

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2024

Volume 28, Pages 382-389

ICBASET 2024: International Conference on Basic Sciences, Engineering and Technology

On Graded 2-n-Submodules of Graded Modules Over Graded Commutative Rings

Khaldoun Al-Zoubi

Jordan University of Science and Technology

Abstract: In this article, all rings are commutative with a nonzero identity. Let G be a group with identity e, R be a G-graded commutative ring, and M be a graded R-module. The concept of graded n-ideals was introduced and studied by Al-Zoubi et al. (2019). A proper graded ideal I of R is said to be a graded n-ideal of R if whenever $r, s \in h(R)$ with $rs \in I$ and $r \notin Gr(0)$, then $s \in I$. Recently the notion of graded n-ideals was extended to graded n-submodules by Al-Azaizeh and Al-Zoubi (2023). A proper graded submodule N of a graded R-module M is said to be a graded n-submodule if whenever $t \in h(R)$, $m \in h(R)$ with $tm \in N$ and $t \notin Gr(Ann_R(M))$, then $m \in N$. In this study, we introduce the concept of graded 2-n-submodules of graded nodules over graded commutative rings, generalizing the concept of graded n-submodules. We investigate some characterizations of graded 2-n-submodules and investigate the behavior of this structure under graded homomorphism and graded localization. A proper graded submodule U of M is said to be a graded 2-n-submodule if whenever $r, s \in h(R), m \in (M)$ and $rsm \in U$, then $rs \in Gr(Ann_R(M))$ or $rm \in U$ or $tm \in U$.

Keywords: Graded 2-n-submodules, Graded n-submodule, Graded 2-n ideals, Graded 2-nil-ideals

Introduction

Throughout this article, we assume that R is a commutative G-graded ring with identity and M is a unitary graded R-module. The concept of graded primary ideal was introduced and studied in Refai and Al-Zoubi (2004). In Al-Zoubi et al. (2019), the concept of graded 2-absorbing ideals was introduced and studied as a generalization of graded prime ideals. The concept of graded 2-absorbing submodules was introduced and studied and studied in Al-Zoubi and Abu-Dawwas (2014). In Al-Zoubi et al. (2017), the concept of graded 2-absorbing primary ideals was presented and studied. As a generalization of graded 2-absorbing primary ideals, the authors introduced and studied graded 2-absorbing primary submodules in Celikel (2016). In 2019, different type of graded ideal, namely, graded n-ideal, was introduced in Al-Zoubi and Al-Turman (2019). Recently, in Al-Azaizeh and Al-Zoubi (2023), the notion of graded n-ideals was extended to graded n-submodules. In this paper, we introduce the concept of graded 2-n-submodules of graded modules over graded commutative rings, generalizing the concept of graded n-submodules. A number of results concerning graded 2-n-submodules are given. As an example, we characterized graded 2-n-submodules and studied graded 2-n-submodules under graded localization.

Preliminaries

In this section we will give the definitions and results which are required in the next section.

Definition 2.1.

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the Conference

© 2024 Published by ISRES Publishing: <u>www.isres.org</u>

- Let G be a group with identity e and R be a commutative ring with identity 1_R. Then R is G-graded ring if there exist additive subgroups R_g of R indexed by the elements g ∈ G such that R = ⊕ R g and R_gR_h ⊆ R_{gh} for all g, h ∈ G. The elements of R_g are called homogeneous of degree g. The set of all homogeneous elements of R is denoted by h(R), i.e. h(R) = ⋃ R g, see (Nastasescu et al., 2004).
- 2. Let $R = \bigoplus_{g \in G} R_g$ be *G*-graded ring, an ideal *P* of *R* is called a graded ideal if $P = \sum_{h \in G} P \cap R_h = \sum_{h \in G} P_h$, see (Nastasescu et al., 2004).
- 3. A left *R*-module *M* is said to be a *G*-graded *R*-module if M = ⊕ M_g with R_gM_h ⊆ M_{gh} for all g, h ∈ G, where M_g is an additive subgroup of *M* for all g ∈ G. The elements of M_g are called homogeneous of degree g. The set of all homogeneous elements of *M* is denoted by h(M), i.e, h(M) = ⋃ _{g∈G} M_g. Note that M_h is an R_g-module for every h ∈ G. For more properties, see (Nastasescu et al., 2004).
- 4. A submodule K of M is called a graded submodule of M if $K = \bigoplus_{h \in G} (K \cap M_h) := \bigoplus_{h \in G} K_h$, see (Nastasescu et al., 2004).
- 5. If K is graded submodule of M, then $(K_R M) = \{a \in R \mid aM \subseteq K\}$ is graded ideal of R. Furthermore, the annihilator of K in R is denoted and defined by $Ann_R(K) = \{a \in R \mid aK = \{0\}\}$, see (Atani, 2006).

