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Abstract: This article explores the solutions of nonlinear implicit y-Caputo fractional-order ordinary
differential equations (NLIFDESs) with two-point fractional derivatives boundary conditions in Banach algebra.
The research aims to establish the existence and uniqueness of solutions for this complex class of differential
equations. Utilizing Banach’s and Krasnoselskii’s fixed point theorems, the study conducts a rigorous analysis
of the solutions, ensuring their existence and uniqueness. This comprehensive investigation contributes to
enhancing the understanding of the behavior of solutions of nonlinear fractional differentials within a
challenging mathematical framework.
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Introduction and Preliminaries

Fractional calculus extends traditional differentiation and integration to non-integer orders, offering a useful
basis for modeling complex phenomena in various scientific and engineering disciplines. Esteemed
mathematicians such as Almeida (2017) and Agarwal (2012) and Kiblas (2006) and Burton (1998) and Samko
(1993) have made significant contributions to this field, expanding its scope.

One particular area of focus is nonlinear implicit fractional order differential equations (NLIFDEs) with
fractional boundary conditions (FBCs), which find applications in mathematical physics, engineering sciences,
and computational mathematics (Agrawal, 2009; Awad & AlKhezi, 2023; Awad, 2024;Benlabbes et al., 2015;
Debazi & Hammouche, 2020)).

Almeida’s work on -fractional derivatives (Almeida, 2017), a generalization of Riemann-Liouville derivatives,
introduces a Caputo-type regularization, explored extensively in some recent researches such as Awad and
Kaddoura (2024) and Awad, (2023) and Awad et al. (2023), Kaddoura and Awad (2023). These researches have
focused on the existence of positive solutions for fractional differential equations with boundary conditions,
employing methodologies such as Banach’s and Krasnoselskii’s fixed point theorems.

This article aims to investigate the existence and uniqueness of solutions for the following nonlinear implicit -

Caputo fractional differential equations (NLIFDESs) with fractional boundary conditions within the domain of
Banach Algebra:

D5y () = £ (630, DLy (O, f k (t,5)D3 y(s)ds), (1)
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Subjected to the subsequent set of three integral boundary conditions involving fractional derivatives:

y(0) + DI y(T) = 0y, @)
DY y(0) + DIVY(T) = 0y, 3)
DIV y(0) + DIV Y(T) = g, (4)

where t €] =10, T],'D‘gip and bgip denote the standard -Caputo fractional derivatives of orders a € (2,3]
and B € (0,1], o; €ER V (i = 1,2,3), Y(t) is an increasing function with ¥'(t) #0 Vv t €] =1[0,T], f:] %
R3® — R, and k:J x R — R are continuous functions.

In the following, we present certain symbols, definitions, lemmas, and theorems that serve as foundational

elements for our study. These essential concepts can be referenced in Almeida (2017), Burton (1998), Kiblas
(2006), and (Samko, 1993), and related sources.

Definition 1.1: [1] Consider « > 0, n € N such that n = [a] + 1, and let I = [a, b] represent an interval with
—o0 < a<t<b< +oo. Suppose Y, x € C™(I,R) are two functions, where v is increasing and y'(t) # 0 for
all t € I. In this context,

1) The left-sided y-Riemann-Liouville fractional integral of x(t) of the fractional order a with respect to
1 is defined as:

S50 = s [ ¥ OWO - pe) x0ds

2) where T is the Euler gamma function defined by I'(a) = f0+°° t* e tdq.

3) The left-sided y-Caputo fractional derivative of x(t) of the fractional order « is defined as:

a

d n
(0 dt) *(®)

1 t
o j W' () () = p(s))

DY =3

nal[n

(s) ds,

4) where x}l(¢) = ( 7 (t)E) x(t).

Lemma 1.1: [17] If y is a positive real number such that y > -1 and y #a —1,a — 2,...,a — n, then for
tel,

D (W) — @) = LD () — (@), )

riy-a+1)
where CD(ff;w(lp(t) - 1/)(a))a_i =0foralli=1,23,...,n

Lemma 1.2. [1] If a > 0, then the differential equation CCD x(t) = 0 has a solution in C(J,R) n L, (J,R)
which is:

x(®) = (@) =)+, (W(®) = () + -+ ey (W) = (0)) T,
where c; € Rforalli = 1,2,...,n,and n = [a] + 1.

