
 

The Eurasia Proceedings of Science, Technology, 

Engineering & Mathematics (EPSTEM) 

ISSN: 2602-3199 

 

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting 

all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

- Selection and peer-review under responsibility of the Organizing Committee of the Conference 

© 2024 Published by ISRES Publishing: www.isres.org 

 

 

 

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2024 

  

Volume 28, Pages 375-381 

 

ICBASET 2024: International Conference on Basic Sciences, Engineering and Technology 

 

 

General Upper Bounds for the Numerical Radii of Hilbert Space Operators 
 

Mohammed Al-Dolat  
Jordan University of Science and Technology 

 

 

Abstract: We present a collection upper bounds for the numerical radii of a certain 2 × 2 operator matrices. We 

use these bounds to improve on some known numerical radius inequalities for powers of Hilbert space operators. In 

particular, we show that if 𝐴  is a bounded linear operator on a complex Hilbert space, then 𝑤2𝑟(𝐴) ≤
1+𝛼

8
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖ +

1+𝛼

4
𝑤(|𝐴|𝑟|𝐴∗|𝑟) +

1−𝛼

2
𝑤𝑟(𝐴2)  for every r ≥ 1 and α ∈ [0,1]. This substantially improves 

on the existing inequality 𝑤2𝑟(𝐴) ≤
1

2
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖. Here 𝑤(. ) and ||. || denote the numerical radius and the 

usual operator norm, respectively.   

 

Keywords: Numerical radius, Usual operator norm,  Operator matrix,  Buzano  
,
s inequality.  

 

 

Introduction 
 

Let ℬ(ℋ) be the 𝐶∗ −algebra of all bounded linear operators on the complex Hilbert space ℋ. For 𝑇 ∈ ℬ(ℋ), the 

numerical radius 𝑤(. ) and the usual operator norm ||. || are, respectively, defined by  

 

𝑤(𝐴) = sup
||𝑥||=1

|⟨𝐴𝑥, 𝑥⟩|  and  ‖𝐴‖ = sup
||𝑥||=1

‖𝐴𝑥‖. 

 

It is clear that 𝑤(. ) defines a norm on ℬ(ℋ). Moreover, it is known that 𝑤(. ) is equivalent to the usual operator 

norm ||. || on ℬ(ℋ) and with the following two sided inequality  

 

 
1

2
‖𝐴‖ ≤ 𝑤(𝐴) ≤ ‖𝐴‖  for every 𝐴 ∈ ℬ(ℋ). (1.1) 

 

An important property for the numerical radius is the power inequality, which says that  

 

𝑤(𝐴𝑛) ≤ 𝑤𝑛(𝐴)  for every 𝑛 ∈ ℕ and 𝐴 ∈ ℬ(ℋ). 
 

In Kittaneh (2005), the author provided refinements of the bounds in (1.1) by showing that  

 

 
1

4
‖|𝐴|2 + |𝐴∗|2‖ ≤ 𝑤2(𝐴) ≤

1

2
‖|𝐴|2 + |𝐴∗|2‖ for every 𝐴 ∈ ℬ(ℋ). (1.2) 

 

In El-Haddad and Kittaneh (2007) the authors provided a generalization for the second inequality in (1.2) by showing 

that  

 𝑤2𝑟(𝐴) ≤
1

2
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖ for every r ≥ 1 and A ∈ ℬ(ℋ). (1.3) 

http://www.isres.org/
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In Dragomir (2009), the author presented an important upper bound for the numerical radii of products of two 

operators by showing that if 𝐴, 𝐵 ∈ ℬ(ℋ) and 𝑟 ≥ 1, then  

 

 𝑤𝑟(𝐵∗𝐴) ≤
1

2
‖|𝐴|2𝑟 + |𝐵|2𝑟‖. (1.4) 

 

Recently in Al-dolat and Kittaneh (2023), the authors gave another improvement for the inequality in (1.3) by showing 

that if 𝐴 ∈ ℬ(ℋ), then  

 

 𝑤2𝑟(𝐴) ≤
1+𝛼

4
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖ +

1−𝛼

2
𝑤𝑟(𝐴2) (1.5) 

 

for every 𝛼 ∈ [0,1] and 𝑟 ≥ 1. 
 