Definition 2.2.

- 1. A proper graded submodule U of M is said to be a graded n-submodule (briefly, gr-n-submodule) if whenever $r \in h(R)$, $m \in h(M)$ with $rm \in U$ and $r \notin Gr(Ann_R(M))$, then $m \in U$, see (Al-Azaizeh & Al-Zoubi, 2023).
- 2. The graded radical of a graded ideal *I*, denoted by Gr(I), is the set of all $t = \sum_{g \in G} t_g \in R$ such that for each $g \in G$ there exists $n_g \in \mathbb{N}$ with $t_g^{n_g} \in I$. Note that, if *r* is a homogeneous element, then $r \in Gr(I)$ if and only if $r^n \in I$ for some $n \in \mathbb{N}$, see (Refai & Al-Zoubi, 2004).
- 3. A proper graded submodule P of M is called a graded prime (briefly, gr-prime) submodule if whenever $a \in h(R)$ and $m \in h(M)$ with $am \in P$, then either $a \in (P:_R M)$ or $m \in P$, see (Atani, 2006).
- 4. A proper graded submodule U of M is called graded primary (briefly, gr-primary) submodule if $rm \in U$, then either $m \in U$ or $r \in Gr((U_{R}M))$, where $r \in h(R)$ and $m \in h(M)$, see (Oral et al., 2011)
- 5. A proper graded submodule N of M is said to be a graded 2-absorbing (briefly, gr-2-absorbing) submodule of M if whenever $r, s \in h(R)$ and $m \in h(M)$ with $rsm \in N$, then either $rm \in N$ or $sm \in N$ or $rs \in (N:_R M)$, see (Al-Zoubi & Abu-Dawwas, 20014).
- 6. A proper graded submodule U of M is called graded primary (briefly, gr-primary) submodule if $rm \in U$, then either $m \in U$ or $r \in Gr((U_RM))$, where $r \in h(R)$ and $m \in h(M)$, see (Oral et al., 2011).
- 7. The graded radical of a graded submodule *N* of *M*, denoted by $Gr_M(N)$, is defined to be the intersection of all graded prime submodules of *M* containing *N*. If *N* is not contained in any graded prime submodule of *M*, then $Gr_M(N) = M$, see (Atani & Farzalipour, 2007).
- 8. A proper graded submodule N of M is said to be a graded 2-absorbing (briefly, gr-2-absorbing) primary submodule of M if whenever $r, s \in h(R)$ and $m \in h(M)$ with $rsm \in N$, then $rs \in (N:_R M)$ or $rm \in Gr_M(N)$ or $sm \in Gr_M(N)$, see (Celikel, 2016).

- 9. A proper graded ideal I of R is said to be a graded n-ideal (briefly, gr-n-ideal) of R if whenever $r, s \in h(R)$ with $rs \in I$ and $r \notin Gr(0)$, then $s \in I$, see (Al-Zoubi & Al-Turman, 2019).
- 10. A proper graded ideal P of R is said to be graded 2-nil (briefly, gr-2-nil) ideal if whenever, $a, b, c \in h(\mathfrak{F})$ with $abc \in P$, then $ab \in Gr(0)$ or $ac \in P$ or $bc \in P$, see (Abu Qayass &Al-Zoubi, 2023).
- 11. A graded *R*-module *M* is called a graded faithful (briefly, gr- faithful) module if rM = 0, then r = 0 for $r \in h(R)$, see (Atani, 2006).
- 12. Let *R* be a *G*-graded ring and *M*, *M'* be graded *R*-modules. Let $\varphi: M \to M'$ be an *R*-module homomorphism. Then φ is said to be a graded homomorphism if $\varphi(M_q) \subseteq M'_q$ for all $g \in G$, see (Nastasescu et al., 2004).
- 13. A nonzero graded module M is called a graded second (briefly, gr-second) module if $Ann_R(M) = Ann_R(M/N)$ for all graded submodule N of M, see (Ceken & Alkan, 2015)

Characterization of gr-2-n-submodule

In this section, we provide several characterizations of gr-2-n-submodule. We begin by introducing the notion of gr-2-n-submodules.

Definition 3.1 A proper graded submodule U of M is said to be a graded 2-n-submodule (briefly, gr-2-n-submodule) of M if whenever $r, s \in h(R)$, $m \in (M)$ and $rsm \in U$, then $rs \in Gr(Ann_R(M))$ or $rm \in U$ or $tm \in U$.