Theorem 1.1. [15] (Banach’s Fixed Point Theorem) Given a Banach space (X, || ||), and a contraction mapping
§:X — X, there exists a unique fixed point x € X such that o (x) = x.
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Theorem 1.2. [11] (Krasnselskii’s fixed point theorem) Let § denote a closed, convex, and non-empty subset
of a Banach space X. Suppose g, and g, are mappings from § to X satisfying the following conditions:

1) Forany u,v € §, the sum g, u + g,v belongs to S.
2) The mapping o is a contraction.
3) The mapping g, is continuous, and the range g, (S8) is bounded.

Under these assumptions, there exists at least one element u € § such that o, u + g,u = u.

Main Results

Definition 2.1. A function y € C(J,R) is considered as a solution if it satisfies both the nonlinear implicit
fractional differential equation NLIFDE (1) and its associated boundary conditions (2)-(4).

Lemma 2.1. Suppose that 2 < a < 3, and let f:]J x R® - R be a continuous function. A function y(t) €
C(J,R) is considered as a solution to the nonlinear implicit fractional differential equation NLIFDE ([1]) if and
only if it satisfies the the following fractional integral equation:

y(t) B
_ (p® - )"
= (@) %

- f W (s)u(s)ds) ©)
0

T
(w(t) - 1/)(0))a_2 /Uz +o(T) <—U1 + j Y’ (s)u(s)ds)\
0
I'a—-1) T
k —f W' ()W) = P(s))uls) ds. )
0

1 (T 2
0= [ W @D - w©) uts) as
0

1 T .
a= —5\01— ' d ) — (0
(w®) - p©)*” z(" fow ()uls) s)(w() ¥(0)

I'a—-2) /02 oD <—01 N jTll)' (S)u(s)d5>\
0

—(T) r
- W ©@® - pE)u s

1

s fo W W - ) us)ds,

where u(s) is the solution of the following fractional integral equation

u(®) = £ (£y@, 357 u(®), [ ke (¢, Hus)ds), )

Proof. Let y(t) be a solution to the nonlinear implicit fractional differential equation NLIFDE (1). Define
t
u(t) = f<t,y(t), oty (), f k(t, s)zag‘i/’y(s)ds).
0

It is clear that i)fipy(t) = Sg‘lﬂ'wi)‘gipy(t) forall t € J. So, if y(t) is a solution of equation (1), then for every
t € J, we have
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t
D y(t) = f(t,y(t),sg;ﬁ%gif’y(t), f k(t, s)rog‘i”y(s)ds).
0
Let i)fi”y(t) = u(t), then equation (1) becomes:

t
u(t) = f (t.y(t),sg’:ﬁ"”u(t), f k(t, s)u(s)ds).
0
Utilizing Lemma 1.2, we derive the expression:

y(©) = c,(Y(©) —p(0) " + e (¥(©) —p(0)
+cs (P - 9(0)

1 T ' 2
I RACIZORIOIIORE
Applying the boundary conditions (2)-(4), we obtain the following equations:
al(a) =0, — fOTl/)’ ()u(s)ds,

T @)(1+P(T) = P(0)) + el (@ — 1) = 0, — [; ' () (W(T) — P(s))u(s) ds,

and
1 2
Sl @M = P)" + col (@ = D(1+Y(T) = $p() + el (a = 2)

=03 — [ ' ()T —P(s)) uls) ds.

