (𝑅+, 𝑑𝑝), 

where 𝑑𝑝(𝑥, 𝑦) is the usual metric, is a metric space of hyperbolic type. 𝐾 = [0,1] is a closed subset of 𝑅+.  

 

We define 𝑇: [0,1] → 𝑅+ such that for all 𝑥 ∈ [0,1], 
 

𝑇(𝑥) =
𝑥2

2(1 + 𝑥)
. 

 

Next we define 𝜑: 𝑅+ → 𝑅+, 

 

𝜑(𝑡) = {

3𝑡

4 + 2𝑡
, 0 ≤ 𝑡 ≤ 1

1

2
𝑡, 𝑡 > 1

. 

 

We note that 𝜑 is non- decreasing, 𝜑(0) = 0 and 𝜑(𝑡) < 𝑡 for all 𝑡 > 0. Which means 𝜑 is an ultra- alternating 

distance. Also 𝜑 is lower semi- continuous and lim𝑛→∞(𝑡 − 𝜑(𝑡)) = +∞ and thus it satisfies the conditions of 

Theorem 3.3.  

 

Next we show that 𝑇: [0,1] → 𝑅+  also satisfies the conditions of Theorem 3.3. Since 𝑇(0) = 0 and 𝑇(1) =
1

4
, 

condition (i) is satisfied.  

 

To prove the second condition we first evaluate 𝑝(𝑥, 𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦), 𝑝(𝑦, 𝑇𝑥), 𝑝(𝑥, 𝑇𝑦), 𝑝(𝑇𝑥, 𝑇𝑦).  
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Let 𝑥, 𝑦 ∈ [0,1] and for simplicity suppose that 𝑥 < 𝑦, then 𝑝(𝑥, 𝑦) = 𝑦.  Moreover, by simple calculation we 

find  

 

𝑝(𝑥, 𝑇𝑥) = max{𝑥, 𝑇𝑥} = max {𝑥,
𝑥2

2(1 + 𝑥)
} = 𝑥, 𝑝(𝑦, 𝑇𝑦) = max {𝑦,

𝑦2

2(1 + 𝑦)
} = 𝑦, 

 

𝑝(𝑦, 𝑇𝑥) = max{𝑦, 𝑇𝑥} = max {𝑦,
𝑥2

2(1 + 𝑥)
} = 𝑦, 𝑝(𝑥, 𝑇𝑦) = max {𝑥,

𝑦2

2(1 + 𝑦)
} = 𝑥. 

 
Hence, for 0 ≤ 𝑥 < 𝑦 ≤ 1,  

 

𝜑 (
1

2
max{𝑝(𝑥, 𝑦) , 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦), 𝑝(𝑥, 𝑇𝑦), 𝑝(𝑦, 𝑇𝑥)}) = 𝜑 (

1

2
max{𝑥, 𝑦}) = 𝜑(𝑦) =

3𝑦

2(4 + 2𝑦)
. 

 

Since 𝑇 is monotone increasing on [0,1]. Then for 𝑥, 𝑦 ∈ [0; 1], such that 𝑥 < 𝑦, we have 𝑇𝑥 < 𝑇𝑦. And thus,  

 

𝑝(𝑇𝑥, 𝑇𝑦) = max {
𝑥2

2(1 + 𝑥)
,

𝑦2

2(1 + 𝑦)
} =

𝑦2

2(1 + 𝑦)
 

 

By combining all the above calculations, we get  

 

𝑝(𝑇𝑥, 𝑇𝑦) =
𝑦2

2(1 + 𝑦)
≤

3𝑦

2(4 + 2𝑦)
= 𝜑 (

1

2
max{𝑝(𝑥, 𝑦) , 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦), 𝑝(𝑥, 𝑇𝑦), 𝑝(𝑦, 𝑇𝑥)}), 

 

on the account that for all 𝑦 ∈ [0,1] 
 

𝑦2

2(1 + 𝑦)
−

3𝑦

2(4 + 2𝑦)
=

2𝑦3 + 𝑦2 − 3𝑦

2(1 + 𝑦)(4 + 2𝑦)
=

𝑦(2𝑦2 + 𝑦 − 3)

2(1 + 𝑦)(4 + 2𝑦)
< 0. 

 

We have hence shown that 𝑇 also satisfies condition (ii).   

 

Therefore 𝑇 has a fixed point, which is 𝑥 = 0. 
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