From this previous definition, we can conclude that: every gr-n-submodule is a gr-2-n-submodule, every gr-prime submodule is gr-2-n-submodule. gr-2-n-submodule is a gr-2-absorbing primary submodule. Also, every gr-2-n-submodule U of a graded R-module M satisfying $Gr(Ann_R(M) \subseteq (U:_R M))$ is gr-2-absorbing. The following example shows that these notions are different in general.

Example 3.2 Let p and q be prime integers. Let $G = \mathbb{Z}_2$ and $R = \mathbb{Z}$. Then R is a G-graded ring with $R_0 = \mathbb{Z}$ and $R_1 = \{0\}$. Let $M = \mathbb{Z}$. Then M is a graded R-module with $M_0 = \mathbb{Z}$ and $M_1 = \{0\}$.

- (a) Consider the graded submodule U = pZ of M. Then U is a gr-2-n-submodule since it is gr-prime. Since p.1 ∈ U but 1 ∉ U and p ∉ Gr(Ann_R(Z)) = {0}, U is not gr-n-submodule.
- (b) Consider the graded submodule $U = pq\mathbb{Z}$ of M. Then U is a gr-2-absorbing (gr-2-absorbing primary) submodule of M. Since $p.q.1 \in U$, but $p.1 \notin U$, $q.1 \notin U$, and $p.q \notin Gr(Ann_R(\mathbb{Z})) = \{0\}, U$ is not a gr-2-n-submodule of M.
- (c) Let G = Z₂ and ℜ = Z. Then ℜ is a G-graded ring with ℜ₀ = Z and ℜ₁ = {0}. Let ℑ = Z_{p²}. Then ℑ is a graded ℜ-module with ℑ₀ = Z_{p²} and ℑ₁ = {0}. Consider the graded submodule U = p²Z_{p²} of Z-module Z_{p²}. Then U is a gr-2-n-submodule of Z_{p²} that is not gr-prime.

From the definitions above, the following theorem follows immediately.

Theorem 3.3 Let U be a proper graded submodule of graded R-module

- 1. If U is a gr-primary submodule and $Gr(Ann_R(M)) = (U_{:R}M)$, then U is a gr-2-n-submodule of M.
- 2. If M is a gr-second module, then the two concepts of gr-2-n-submodule and gr-2-absorbing primary submodules coincide.
- 3. If $Gr(Ann_R(M)) = (U_R M)$, then the following are equivalent : [(a)]

- (a) U is a gr-2-n-submodule of M.
- (b) U is a gr-2-absorbing submodule of M.
- (c) U is a gr-2-absorbing primary submodule of M

As shown in the following example, the condition $Gr(Ann_R(M)) = (U_{RM})$ in Theorem 3.3(1) is crucial:

Example 3.4 Let p be prime integer. Let $G = \mathbb{Z}_2$ and $R = \mathbb{Z}$. Then R is a G-graded ring with $R_0 = \mathbb{Z}$ and $R_1 = \{0\}$. Let $M = \mathbb{Z}$. Then M is a graded R-module with $M_0 = \mathbb{Z}$ and $M_1 = \{0\}$. Consider the graded submodule $U = p^2 \mathbb{Z}$ of M. Then U is a gr-primary, but it is not gr-2-n-submodule of M as $p.p.1 \in U$ but neither $p.p \in Gr(Ann_R(\mathbb{Z})) = \{0\}$ nor $p.1 \in U$.

Let *U* be a graded submodule of *M* and $r \in h(R)$. We use the notation $(U_{M}r)$ to denote the graded submodule $\{m \in M : rm \in U\}$ of *M*.

Theorem 3.5 Let U be a proper graded submodule of M. Then the following statements are equivalent:

(i) U is a gr-2-n-submodule of M.

(ii) If $r, s \in h(R)$ and $rs \notin Gr(Ann_R(M))$, then $(U_{:_M}rs) \subseteq (U_{:_M}r) \cup (U_{:_M}s)$. (iii) If $r, s \in h(R)$ and $rs \notin Gr(Ann_R(M))$, then $(U_{:_M}rs) \subseteq (U_{:_M}r)$ or $(U_{:_M}rs) \subseteq (U_{:_M}s)$.

Proof.