Solving equations (9), (10), and (11) for ¢4, ¢,, and c5, we obtain:

1 T
¢ = m(al - fo W (s)u(s)ds),

1
CZ_F(a—l

and

1T 2
0 =5 [ ¥ O - w) u ds

1 T 2
“3(on- [ v ©ueras) wen - vy
€3 = >3 r

fe=2 o) (-0 + [ W Guas)
° o(T)

+0,

- T
- f W )BT — p(s))uls) ds
0

where ¢ (T) = 1 + ¢(T) — (0). Substituting these into (8), we obtain:

v = PO 22’2150)) (01 - f W (s)u(s)ds>
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_ a-2 /02 + @(T) (—01 + Tt,b’ (s)u(s)ds)\
(0 sy 3O v
\ - f W ()T — p(s))uls) ds. /

1 T
o =5 | ¥ O - w) u ds
0

1 T , ] ( ; ) )2
(¢(t)—1p(0))“_3 _E(Ul _fo Y (s)u(s) s) W(T) — (0)
I'a—-2)

/‘72 + ¢o(T) (—ol +f Y’ (s)u(s)ds)

—o(T) | r 0

\ - [v ©E@ -y ds
0

|
)

1 t a—1
b fo W (® — ()  uls)ds.

On the contrary, assume that y(t) constitutes a solution to the nonlinear implicit fractional differential equation
NLIFDE (1), and this solution can be expressed in the subsequent manner:

— (0 a-1 T
v = PO =¥O©) <al— | w'(s)u(s)ds>
0

I'(a)

T
N (W) — ()" / oz + ¢ (T) (—01 + fo Y’ (S)u(s)ds)\
I'a-1) T
k _f Y () (W(T) = (s))uls) ds. )
0

1 T
o =5 [ ¥ O - w) uE ds
0

—3<a -[ y (s)u(s)ds) W (T) - p(0))’
+(¢(t)—w(0))“‘3 2\t ),

I'la—2)

g, + @(T) <—01 + f Y’ (S)u(s)ds>
—o(T) 0

T
- f ¥ ()BT — p(s))uls) ds
0

+% f WSO - ) us)ds.

Thus, we can infer that: Dy (¢) = u(e), with y(0) + D5 ¥ y(T) = oy, Dix ¥y(0) + DIy (T) = a3,

and CD‘;‘IZ""y(O) + 1)‘;;3'”’31(T) = a3. This implies that u(t) indeed satisfies the conditions of problem (6). This
concludes the proof.
Lemma 2.2. Consider the NLIFDE (1) under the following conditions:

(Hy)  The nonlinear function f:J x R® — R exhibits continuity, and there exists 1 € C(J, R*) such that:
|f (6, uy, uz, us) — (801,02, v3)| < AE)(lug — vi| + |uy — vo| + |uz — v3)),

forallt € J,u;,,v; e Ryand i = 1,2,3.

(H,) The function k(¢, s) is continuous over J x J, and there exists a positive constant K such that:
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k(t,s)| = K.
t‘g;[aogl]l (@ 9l

Remark 1. Derived from Lemma, we extract that under the premise of (H;), the inequality
If (& ug, uz, uz)| = £ (£,0,0,0)] < If(t ug, up uz) — f(£,0,0,00] < A@) (lug] + [uz| + lusl).
holds. Consequently, if F = sup,¢;|f(t,0,0,0)], it follows that
If (@t ug, uz uz)l < F + A0 (lug | + [uz| + lus))

Definition 2.2. Define the operator g: C(J,R) = C(J, R) as follows:

— 0 a-1 T
0

O —p)* o) (-0 + [ Guras) \

|
I'a-—1 T
@ +0; —f P ()W) = P(s) )uls) dS-/
0

1 T
o =5 [ ¥ O - w) u ds
0

a-3 —1(01 - fTIP' (s)u(s)ds) (¥(T) - 1!)(0))2
+ (1#(?(— w((z);) 2 0 .
o —
/O‘z + o (T) <—01 + f Y’ (s)u(s)ds)\
0

—o(T) r
- [[w @ - wE)ue ds
0
1

t -1
s fo W () WE) — ()™ uls)ds.

where u(s) € C(J, R) satisfies the following implicit fractional equation:

u@:fGJanﬂfwmuj}asm@ma.
0

Existence of Solutions

In the following, we establish the existence of solutions for the Nonlinear Fractional Differential Equation
NLIFDE defined by (1). Our approach centers on the application of Krasnoselskii’s fixed point theorem.

