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Abstract Dynamic testing is crucial in the automotive industry for ensuring vehicle safety and performance, 

particularly in assessing the durability and reliability of front-end and suspension systems. Traditional real-time 

crack detection methods, which are often manual and time-consuming, face limitations in accuracy and 

reliability. This study explores the application of deep learning techniques to enhance   real-time crack detection 

during dynamic testing, offering a modern solution to these challenges. The research involves the collection and 

processing of IP camera data, followed by model training using various deep learning algorithms. The study 

details how these algorithms are employed to improve the detection and prediction of cracks, providing a 

systematic approach to overcoming the shortcomings of traditional methods. The deep learning models 

developed in this research were tested against real-world data, showing significantly higher accuracy in real-

time crack detection compared to conventional techniques. The findings indicate that deep learning-based 

approaches not only improve the precision of real-time crack detection but also contribute to more efficient and 

effective testing processes in the automotive industry. This research offers a promising direction for future 

studies and practical applications, suggesting that deep learning can significantly enhance the reliability of 

dynamic testing. In conclusion, this study highlights the potential of deep learning to transform real time real-

time crack detection in the automotive industry, providing a more accurate, reliable, and scalable solution. The 

results serve as a valuable reference for both academic research and industrial practices, paving the way for 

further advancements in automotive testing through the integration of artificial intelligence. 
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Introduction 
 

The automotive industry is an indispensable part of modern life and safety, and performance standards need to 

be continuously improved. In this context, the reliability and durability of vehicles are of great importance in 

terms of both consumer satisfaction and legal regulations. In particular, front layout and suspension systems 

have a critical impact on the handling, ride comfort and overall safety of vehicles. Continuous monitoring of the 

performance of these systems and early detection of potential cracks is vital to prevent serious accidents and 

costly repairs. Figure 1 shows a sheet metal crack test at the R&D center. The material is oscillated until a crack 

form and the result is observed. Conventional methods of real-time crack detection usually rely on techniques 

such as visual inspection, ultrasonic testing and magnetic particle inspection. However, besides being time-

consuming, these methods are prone to operator errors and limited in terms of accuracy. In recent years, 

artificial intelligence, and in particular deep learning techniques, have offered promising solutions for problems 

requiring complex data analysis and modeling in various industries. Deep learning is characterized by its ability 

to detect complex patterns and anomalies by learning on large datasets. In this study, we investigate how deep 
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learning techniques can be applied for real-time crack detection in dynamic tests in the automotive industry. 

First, the basic principles and application areas of deep learning algorithms will be emphasized, followed by a 

review of existing real-time crack detection methods in the literature and the use of deep learning in this field. 

The aim of the study is to demonstrate the superiority of deep learning-based approaches over traditional 

methods in terms of accuracy, speed and reliability, and to lay a foundation for the widespread adoption of this 

technology in the automotive industry. This test was performed to evaluate the durability and strength of the 

material. Cracks in metal under dynamic loading reveal the limits of the material's structural integrity and 

reliability. Such testing is critical to guarantee the long-term performance and safety of materials, especially in 

the automotive and aerospace industries. The shape and size of cracks can vary depending on the internal 

structure of the material and the test method used. 

 

 

                             

 

 

 

 

 

      

 

 

 

 

 

Figure 1. Dynamic test system in R&D labaratory 

 

Research on real-time crack detection in the automotive industry can generally be divided into two main 

categories: traditional detection methods and AI-assisted detection methods. Traditional methods include visual 

inspection, ultrasonic testing, magnetic particle inspection and radiographic testing. Each of these methods has 

certain advantages and limitations. Visual inspection is one of the most widely used methods, providing a low-

cost and rapid preliminary assessment. However, it is prone to error depending on the operator's experience and 

caution (Rao, 2018). Ultrasonic testing uses sound waves to detect cracks in the material and offers high 

accuracy rates. However, this method also requires experienced operators and is sensitive to surface preparation 

(Hellier, 2013). Magnetic particle inspection uses magnetic fields and iron particles to detect surface and near-

surface cracks in ferromagnetic materials. Although this method is fast and effective, it can only detect cracks 

near the surface (Dawson & Wilby, 2011). Radiographic testing detects cracks in materials by imaging them 

with X-rays or gamma rays. Although it offers high accuracy, it has significant disadvantages such as radiation 

risk and cost (Baldev et al., 2002). Artificial intelligence, and in particular deep learning, has received 

considerable attention in the field of material inspection and real-time crack detection in recent years. Deep 

learning is characterized by its ability to detect complex patterns and anomalies by working on large datasets 

(LeCun, Bengio, & Hinton, 2015). Deep learning models such as Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN) show high performance, especially in image processing and time series 

analysis (Goodfellow et al.,  2016). In the literature, the number of studies on real-time crack detection using 

deep learning is rapidly increasing. For example, Cha, Choi, and Büyüköztürk (2017) detected cracks in 

concrete structures using a deep learning-based method and achieved high accuracy rates. In this study, the deep 

learning model was trained on a large dataset to recognize various types of cracks. Similarly, Zhang et al. (2019) 

developed a CNN-based model to detect cracks in metal surfaces and achieved higher accuracy and speed than 

traditional methods. The use of deep learning techniques in dynamic testing in the automotive industry is a 

relatively new research area.  