- (i) ⇒ (ii) Let U be a gr-2-n-submodule of M, $r, s \in h(R)$ such that $rs \notin Gr(Ann_R(M))$. Let $m \in (U_{:_M} rs) \cap h(M)$. Then $rsm \in U$. Since U is a gr-2-n-submodule of M, $rsm \in U$ and $rs \notin Gr(Ann_R(M))$, we have either $rm \in U$ or $sm \in U$. Thus $m \in (U_{:_M} r)$ or $m \in (U:s)$. This follows $(U_{:_M} rs) \subseteq (U_{:_M} r) \cup (U_{:_M} s)$.
- (ii) ⇒ (iii) If a graded submodule is a subset of the union of two graded submodules, then it is a subset of one of them by (Atani & Tekir, 2007, Lemma 2.2). Thus we get the result.
- $(iii) \Rightarrow (i)$ Let $r, s \in h(R)$ and $m \in h(M)$ such that $rsm \in U$ and $rs \notin Gr(Ann_R(M))$. Then $m \in (U_{:_M} rs) \subseteq (U_{:_M} rs) \subseteq (U_{:_M} rs) \subseteq (U_{:_M} rs) \subseteq (U_{:_M} s)$ by (iii), and so $rm \in U$ or $sm \in U$.

We give another characterisation of gr-2-n-submodules in the following theorem.

Theorem 3.6 Let U be a gr-2-n-submodule of M. Let $V = \bigoplus_{g \in G} V_g$ be a graded submodule of M, $I = \bigoplus_{h \in G} I_h$ and $J = \bigoplus_{l \in G} J_l$ be two graded ideals of M. Then the following statements are equivalent:

(i) U is a gr-2-n-submodule of M.

(ii) For every $g \in G$, if $rsV_g \subseteq U$ for some $r, s \in h(R)$, then either $rs \in Gr(Ann_R(M))$ or $rV_g \subseteq U$ or $sV_g \subseteq U$. (iii) For every $g, h, l \in G$, if $I_h J_l V_g \subseteq U$, then either $I_h J_l \subseteq Gr(Ann_R(M))$ or $I_h V_g \subseteq U$ or $J_l V_g \subseteq U$.

Proof.

(i) ⇒ (ii) Let U be a gr-2-n-submodule of M, r, s ∈ h(R) and g ∈ G such that rsV_g ⊆ U. Assume on the contrary that rs ∉ Gr(Ann_R(M)), rV_g ⊈ U and sV_g ⊈ U. Then there exist v_g, v'_g ∈ V_g with rv_g ∉ U and sv'_g ∉ U. Since U is a gr-2-n-submodule of M, rsv_g ∈ U, rv_g ∉ U and rs ∉ Gr(Ann_R(M)), we have sv_g ∈ U. Similarly, since rsv'_g ∈ U, sv'_g ∉ U and rs ∉ Gr(Ann_R(M)), we have rv'_g ∈ U. By (v_g + v'_g) ∈ V_g, we get rs(v_g + v'_g) ∈ U. Then either r(v_g + v'_g) ∈ U or s(v_g + v'_g) ∈ U as U is a gr-2-n-submodule of M and rs ∉ Gr(Ann_R(M)). If r(v_g + v'_g) = rv_g + rv'_g ∈ U, then rv_g ∈ U, a contradiction. If s(v_g + v'_g) = sv_g + sv'_g ∈ U, then sv'_g ∈ U, a contradiction. Thus we get the result.

- (*ii*) \Rightarrow (*iii*) Assume that (*ii*) holds. Let $g, h, l \in G$ such that $I_h J_l V_g \subseteq U$. Assume that $I_h J_l \not\subseteq Gr(Ann_R(M))$, $I_h V_g \not\subseteq U$ and $J_l V_g \not\subseteq U$. Then there exist $i_h, i'_h \in I_h$ and $j_l, j'_l \in J_l$ such that $i_h V_g \not\subseteq U$, $j_l V_g \not\subseteq U$ and $i'_h j'_l \notin Gr(Ann_R(M))$. Since $i_h j_l V_g \subseteq U$, $i_h V_g \not\subseteq U$ and $j_l V_g \not\subseteq U$, we have $i_h j_l \in Gr(Ann_R(M))$. Now since $i'_h j'_l V_g \subseteq U$ and $i'_h j'_l \notin Gr(Ann_R(M))$, we have either $i'_h V_g \subseteq U$ or $j'_l V_g \subseteq U$ by (*ii*). We consider three cases:
- **Case 1:** Assume that $i'_h V_g \subseteq U$ but $j'_l V_g \not\subseteq U$. Since $i_h j'_l V_g \subseteq U$, $j'_l V_g \not\subseteq U$ and $i_h V_g \not\subseteq U$, we have $i_h j'_l \in Gr(Ann_R(M))$. Since $i'_h V_g \subseteq U$ but $i_h V_g \not\subseteq U$, we have $(i_h + i'_h) V_g \not\subseteq U$. By $(i_h + i'_h) j'_l V_g \subseteq U$, $(i_h + i'_h) V_g \not\subseteq U$ and $j'_l V_g \not\subseteq U$, we get $(i_h + i'_h) j'_l = i_h j'_l + i'_h j'_l \in Gr(Ann_R(M))$. Then $i'_h j'_l \in Gr(Ann_R(M))$, a contradiction.