Theorem 2.1. Suppose that assumptions (H,) and (H,) hold. If% < 1, where

(Y(T) — ()" (W) — )" , M- $(0))*

+ o(T)

_ r'(a) 'a—1) 2@ —1)
2™ — (@), (T - ) (W — ()"
*~Srecy YD Ty D Sra oy

and

(W) — ) "
ra+a—p TKT)

M=1—|I/1II(

then NLIFDE (1) has at least one solution in C[0,1].
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Proof. By transforming NLIFDE (1) into a problem involving fixed points, we introduce the operator
£:C(J,R) -» C(J,R) as follows:

Py®) = p:(y(®) + p.(y(®), telo1],
Where

— (0 a-1 T
() = L) (2= [ v ©utoras)

o, + o(T) (—01 +J. Y’ (s)u(s)ds)\
0
|

L ® -p)"”
T
- [[w & @@ - pe)us) as )

I'a—-1)

1 T
o =5 [ ¥ O - w) u) ds
0

1 T
~5(on- [ v ©uras) @ - vy
0

N (W ® - ¥(0)

fla=2 [0+ o(m <—al + [ (s)u(s)ds)
0

—o(T) | r
\ - j W ()W) - p(s))uls) ds
0

|
and /

P2 () = f P WO — () uls)ds,
0

1
I'(a)
with

u(t) = f(t, y@®), 3PP, f k (¢, s)u(s)ds>.
0

Consider B, = {y € C(J,R): ||yl < o} as a closed subset of C[0,1], where @ represents a positive constant

satisfying o = 1% Here, ;R and X are real numbers. It is evident that B, constitutes a Banach space equipped
with a metric in C[0, T]. The proof can be outlined in three distinct phases.

Step 1: 91y + .Y, € B, holds true for all y;,y, € B,.

Consider y;,y, € B, and t € . We obtain:

|<§01(}’1(t)) + @2(3’2(0)' < |801(Y1_(?)| + |S<’2T(}’2(t))|
OTE (o ¢'(s)|u1(s)|ds)

o + (D) <01 + f " (S)Iul(s)lds>

[ (t) — p(0)|*?
I'a-1)

T
+ [ ©Wm - vl ds
0
1 (T 2
745 [ W O - w6) )l ds

1 T )
lW(t) —(0)|*3 +5<01 +J; Y (s)lul(s)|ds> (p(T) —(0))

I'la—2)

o, + lo(T)] (01 + f W (S)Iul(s)lds>
o ()] 0

+ f W (@) = p())lun(s)] ds
0
1

" mf"” @) = p()* uz(s)lds.
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Using Lemma 2.2 and the aforementioned remark, if we consider the supremum for t € [0, T], then

lJull = ‘f(t y(@®), 3PP, f k (t, s)u(s)ds)

where F = sup,¢;|f(t,0,0,0)].

Hence,

where M =1 — ||A||<

(pm-p©)**

r(l1+a—

< 1Al <Iy(t)l +]35 P )] +

ftk (t,s)u(s)ds
0

)+

a-p
(p(T) - w(g);) s KT) ”u”> p

<11l (uyu + ( T e

<
hull < ===2

) +KT>.

Thus, for each t € [0, T] we have

|801(}’1(t)) + 802()’2 (t))| =

|501(3’1(t))| + |802(}’2(t))|

ANyl + F

(W) W@ - p(©)° )

A +F
N <|I [

v ) 9> (M) (H(T) = (0))

* 2

(MY oy ooy — o)’

2

lp () —p0)]*! IAHy Il + F
<R <al (T e - w«n))
1Ayl + F
o, + |<P(T)|<0 + (—) Y(T) —(0) )
() — w02 | ' ) ) \
I'a-1)
+ 2
(PRI E) () — 03’
o3 + 3
[ (@) —y0)]*3
I'a—2) +0,9%(T) + 0,
+0,0(T) +
[ (@) — O (Yl + F
ra+1) M