The direct sum of 2 −copies of ℋ is denoted by ℋ(2) = ℋ ⊕ ℋ. Due to this decomposition, any 𝑇 ∈ ℬ(ℋ(2)) 

can be represented as a 2 × 2 operator matrix of the form 𝑇 = [
𝐴 𝐵
𝐶 𝐷

], where 𝐴, 𝐵, 𝐶, 𝐷 ∈ ℬ(ℋ). Moreover, if 

𝑥 = (
𝑥1

𝑥2
) ∈ ℋ(2), then 𝑇𝑥 is defined by 𝑇𝑥 = 𝑇 (

𝑥1

𝑥2
) = (

𝐴𝑥1 + 𝐵𝑥2

𝐶𝑥1 + 𝐷𝑥2
). To learn more about the numerical radii of 

operator of matrices and their application in finding estimates for the zeros of complex polynomials, one cane refer to 

Abo-Omar and Kittaneh (2015), Al-Dolat et al. (2016), Bani-Domi and Kittaneh (2008), Bani-Domi and Kittaneh 

(2009), Bani Domi and Kittaneh (2012) and Hirzallah et al. (2011). 

 

The goal of this paper is to present several new upper bounds for the numerical radii of 2 × 2 operator matrices, then 

to refine the inequalities in (1.3) based on those bounds. Moreover, we provide refinements of earlier numerical radius 

inequalities due to Al-Dolat and Kittaneh (2023).  

 

 

Main Results 
 

To achieve our goal, we recall some well-known lemmas in order to establish our results. The first lemma is a 

consequence of the spectral theorem and Jensen  
,
s inequality see Kittaneh (2015).  

 

Lemma 2.1  Let 𝐴 ∈ ℬ(ℋ) be a positive operator and 𝑥 ∈ ℋ be any unit vector. Then, for 𝑟 ≥ 1, we have  

 

 ⟨𝐴𝑥, 𝑥⟩𝑟 ≤ ⟨𝐴𝑟𝑥, 𝑥⟩. 
 

The second lemma deals with non-negative convex functions and positive operators, and it can be found in Aujla and 

Sivla (2003).  

 

Lemma 2.2  Let 𝑓 be a non-negative convex function on [0, ∞) and 𝐴, 𝐵 ∈ ℬ(ℋ) be positive operators. Then  

 

 ‖𝑓 (
𝐴+𝐵

2
)‖ ≤ ‖

𝑓(𝐴)+𝑓(𝐵)

2
‖. 

 

In particular,  

 

 ‖(𝐴 + 𝐵)𝑟‖ ≤ 2𝑟−1‖𝐴𝑟 + 𝐵𝑟‖   for every  𝑟 ≥ 1. 
 

The third lemma relates to certain 2 × 2 operator matrices and can be found in Hirzallah, Kittaneh and Shebrawi 

(2011).  

 

Lemma 2.3  Let 𝐴, 𝐵 ∈ ℬ(ℋ). Then  

 

(a) 𝑤 ([
A 0
0 𝐵

]) = max{𝑤(𝐴), 𝑤(𝐵)}; 

 



International Conference on Basic Sciences, Engineering and Technology (ICBASET), May 02-05, 2024, Alanya/Turkey 

 

377 

 

(b) 𝑤 ([
A B
𝐵 𝐴

]) = max{𝑤(𝐴 + 𝐵), 𝑤(𝐴 − 𝐵)}. 

 

In particular,  

 

 𝑤 ([
0 B
𝐵 0

]) = 𝑤(𝐵). 

 

The next two lemmas can be found in Al-Dolat and Kittaneh (2023).  

 

Lemma 2.4  Let 𝑥, 𝑦, 𝑧 ∈ ℋ with ‖𝑧‖ = 1. Then  

 

 |⟨𝑥, 𝑧⟩⟨𝑧, 𝑦⟩|𝑟 ≤
1+𝛼

2
‖𝑥‖𝑟‖𝑦‖𝑟 +

1−𝛼

2
|⟨𝑥, 𝑦⟩|𝑟  

 

for every 𝛼 ∈ [0,1] and 𝑟 ≥ 1.  