Case 2: Assume that $j'_l V_g \subseteq U$ but $i'_h V_g \not\subseteq U$, similar to Case 1.

- **Case 3:** Assume that $i'_h V_g \subseteq U$ and $j'_l V_g \subseteq U$. By $j'_l V_g \subseteq U$ and $j_l V_g \not\subseteq U$, we have $(j_l + j'_l) V_g \not\subseteq U$. Since $i_h (j_l + j'_l) V_g \subseteq U$, $(j_l + j'_l) V_g \not\subseteq U$ and $i_h V_g \not\subseteq U$, we have $i_h (j_l + j'_l) = i_h j_l + i_h j'_l \in Gr(Ann_R(M))$. Then $i_h j'_l \in Gr(Ann_R(M))$ since $i_h j_l \in Gr(Ann_R(M))$. In the same way as above, since $i'_h V_g \subseteq U$ and $i_h V_g \not\subseteq U$, we get $(i_h + i'_h) V_g \not\subseteq U$ and $i'_h j_l \in Gr(Ann_R(M))$. Now, since $(i_h + i'_h) (j_l + j'_l) V_g \subseteq U$, $(i_h + i'_h) V_g \not\subseteq U$ and $(j_l + j'_l) V_g \not\subseteq U$, we have $(i_h + i'_h) (j_l + j'_l) = i_h j_l + i_h j'_l + i'_h j_l + i'_h j'_l \in Gr(Ann_R(M))$ and hence $i'_h j'_l \in Gr(Ann_R(M))$, a contradiction.
- (*iii*) ⇒ (*i*) Let $r_h, s_l \in h(R)$ and $m_g \in h(M)$ with $r_h s_l m_g \in U$. Let $I = (r_h)$ and $J = (s_l)$ be a graded ideals of R generated by r_h, s_l , respectively. Let $V = Rm_g$ be a graded submodule of M generated by m_g . Then $I_h J_l V_g \subseteq U$ and hence either $I_h J_l \subseteq Gr(Ann_R(M))$ or $I_h V_g \subseteq U$ or $J_l V_g \subseteq U$. Hence either $r_h m_g \in U$ or $s_l m_g \in U$ or $r_h s_l \in Gr(Ann_R(M))$. Thus U is a gr-2-n-submodule of M.

Theorem 3.7 Let U be a proper graded submodule of M. Then

(i) If $(U_{R}m)$ is gr-n-ideal of R for all $m \in h(M) \setminus U$, then U is a gr-2-n-submodule of M.

(ii) If U is a gr-2-n-submodule of M, then $(U_{M}a)$ is a gr-2-n-submodule of M containing U for all $a \in h(R) \setminus (U_{R}M)$.

(iii) Let *M* be a gr-faithful *R*-module. If *U* is a gr-2-n-submodule of *M*, then $(U_{R}m)$ is a gr-nil deal of *R* containing $(U_{R}M)$ for all $m \in h(M) \setminus U$.

Proof.

- (i) Let $rsm \in U$ and $rs \notin Gr(Ann_R(M))$ for some $r, s \in h(R)$ and $m \in h(M)$. Hence $rs \in (U_{R}m)$ and $r, s \notin Gr(0)$. If $m \in U$, done. So assume that $m \notin U$. Then $r, s \in (U_{R}m)$ as $(U_{R}m)$ is gr-n-ideal of R. So $rm, sm \in U$, as required..
- (*ii*) Let $a \in h(R) \setminus (U_{:R}M)$ and let $rsm \in (U_{:M}a)$ for some $r, s \in h(R)$ and $m \in h(M)$. Then $(U_{:M}a) \neq M$. Since U is a gr-2-n-submodule of M and $rsma \in U$, we have either $rs \in Gr(Ann_R(M))$ or $rma \in U$ or $sma \in U$. Then either $rs \in Gr(Ann_R(M))$ or $rm \in (U_{:M}a)$ or $sm \in (U_{:M}a)$, as required.
- (iii) Let $m \in h(M) \setminus U$. Hence $(U_{R}m) \neq R$. Now, assume that $r, s, t \in h(R)$ with $rst \in (U_{R}m)$ and $rs \notin Gr(0)$. Then $rs \notin Gr(Ann_{R}(M))$ as M is gr-faithful. Since U is a gr-2-n-submodule of M, $rstm \in U$ and $rs \notin Gr(Ann_{R}(M))$, we have either $rtm \in U$ or $stm \in U$, i.e. $rt \in (U_{R}m)$ or $st \in (U_{R}m)$. Therefore, $(U_{R}m)$ is a gr-nil deal of R. Clearly, $(U_{R}M) \subseteq (U_{R}m)$.