Taking supremum over t € [0, T], we have

R
for o = —, where
1-X

such that

l21y1(£) + #2y.(Dl < o,

R = (011 + 0,13 + 0313 + (Il + F)Y,)
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1 1 (W) - ()
ho= (F(a) e 2)) W@ b))+ ra-1)
W) - ()
+p*(T) ra—2)

_ (M -p@)" (WM —p©)*”

r,

+ o(T)

F(a—-1) I'(a—2)
. _ @@ -p©)"
3T Tr(@-2)
Y, = ! 1 1 2 . o
o (IF(a 0l T r@-n T3r@- 2)) (W(T) —9(0)
1 1 a-1
+o(T) (F(a Ot @ 2)> (¥(T) —y(0))

(W(T) — ()"
I'a-2) ’

+¢*(T)
and

(M) —9(0))"

4 o PO @) | (D) —$()

_ I'(a) I'a-1) 2N (a—1)
2(p(T) — ()" (W(T) —p(0))" () —p(0)"
YT 3re-2 ¢*(T) ra-2 T *D—Zra-2

This proves that 9.y, (t) + §,y,(t) € B, for every y;,y, € B,.
Step 2: The operator g, serves as a contraction mapping on B,,.

It is clear that

lluy — |l = ‘f(t. Y1 (), SV uy (@), j k(t, s)ul(s)ds) —f(t, y2(8), 35, (@), j k (¢, s)uz(s)ds>
0 0

AOICIOEEIO))
r(a—p)

a-B-1

<A@® <|y1(t) - %@+ s (6) — wy(©)|ds
0
+[ |k(t,s)||u1(t)—u2(t)|ds>
0

Taking supremum for all t € I, we get

) —(0)“*
lluy =l < 1Al [”3’1 — Yol + <(¢IE(31 _IZ(+)2) + KT) llug — uz”l-

Thus,

lIAll

luy —u,ll < W”)ﬁ = ¥2ll-

This implies that
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|501(J’1(t)) - 501(}’2(t))|
_(@®-p@)

ra)

(nb(t)—w(O))“‘z/ ‘P(T)U ¢’(s)lu1(s)—uz(s)|ds> \
0

I
r(a—1 ’
(@-1) \+ f ¥ ()W) = () luz(s) —uy ()] ds /

[ ¥ @ - uels
0

1 T
+5 [ W OWD =) ) - u )l ds
0

1 T
b5 [ W ) = w1 - pO)
0

4 (¥ (® —¥(0))

I'a—2 T
(@=2) o(T) f W (s (s) — up(s)]ds
0

—o(T) r
- [ ¥ ©E@ - $E) 6 - u©)lds
0

Taking supremum over t € [0, T], we get

121 (y1) — 21 ) .
- @M -y©O)
- I'(a)
RUCE $(0)“?
I'a—-1)

Iy — uyll

lluy = wll

2
(‘P(TXW) —p(0) + w>

o W -p©)° W) -p©)°
, @@ =) + 6 + 2

-2 (W(T) —$(0))* e
2

1 — Uyl
—@?(T) (Y(T) — p(0)) + o(T)
(W) = p()*
I'(a)
L2 - )
3r(a—2)

— Ul < W|I3/1 — 2ll-
- Mm

(W) — () L M- ¥(0))"
I'a—-1) 2 (@ —1) |

(W) —p(0)*
2l (a —2)

+ o(T)

(W) - p(0)
I'a—2)

< [uy

@*(T) +o(T)

Thus, it is clear that the operatorg, is a contraction mapping with a contraction coefficient ”’1% <1.

Step 3: To establish the continuity and compactness of the operator g, on B,, we initially establish its
continuity. Let {y,},en be a sequence in B, that converges to y € B, as n tends to infinity. Our objective is to
demonstrate that ||,y,, — #1Y]| tends to zero as n tends to infinity. Subsequently, for t € [0, T], we have:

|§02n — $92¥] < ﬁjotw' W) = p()) ™ fun(s) — u(s)lds,

Where
t
un () = f(t, Y (), DLy, (), j k(¢ smzi"yn(s)ds).
0

and
u(t) = f (t,y(t). DLy (D), f k (¢, smgi”y(s)ds>
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are two continuous functions defined over [0, T] such that