  

Lemma 2.5  Let 𝑥, 𝑦, 𝑧 ∈ ℋ with ||𝑧|| = 1. Then  

 

 |⟨𝑥, 𝑧⟩⟨𝑧, 𝑦⟩|2 ≤
1+𝛼

4
‖𝑥‖2‖𝑦‖2 +

1−𝛼

4
|⟨𝑥, 𝑦⟩|2 +

1

2
‖𝑥‖‖𝑦‖|⟨𝑥, 𝑦⟩| 

 

for every 𝛼 ∈ [0,1].  

 

The final lemma can be found in Al-Dolat and Al-Zoubi.  

 

Lemma 2.6  Let 𝑆, 𝑅 ∈ ℬ(ℋ) be positive operators and let 𝑞 ≥ 1. Then  

 

 sup
𝑥∈ℋ,||𝑥||=1

(⟨𝑆𝑥, 𝑥⟩𝑞⟨𝑅𝑥, 𝑥⟩𝑞) ≤
1

4
‖𝑆2𝑞 + 𝑅2𝑞‖ +

1

2
min{𝑤(𝑆𝑞𝑅𝑞), 𝑤(𝑆𝑞𝑅𝑞)}. 

 

We begin our results by the following theorem, which provides a new upper bound for the numerical radii of 2 × 2 

operator matrices, that will be used to give a refinement of the inequality (1.3).  

 

Theorem 2.7  Let 𝐵, 𝐶 ∈ ℬ(ℋ). Then  

 

 𝑤2𝑟 ([
0 B
𝐶 0

]) ≤
1+𝛼

8
max{‖|𝐶|2𝑟 + |𝐵∗|2𝑟‖, ‖|𝐵|2𝑟 + |𝐶∗|2𝑟‖} 

 

+
1 + 𝛼

4
min{max{𝑤(|𝐶|𝑟|𝐵∗|𝑟), 𝑤(|𝐵|𝑟|𝐶∗|𝑟)}, max{𝑤(|𝐵∗|𝑟|𝐶|𝑟), 𝑤(|𝐶∗|𝑟|𝐵|𝑟)}} 

 

     +
1−𝛼

2
max{𝑤𝑟(𝐵𝐶), 𝑤𝑟(𝐶𝐵)} 

 

for every 𝛼 ∈ [0,1] and 𝑟 ≥ 1.  

 

Proof. Let 𝑇 = [
0 B
𝐶 0

] and let 𝑥 ∈ ℋ(2) be any unit vector. Then we have  

 

 |⟨𝑇𝑥, 𝑥⟩|2𝑟 = |⟨𝑇𝑥, 𝑥⟩⟨𝑥, 𝑇∗𝑥⟩|𝑟 
 

 ≤
1+𝛼

2
‖𝑇𝑥‖𝑟‖𝑇∗𝑥‖𝑟 +

1−𝛼

2
|⟨𝑇𝑥, 𝑇∗𝑥⟩|𝑟   (by Lemma 2.4) 

 

 =
1+𝛼

2
⟨|𝑇|2𝑥, 𝑥⟩

𝑟

2⟨|𝑇∗|2𝑥, 𝑥⟩
𝑟

2 +
1−𝛼

2
|⟨𝑇2𝑥, 𝑥⟩|𝑟 . 

 

Thus,  
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 𝑤2𝑟(𝑇) = sup
‖𝑥‖=1

|⟨𝑇𝑥, 𝑥⟩|2𝑟 

 

 ≤
1+𝛼

2
sup

‖𝑥‖=1
(⟨|𝑇|2𝑥, 𝑥⟩

𝑟

2⟨|𝑇∗|2𝑥, 𝑥⟩
𝑟

2) +
1−𝛼

2
𝑤𝑟(𝑇2) 

 

 ≤
1+𝛼

8
‖|𝑇|2𝑟 + |𝑇∗|2𝑟‖ +

1+𝛼

4
min{𝑤(|𝑇|𝑟|𝑇∗|𝑟), 𝑤(|𝑇∗|𝑟|𝑇|𝑟)} +

1−𝛼

2
𝑤𝑟(𝑇2) 