Properties of gr-2-n-Submodules

Theorem 4.1 Let M and M' be graded R-modules and $\varphi: M \to M'$ be graded R-module homomorphism.

(i). Assume that φ is a graded monomorphism. If U' is gr-2-n-submodule of M' such that $\varphi^{-1}(U') \neq M$, then $\varphi^{-1}(U')$ is a gr-2-n-submodule of M.

(ii) Assume that φ is a graded epimorphism. If U is a gr-2-n-submodule of M with $Ker(\varphi) \subseteq U$, then $\varphi(U)$ is a gr-2-n-submodule of M'.

Proof.

- (i) Suppose that rsm ∈ φ⁻¹(U') and rs ∉ Gr(Ann_R(M) for some r, s ∈ h(R) and m ∈ h(M). Then φ(rsm) = rsφ(m) ∈ U'. As φ is a graded monomorphism and rs ∉ Gr(Ann_R(M), we get rs ∉ Gr(Ann_R(M'). Since U' is gr-2-n-submodule of M', we have either rφ(m) ∈ U' or sφ(m) ∈ U'. This implies that either rm ∈ φ⁻¹(U') or sm ∈ φ⁻¹(U'). Therefore φ⁻¹(U') is a gr-2-n-submodule of M.
- (ii) Suppose that U is a gr-2-n-submodule of M with Ker(φ) ⊆ U. Let rsm' ∈ φ(U) for some r, s ∈ h(R) and m' ∈ h(M'). As φ is a graded epimorphism, then there exists m ∈ h(M) such that m' = φ(m), hence rsφ(m) = φ(rsm) ∈ φ(U). Since Ker(φ) ⊆ U, we have rsm ∈ U. Since U is a gr-2-n-submodule of M, we have either rm ∈ U or sm ∈ U or rs ∈ Gr(Ann_R(M) and so either rm' = φ(rm) ∈ φ(U) or sm' = φ(sm) ∈ φ(U) or rs ∈ Gr(Ann_R(M')). Therefore, φ(U) is a gr-2-n-submodule of M'.

Corollary 4.2 Let $U \subseteq V$ be two graded submodules of *M*. Then the followings hold;

(i) If V is a gr-2-n-submodule of M, then V/U is a gr-2-n-submodule of a graded R-module M/U.

(ii) If V/U is a gr-2-n-submodule of a graded *R*-module M/U and $(U_R M) \subseteq Gr(Ann_R(M))$, then *V* is a gr-2-n-submodule of *M*.

(iii) Let U be a graded submodule of M. If V is a gr-2-n-submodule of M such that $U \not\subseteq V$, then $V \cap U$ is a gr-2-n-submodule of U.

Proof.

(i) Assume that V is a gr-2-n-submodule of M. Let $f: M \to M/U$ be a graded epimorphism defined by f(m) = m + U. Then $Ker(f) = U \subseteq V$, so by Theorem 4.1 (ii), V/U is a gr-2-n-submodule of M/U.

(ii) Is clear.

(*iii*) Assume that V is a gr-2-n-submodule of M such that $U \not\subseteq V$. Consider the graded monomorphism $\varphi: U \to M$ defined by $\varphi(m) = m$ for all $m \in M$. Then $\varphi^{-1}(V) = V \cap U$, so by Theorem 4.1 (i), $V \cap U$ is a gr-2-n-submodule of U.

Let *I* be a proper graded ideal of a *G*-graded ring *R* and *N* be a graded submodule of a graded *R*-module *M*. The notations $G - Z_I(R)$ and $G - Z_N(M)$ denote the sets $\{r \in h(R) : rs \in I \text{ for some } s \in h(R) \setminus I\}$ and $\{r \in h(R) : rm \in N \text{ for some } m \in h(M) \setminus N\}$.

The following result studies the behavior of a gr-2-n-submodules under localization.

Theorem 4.3 Let $S \subseteq h(R)$ be a multiplication closed subset of R and U is a proper graded submodule of M.

(i) If U is a gr-2-n-submodule of M with $(U_R M) \cap S = \emptyset$, then $S^{-1}U$ is a gr-2-n-submodule of $S^{-1}M$. (ii) Assume that $Gr(Ann_{S^{-1}R}(S^{-1}M)) = S^{-1}Gr(Ann_R(M))$. If $S^{-1}U$ is a gr-2-n-submodule of $S^{-1}M$, and $S \cap G-Z_{Gr(Ann_R(M)}(R) = S \cap G-Z_U(M) = \emptyset$, then U is a gr-2-n-submodule of M.