Jun () — u(®)]
f(t Ya(0, Dy (0), f k (¢, 5)D% yn(S)dS)—f(t y@©), D5 y(0), f k (t,5)D% y(s)ds> ,

< 2@ (Iyn(t) YOI+ DLy (®) = DLy (D) +f lle(t, )1 | DL v (s) — DZ’J”)/(S)MS) D,

[l
S —llyn =l

M
Since y,, - v, then we get u, (t) » u(t) as n - o for each t € [0,T]. And let € > 0 be such that, for each
t € [0,T], we have |u, (t)| < /2 and |u(t)| < /2 which implies that |u,,(s) — u(s)| < (Ju,(s)| + [u(s)]) <
¢ for each t € [0, T]. Applying Lebesgue Dominated Convergence Theorem, it implies that ||@,y,, — §,y|| = 0
as n — oo, Consequently, operator g, is continuous. In addition, we have

1 1Ay ]l + 1
y < <

due to definitions of @. This proves that g, is uniformly bounded on B,.

Ultimately, we demonstrate that the mapping g, transforms bounded sets into equicontinuous sets within
C(J, R), specifically ensuring the equicontinuity of B,.

AssumethatVe>0,38 >0andt,t, €], t; <ty |t, —t;| <&.Then, we have

1923(85) — 92y (61)] <m f ¥ ) (@) — ) = @) — ) ) lus)lds,

< (Illllllyll) W) —pt)™)

M al (a)

As t, approaches t,, the expression on the right-hand side of the aforementioned inequality becomes
independent of y and approaches zero. Thus,

|02y (t2) — $02y(t1)| = 0, V [t; —t1] = 0.

Thus, if g is uniformly continuous on B,, where g represents a compact operator, the Arzela-Ascoli theorem

guarantees that g: C([0,T],R) - C([0,T], R) is both continuous and compact. Consequently, all the conditions
of Krasnoselskii’s fixed point theorem are satisfied, and the operator § = o, + o, possesses a fixed point
y(t) € C[0,T] on B, satisfying the boundary conditions in (1). As a result, y(t) serves as a solution of the

NLIFDE (1). This concludes the proof. O

Uniqueness of Solutions

Next, we ascertain the unique solutions to the nonlinear fractional differential equation NLIFDE (1). This
exploration into uniqueness adds a valuable dimension to our understanding of the solutions in the context of
our studied equation.

Theorem 2.3. If assumptions (H;) and (H,) hold, and if

() —p©)“\ 121l
(“ ra+1) | ="

then operator g: C(J,R) - C(J, R) presented in Definition 2.2 is a contraction.
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Proof. Assuming that conditions (H;) and (H,) are satisfied, let’s examine the continuous functions y, (t) and
v, (t) belonging to C(J, R). In this context, for any t € J, the following applies:

|80(}’1(t)) - 80(3’2 (t))|

< 0131 (D) — 21(32(D) + 22(31 (D) — 22(y2(D)]
< |11 () = 91(72(O) 1 +H22 (11 ) — 22 (v.@®))|

_ 0 a-1 T
s(w(t) r(fzg 4 flp' )|z (s) — uy(s)|ds

T
Lo - $(0)“” ‘P(T)(f ¢’(S)Iu1(s)—uz(s)|ds)

I'a-—1)

W @@ - pE) ) = u ) ds
0
1T 2
45 [ W @D - w©) ) - ) ds
1 OT 2
wo-sor| 2 | ©his(®) ~ () ds (o) ~90))
I'(a—2) /

—p(T) |
\ f W )T = $())lua(s) — us ()] ds

T
(1) j W (s (s) — up(s)lds

|

T _ 0 a—2
- 2(‘1 lﬁ(u) ) (w(T)(lﬂ(T) —(0)) +

3 3
R GEO) N CGRO))

M -y©@)

= F((X) ”ul _u2”

s =l + M>

NUGK P(0)°
I'la—2)

6 (¢2(T) o)’ lluy — w,
—p*(T)(Y(T) —9(0)) + (M) ————

CEP Ik 1C0) B

I'a+1)