 

 =
1+𝛼

8
‖[

|𝐶|2𝑟 + |𝐵∗|2𝑟 0

0 |𝐵|2𝑟 + |𝐶∗|2𝑟]‖ 

 

    +
1+𝛼

4
min {𝑤 ([

|𝐶|𝑟|𝐵∗|𝑟 0
 0 |𝐵|𝑟|𝐶∗|𝑟]) , 𝑤 ([

|𝐵∗|𝑟|𝐶∗|𝑟 0
0 |𝐶∗|𝑟|𝐵∗|𝑟])} 

 

    +
1−𝛼

2
𝑤𝑟 ([

BC 0
0 𝐶𝐵

]) 

 

 ≤
1+𝛼

8
max{‖|𝐶|2𝑟 + |𝐵∗|2𝑟‖, ‖|𝐵|2𝑟 + |𝐶∗|2𝑟‖} 

 

+
1 + 𝛼

4
min{max{𝑤(|𝐶|𝑟|𝐵∗|𝑟), 𝑤(|𝐵|𝑟|𝐶∗|𝑟)}, max{𝑤(|𝐵∗|𝑟|𝐶|𝑟), 𝑤(|𝐶∗|𝑟|𝐵|𝑟)}} 

 

     +
1−𝛼

2
max{𝑤𝑟(𝐵𝐶), 𝑤𝑟(𝐶𝐵)} 

 

This completes the proof of the theorem.  

 

As a direct consequence of the above theorem we have the following refinement of the inequality (1.5).  

 

Corollary 2.8  Let 𝐴 ∈ ℬ(ℋ). Then  

 

 𝑤2𝑟(𝐴) ≤
1+𝛼

8
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖ +

1+𝛼

4
𝑤(|𝐴|𝑟|𝐴∗|𝑟) +

1−𝛼

2
𝑤𝑟(𝐴2) 

 

        ≤
1+𝛼

4
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖ +

1−𝛼

2
𝑤𝑟(𝐴2) 

 

for every 𝛼 ∈ [0,1] and 𝑟 ≥ 1.  

  

Proof. By letting 𝐵 = 𝐶 = 𝐴 in Theorem 2.7, we get  

 

 𝑤2𝑟(𝐴) ≤ 𝑤2𝑟 ([
0 A
𝐴 0

])   (by Lemma2.1) 

 

       ≤
1+𝛼

8
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖             +                   +

1+𝛼

4
𝑤(|𝐴|𝑟|𝐴∗|𝑟)

1−𝛼

2
𝑤𝑟(𝐴2)   (by Theorem 2.7) 

 

       ≤
1+𝛼

8
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖ +

1+𝛼

8
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖          +                   

1−𝛼

2
𝑤𝑟(𝐴2)   (by the inequality (1.4)) 

 

        =
1+𝛼

4
‖|𝐴|2𝑟 + |𝐴∗|2𝑟‖ +

1−𝛼

2
𝑤𝑟(𝐴2) 

  

Remark 2.9  The upper bound in Corollary 2.8 is a refinement of [Al-Dolat and Kittaneh (2023), Theorem 2.7], 

namely  
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𝑤2𝑟 ([
0 B
𝐶 0

]) ≤
1 + 𝛼

4
max{‖|𝐵|2𝑟 + |𝐶∗|2𝑟‖, ‖|𝐶|2𝑟 + |𝐵∗|2𝑟‖} +

1 − 𝛼

2
max{𝑤𝑟(𝐶𝐵), 𝑤𝑟(𝐵𝐶)} 

 

To explain this, note that  

 

 𝑤2𝑟 ([
0 B
𝐶 0

]) ≤
1+𝛼

8
max{‖|𝐵|2𝑟 + |𝐶∗|2𝑟‖, ‖|𝐶|2𝑟 + |𝐵∗|2𝑟‖} 

 

+
1 + 𝛼

4
min{max{𝑤(|𝐶|𝑟|𝐵∗|𝑟), 𝑤(|𝐵|𝑟|𝐶∗|𝑟)}, max{𝑤(|𝐵∗|𝑟|𝐶|𝑟), 𝑤(|𝐶∗|𝑟|𝐵|𝑟)}} 

 