Proof.

- (i) Assume that U is a gr-2-n-submodule of M with $(U_{:R}M) \cap S = \emptyset$. Let $\frac{r}{s_1 s_2} \frac{k}{s_3} \in S^{-1}U$, where $\frac{r}{s_1}, \frac{k}{s_2} \in h(S^{-1}U)$ and $\frac{m}{s_3} \in h(S^{-1}M)$. Then $trkm \in U$ for some $t \in S$. Since U is a gr-2-n-submodule of M, we have either $rk \in Gr(Ann_R(M))$ or $trm \in U$ or $tkm \in U$, which implies that either $\frac{r}{s_1 s_2} \in S^{-1}Gr(Ann_R(M)) \subseteq Gr(Ann_{S^{-1}R}(S^{-1}M))$ or $\frac{r}{s_1 s_2} = \frac{trm}{ts_1 s_2} \in S^{-1}U$ or $= \frac{k}{s_2} \frac{m}{s_2} = \frac{tkm}{ts_2 s_2} \in S^{-1}U$. Therefore, $S^{-1}U$ is a gr-2-n-submodule of $S^{-1}M$.
- *ii*) Let $rkm \in U$ for some $r, k \in h(R)$ and $m \in h(M)$. Then $\frac{r}{1}\frac{k}{1}\frac{m}{1} \in S^{-1}U$. Since $S^{-1}U$ is a gr-2-n-submodule of $S^{-1}M$, we have either $\frac{r}{11} \in Gr(Ann_{S^{-1}R}(S^{-1}M)) = S^{-1}Gr(Ann_{R}(M))$ or $\frac{r}{11}\frac{m}{1} \in S^{-1}U$ or $\frac{k}{11}\frac{m}{1} \in S^{-1}U$. So, either $trk \in Gr(Ann_{R}(M)$ for some $t \in S$ or $lrm \in U$ for some $l \in S$ or $vkm \in U$ for some $v \in S$. This implies that either $rk \in Gr(Ann_{R}(M)$ or $rm \in U$ or $km \in U$ as $S \cap G^{-Z}_{Gr(Ann_{R}(M)}(R) = S \cap G^{-Z}_{U}(M) = \emptyset$. Therefore, U is a gr-2-n-submodule of M.

Let *R* be a commutative ring and *M* be an *R*-module. Then the idealization $R(+)M = \{(r,m): r \in R \text{ and } m \in M\}$ is the ring whose elements are those of $R \times M$ equipped with addition and multiplication defined by (r,m) + (r',m') = (r+r',m+m') and (r,m)(r',m') = (rr',rm'+r'm) respectively. Let *G* be an abelian group, $R = \bigoplus_{g \in G} R_g$ be a *G*-graded ring and $M = \bigoplus_{g \in G} M_g$ be a *G*-graded *R*-module. Then R(+)M is a *G*-graded ring with $(R(+)M)_g = R_g(+)M_g$, see (Uregen et al., 2019, Proposition 3.1). If *I* is an ideal of *R* and *U* is a submodule of *M* with $IM \subseteq U$. Then I(+)U is a graded ideal of R(+)M if and only if *I* is a graded ideal of *R* and *U* is a graded submodule of *M*, see (Uregen et al., 2019, Proposition 3.3).

Theorem 4.4 Let I be a graded ideal of R and U be a proper graded submodule M. If I(+)U is gr-2-nil ideal of R(+)M, then I is a gr-2-nil ideal of R and U is a gr-2-n-submodule of M.

Proof.

Suppose that I(+)U is a gr-2-nil ideal of R(+)M. At first we want to show that I is a gr-2-nil ideal of R. Let $rst \in I$ but $rs \notin Gr(0)$ for some r, $s, t \in h(R)$. Hence $(r, 0_M)(s, 0_M)(t, 0_M) = (rst, 0_M) \in I(+)U$ but $(r, 0_M)(s, 0_M) = (rs, 0_M) \notin Gr(0_{R(+)M})$. Then either $(s, 0_M)(t, 0_M) = (st, 0_M) \in I(+)U$ or $(r, 0_M)(t, 0_M) = (rt, 0_M) \in I(+)U$ as I(+)U is gr-2-nil ideal of R(+)M. This implies that either $st \in I$ or $rt \in I$. Thus I is a gr-nil ideal of R. Now, we want to show that U is a gr-2-n-submodule of M. Let $rsm \in U$ and $rs \notin Gr(Ann_R(M)$ for some $r, s \in h(R)$ and $m \in h(M)$. Then $(r, 0_M)(s, 0_M)(0, m) = (0, rsm) \in I(+)U$ with $(r, 0_M)(s, 0_M) \notin Gr(0_{R(+)M})$. Since I(+)U is gr-2-nil ideal of R(+)M, we have either $(r, 0_M)(0, m) = (0, rm) \in I(+)U$ or $(s, 0_M)(0, m) = (0, sm) \in I(+)U$. Hence, either $rm \in U$ or $sm \in U$. Therefore, U is a gr-2-n-submodule of M.