Taking supremum for all t € T, we have

(¥(T) — ()" . (¥(T) — p(0))” ((T) - w(O))“‘l\

F@+1) ORI
9(:(®) - £(20)] < J“’;?&f%”a+2(l”3(17:za‘_¢2(§’))a iy —
NI St ST
((w(lvjza +w1(§>>) (w(r)r( 1/;(0)) + o) (wm w(O)) \
I
L AT (w) w(;)))) +o(D) (w(z)r an_(t;))) _
(x+(¢(2a+g’)) )%u = all.
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Thus,

o) — oI < Ally;, — y2ll,

(w(r)—w(o))") I

where A4 = (N + @D gVl

By taking 4 < 1, we obtain that the operator g is contraction.

Applying Krasnselskii’s fixed point theorem, we deduce that the nonlinear fractional differential equation
NLIFDE (1) has at least one solution. O

Theorem 2.2. If assumptions (H;) and (H,) hold, and if

(W —p©)“\ 121l
<N+ I'a+1) M

then NLIFDE (1) has a unique solutionon J = [0, T].

Proof. The existence of at least one solution for NLIFDE (1) has been established in Theorem 2.1. Furthermore,
Lemma 2.3 demonstrates that the operator g exhibits contraction properties. Consequently, through Banach’s
fixed point theorem, we conclude that the operator g possesses a single fixed point, which corresponds to a

unique solution of the NLIFDE (1) over the interval J = [0, T]. Thus, the proof is now fully accomplished. O

Numerical Example

Consider the following NLIFDE:

323 1 - o3
11 V2EFI|11 4+ y() + D72y () + [ 3¢9 D5 (s)ds
SD?’Zt3+1y(t) = i i Jy 4 for all t € [0,1],

- 2t+1 3 11
5% 1+y()+ ©§‘2t3+1y(t) +2 fol e3(t=9) DT’ZtBHy(s)ds

3

8 2t341
y( +D%, " y(1) =15, (13)
826341 13
Dg+ y(0) + ®g+

) = 2.5,

1yt341 3

, =
DI (0 +DE

(1) = 35.

In this problem, we have a = % B = % P(t) = 2t3 + 1 which is an increasing function on [0,1], K(t,s) =

e3(t—s), o, = 15,0, = 2.5, 03 = 3.5.

It is clear that the assumptions (H;) and (H,) are satisfied, and f is a mutually continuous function such that for
any u, v,w € R,and t € [0,1] we have

V2t +1
If(tw,v,w)| = W(ll + [ul + [v] + [w)),
. VZt+1 11 1
with A(8) = -~ F = Il = s and K = e€®.

It is clear from Theorem 2.1 that the nonlinear fractional integral differential equation (NLIFDE) (13) possesses
at least one solution within the interval [0,1] since

AR ( 1 )17.8487

~\59¢/0.86154

~ 0.129177 < 1,
M

Moreover, by employing Theorem 2.2,the solution is unique since
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(W (M) =)\ Il
[ (0 -y Y11

—— =~ 0.142895 < 1.
r'a+1)

Conclusion

In conclusion, this article has delved into the intricate realm of nonlinear implicit y-Caputo fractional
differential equations (NLIFDES) with two-point fractional derivatives boundary conditions in Banach algebra.
Through the application of Banach’s and Krasnoselskii’s fixed point theorems, we have rigorously established
the existence and uniqueness of solutions within this complex mathematical framework.

Our investigation sheds light on the behavior of solutions for NLIFDEs, providing valuable insights into their
dynamics and properties. By addressing this challenging class of differential equations, we contribute to
advancing the understanding of nonlinear fractional differentials and their applications across diverse fields,
including mathematical physics, engineering sciences, and computational mathematics.

Future research endeavors could extend this work by exploring additional classes of NLIFDEs with different
types of boundary conditions or investigating the stability and numerical methods for solving such equations. By
continuing to push the boundaries of knowledge in fractional calculus, we can unlock new avenues for modeling
and analyzing complex phenomena in various scientific and engineering disciplines.
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