          +
1−𝛼

2
max{𝑤𝑟(𝐶𝐵), 𝑤𝑟(𝐵𝐶)} 

 

          ≤
1+𝛼

8
max{‖|𝐵|2𝑟 + |𝐶∗|2𝑟‖, ‖|𝐶|2𝑟 + |𝐵∗|2𝑟‖} 

 

           +
1+𝛼

8
max{‖|𝐵|2𝑟 + |𝐶∗|2𝑟‖, ‖|𝐶|2𝑟 + |𝐵∗|2𝑟‖} 

           +
1−𝛼

2
max{𝑤𝑟(𝐶𝐵), 𝑤𝑟(𝐵𝐶)}   (by the inequality (1.4)) 

 

 =
1+𝛼

4
max{‖|𝐵|2𝑟 + |𝐶∗|2𝑟‖, ‖|𝐶|2𝑟 + |𝐵∗|2𝑟‖} +

1−𝛼

2
max{𝑤𝑟(𝐶𝐵), 𝑤𝑟(𝐵𝐶)}. 

 

We are now in a position to prove our next result.  

 

Theorem 2.10  Let 𝐵, 𝐶 ∈ ℬ(ℋ). Then  

 

 𝑤4 ([
0 B
𝐶 0

]) ≤
1+𝛼

16
max{‖|𝐵|4 + |𝐶∗|4‖, ‖|𝐶|4 + |𝐵∗|4‖} 

 

+
1 + 𝛼

8
min{max{𝑤(|𝐶|2|𝐵∗|2), 𝑤(|𝐵|2|𝐶∗|2)}, max{𝑤(|𝐵∗|2|𝐶|2), 𝑤(|𝐶∗|2|𝐵|2)}} 

 

          +
1−𝛼

4
max{𝑤2(𝐶𝐵), 𝑤2(𝐵𝐶)} 

 

          +
1

4
max{𝑤(𝐶𝐵), 𝑤(𝐵𝐶)}max{‖|𝐵|2 + |𝐶∗|2‖, ‖|𝐶|2 + |𝐵∗|2‖} 

 

for every 𝛼 ∈ [0,1].  

  

Proof. Let 𝑇 = [
0 B
𝐶 0

] and let 𝑥 ∈ ℋ(2) be any vector. Then  

 

 |⟨𝑇𝑥, 𝑥⟩|4 = |⟨𝑇𝑥, 𝑥⟩⟨𝑥, 𝑇∗𝑥⟩|2 
 

 ≤
1+𝛼

4
‖𝑇𝑥‖2‖𝑇∗𝑥‖2 +

1−𝛼

4
|⟨𝑇𝑥, 𝑇∗𝑥⟩|2 +

1

2
‖𝑇𝑥‖‖𝑇∗𝑥‖|⟨𝑇𝑥, 𝑇∗𝑥⟩| 

 

 ≤
1+𝛼

4
(|⟨|𝑇|2𝑥, 𝑥⟩||⟨|𝑇∗|2𝑥, 𝑥⟩|) +

1−𝛼

4
|⟨𝑇2𝑥, 𝑥⟩|2 +

1

4
|⟨𝑇2𝑥, 𝑥⟩|(‖𝑇𝑥‖2 +             ‖𝑇∗𝑥‖2) 

(by the triangle inequality) 
 

 =
1+𝛼

4
(|⟨|𝑇|2𝑥, 𝑥⟩||⟨|𝑇∗|2𝑥, 𝑥⟩|) +

1−𝛼

4
|⟨𝑇2𝑥, 𝑥⟩|2 +

1

4
|⟨𝑇2𝑥, 𝑥⟩|⟨(|𝑇|2 +            |𝑇∗|2)𝑥, 𝑥⟩. 