Scientific Ethics Declaration

The author declares that the scientific ethical and legal responsibility of this article published in EPSTEM journal belongs to the author.

Acknowledgements or Notes

* This article was presented as an oral presentation at the International Conference on Basic Sciences, Engineering and Technology (<u>www.icbaset.net</u>) held in Alanya/Turkey on May 02-05, 2024.

References

- Al-Zoubi, K., & Al-Azaizeh, M. (2019). On graded weakly 2-absorbing primary submodules. *Vietnam Journal* of Mathematics, 47, 297-307.
- Al-Zoubi, K., & Al-Azaizeh, M. (2019). Some properties of graded 2-absorbing and graded weakly 2-absorbing submodules. *Journal of Nonlinear Science*, 12(8), 503-508.
- Al-Zoubi, K., & Al-Qderat, A. (2017). Some properties of graded comultiplication modules. Open Mathematics, 15(1), 187-192.
- Al-Zoubi, K., Abu-Dawwas, R., & Ceken, S. (2019). On graded 2-absorbing and graded weakly 2-absorbing ideals. *Hacettepe Journal of Mathematics and Statistics*, 48(3), 724-731.
- Al-Zoubi, K. H., & Abu-Dawwas, R. (2014). On graded 2-absorbing and weakly graded 2-absorbing submodules. *Journal of Mathematical Sciences: Advanced and Applications*, 28, 45-60.
- Al-Zoubi, K., Al-Turman, F., & Celikel, E. Y. (2019). Gr-n-ideals in graded commutative rings. Acta Universitatis Sapientiae, Mathematica, 11(1), 18-28.
- Al-Zoubi, K., & Sharafat, N. (2017). On graded 2-absorbing primary and graded weakly 2-absorbing primary ideals. *Journal of the Korean Mathematical Society*, 54(2), 675-684.
- Ansari-Toroghy, H., & Farshadifar, F. (2011). Graded comultiplication modules. *Chiang Mai Journal of Science*, *38*(3), 311-320.
- Ansari-Toroghy, H., & Farshadifar, F. (2012). On graded second modules. *Tamkang Journal of Mathematics*, 43(4), 499-505.
- Atani, S. E. (2006). On graded prime submodules. Chiang Mai Journal of Science, 33(1), 3-7.
- Atani, S. E., & Farzalipour, F. (2007). On graded secondary modules. *Turkish Journal of Mathematics*, 31(4), 371-378.
- Atani, S. E., & Tekir, U. (2007). On the graded primary avoidance theorem. Chiang Mai Journal of Science, 34(2), 161-164.
- Ceken, S., & Alkan, M. (2015). On graded second and coprimary modules and graded secondary representations. *Bulletin of the Malaysian Mathematical Sciences Society*, *38*(4), 1317-1330.
- Celikel, E. Y. (2016). On graded 2-absorbing primary submodules. *International Journal of Pure and Applied Mathematics*, 109(4), 869-879.
- Nastasescu, C., & Van Oystaeyen, F. (2004). Methods of graded rings (Vol.1836). Springer.
- Oral, K. H., Tekir, U., & Agargun, A. G. (2011). On graded prime and primary submodules. *Turkish Journal of Mathematics*, 35(2), 159-167.
- Refai, M., & Al-Zoubi, K. (2004). On graded primary ideals. Turkish Journal of Mathematics, 28(3), 217-230.
- Uregen, R. N., Tekir, U., Shum, K. P., & Koc, S. (2019). On graded 2-absorbing quasi primary ideals. *Southeast* Asian Bulletin of Mathematics, 43(4), 601-613.

Author Information

Khaldoun Al-Zoubi Department of Mathematics and Statistics Jordan University of Science and Technology P.O.Box 3030, Irbid 22110, Jordan Contact e-mail: *kfzoubi@just.edu.jo*

To cite this article:

Al-Zoubi, K. (2024). On graded 2-n-submodules of graded modules over graded commutative rings. *The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 28, 382-389.*