 

Thus,  

 

 𝑤4(𝑇) = sup
‖𝑥‖=1

|⟨𝑇𝑥, 𝑥⟩|4 
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 ≤
1+𝛼

4
sup

‖𝑥‖=1
(|⟨|𝑇|2𝑥, 𝑥⟩||⟨|𝑇∗|2𝑥, 𝑥⟩|) +

1−𝛼

4
𝑤2(𝑇2) +

1

4
𝑤(𝑇2)‖|𝑇|2 + |𝑇∗|2‖ 

 

 ≤
1+𝛼

16
‖|𝑇|4 + |𝑇∗|4‖ +

1+𝛼

8
min{𝑤(|𝑇|2|𝑇∗|2), 𝑤(|𝑇∗|2|𝑇|2)} 

 

    +
1−𝛼

4
𝑤2(𝑇2) +

1

4
𝑤(𝑇2)‖|𝑇|2 + |𝑇∗|2‖ 

 

 =
1+𝛼

16
max{‖|𝐵|4 + |𝐶∗|4‖, ‖|𝐶|4 + |𝐵∗|4‖} 

 

+
1 + 𝛼

8
min{max{𝑤(|𝐶|2|𝐵∗|2), 𝑤(|𝐵|2|𝐶∗|2)}, max{𝑤(|𝐵∗|2|𝐶|2), 𝑤(|𝐶∗|2|𝐵|2)}} 

 

    +
1−𝛼

4
max{𝑤2(𝐶𝐵), 𝑤2(𝐵𝐶)} 

 

    +
1

4
max{𝑤(𝐶𝐵), 𝑤(𝐵𝐶)}max{‖|𝐵|2 + |𝐶∗|2‖, ‖|𝐶|2 + |𝐵∗|2‖}. 

  

As a special case of Theorem 2.10 we have the following refinement of the inequality (1.3) for the special 𝑟 = 2.  

 

Corollary 2.11  Let 𝐴 ∈ ℬ(ℋ) and let 𝛼 ∈ [0,1]. Then  

 

𝑤4(𝐴) ≤
1 + 𝛼

16
‖|𝐴|4 + |𝐴∗|4‖ +

1 + 𝛼

8
min{𝑤(|𝐴|2|𝐴∗|2), 𝑤(|𝐴∗|2|𝐴|2)} 

 

       +
1−𝛼

4
𝑤2(𝐴2) +

1

4
𝑤(𝐴2)‖|𝐴|2 + |𝐴∗|2‖ 

 

      ≤
1

2
‖|𝐴|4 + |𝐴∗|4‖. 

  

Proof. Let 𝐵 = 𝐶 = 𝐴 in the above theorem. Then we have  

 

 𝑤4(𝐴) = 𝑤 ([
0 𝐴
𝐴 0

])  (by Lemma2.1) 

 

      ≤
1+𝛼

16
‖|𝐴|4 + |𝐴∗|4‖ +

1+𝛼

8
min{𝑤(|𝐴|2|𝐴∗|2), 𝑤(|𝐴∗|2|𝐴|2)} 

 

       +
1−𝛼

4
𝑤2(𝐴2) +

1

4
𝑤(𝐴2)‖|𝐴|2 + |𝐴∗|2‖  (by Theorem 2.10) 

 

         ≤
1+𝛼

16
‖|𝐴|4 + |𝐴∗|4‖ +

1+𝛼

16
‖|𝐴|4 + |𝐴∗|4‖ +

1−𝛼

8
‖|𝐴|4 + |𝐴∗|4‖     +

1

8
‖|𝐴|2 + |𝐴∗|2‖2 

(by the inequality (1.4)) 

 

      =
1

4
‖|𝐴|4 + |𝐴∗|4‖ +

1

8
‖(|𝐴|2 + |𝐴∗|2)2‖ 

 

   (by the fact: If X ∈ ℬ(ℋ) is normaland n ∈ ℕ, then||Xn|| = ||X||n) 
 

      ≤
1

4
‖|𝐴|4 + |𝐴∗|4‖ +

1

4
‖|𝐴|4 + |𝐴∗|4‖  (by Lemma 2.2) 

 

      =
1

2
‖|𝐴|4 + |𝐴∗|4‖. 

 

At the end of this paper, we remark that the upper bound obtained in Theorem 2.10 is better than the upper bound given 

in Al-Dolat and Kittaneh (2023), (Theorem 2.12).  
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