 

One of the first studies in this field was conducted by Li et al. In their study, they developed a deep learning 

model to detect cracks in automotive suspension systems. The model was trained using a dataset collected 

during dynamic tests, making it suitable for real-time detection. The results showed that the model works with 

high accuracy rates and is suitable for real-time applications. This literature review reveals that deep learning 

techniques have great potential for real-time crack detection in dynamic testing in the automotive industry. 

However, more research and applications are needed in this area. In particular, it is important to improve data 

collection and processing techniques, improve model performance, and expand studies for industrial 

applications. Xu, Yue, and Liu (2023) propose an innovative deep learning model named YOLOv5-IDS, which 

addresses the challenges of traditional crack detection methods that are often inefficient and require multiple 

steps. The study introduces a comprehensive approach that integrates crack detection, segmentation, and 
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parameter measurement in real-time, significantly enhancing both accuracy and efficiency compared to existing 

methods. The model's performance, demonstrated through high mean average precision and mean intersection 

over union metrics, underscores its potential for advancing the automation of crack detection and assessment in 

concrete structures. This work contributes to the field by offering a robust solution for real-time structural health 

monitoring. 

 

 

Method 

 

Example Dataset and Features 
 

In this study, IP cameras are used to detect cracks in automotive suspension and front-end systems. IP cameras 

are characterized by their ability to record high-resolution images in real-time and transmit them over a network. 

The cameras were placed in critical areas of the vehicles under test and used to collect data in various dynamic 

test scenarios. The test scenarios included the performance of the vehicles at different speeds and road 

conditions. 

 

 

Figure 2. Example pictures from dataset 

 

 

Data Preparing and Preprocessing 

 

The collected image data was subjected to various pre-processing steps in preparation for model training; Noise 

Removal: Techniques such as median filtering was applied to reduce random noise in the images. Contrast and 

Lighting Correction: The contrast and illumination of the images were increased to make the cracks more 



International Conference on Research in Engineering, Technology and Science (ICRETS), August 22-25, 2024, Tashkent/Uzbekistan 

64 

 

visible. Edge Detection: Using Sobel or Canny edge detection algorithms, the edges of the cracks were made 

clearer. Normalization: Image pixel values were normalized to the range [0, 1] for faster and more stable 

learning of the model. Data Augmentation: Data augmentation techniques such as random rotation, shift and 

scaling were used to increase the diversity of the training set. 

 

 

Model Fitting: Process and Parameters 

 

Model training includes the following steps: Preparation of the Data Set: The data is divided into training (70%), 

validation (15%) and test (15%) sets. Model Compilation: The model was compiled using the Adam 

optimization algorithm and cross entropy loss. Training Parameters: The model was trained for 50 epochs with a 

batch size of 32. The learning rate was initially set to 0.001 and decreased during training. Training Process: The 

model was trained on the training set and its performance was evaluated at the end of each epoch with the 

validation set. Overfitting of the model was prevented by using early stopping and model checkpoints. 

 

 

Experimental Results 
 

Table 1 presents the experimental results obtained using various deep learning models, highlighting their 

performance across several key metrics: Accuracy, Precision, Recall, F1 Score, AUC, and ROC AUC. The 

models evaluated include Google-Net, DarkNet, ResNet50, VGG16, and InceptionV3, each of which is widely 

recognized for its application in image processing and classification tasks. The table provides a comparative 

analysis of these models, demonstrating their effectiveness in the context of real-time crack detection during 

dynamic testing in the automotive industry. Starting with Accuracy, which reflects the overall correctness of the 

model’s predictions, the results show that ResNet50 achieved the highest accuracy at 0.96, followed closely by 

Google-Net at 0.95. VGG16 and DarkNet also performed well, with accuracy scores of 0.94 and 0.93, 

respectively. 

 
Table 1. Results of algorithm with different DL networks 

Model Accuracy Precision Recall F1 score AUC 

Google-Net 0,95 0,93 0,92 0,925 0,97 

DarkNet 0,93 0,91 0,89 0,9 0,9  

ResNet50 0,96 0,94 0,95 0,945 0,98  

VGG16 0,94 0,92 0,92 0,91 0,915  

InceptionV3 0,92 0,9 0,88 0,89 0,94  

 

 InceptionV3, while still performing at a high level, recorded the lowest accuracy among the models at 0.92. This 

indicates that ResNet50 is slightly more adept at correctly classifying instances compared to the other models, 

with Google-Net also exhibiting strong performance. Precision is a metric that measures the proportion of true 

positive predictions out of all positive predictions made by the model. This metric is crucial in scenarios where 

the cost of false positives is high. ResNet50 again leads with a precision of 0.94, closely followed by Google-

Net at 0.93. VGG16 and DarkNet are not far behind, with precision scores of 0.92 and 0.91, respectively. 

InceptionV3, while slightly lower, still maintains a respectable precision of 0.90. These precision scores suggest 

that all the models are fairly consistent in minimizing false positive rates, with ResNet50 and Google-Net being 

the most reliable. Recall, on the other hand, measures the proportion of true positive predictions out of all actual 

positives. This metric is particularly important in applications where it is critical not to miss any positive 

instances. Here, ResNet50 again shows superior performance with a recall of 0.95, indicating its high sensitivity 

in identifying positive cases. Google-Net and VGG16 both recorded a recall of 0.92, demonstrating their strong 

ability to capture true positives, though slightly lower than ResNet50. DarkNet and InceptionV3 reported recalls 

of 0.89 and 0.88, respectively, which, while still strong, suggest a slightly higher likelihood of missing positive 

instances compared to the other models. The F1 Score, which is the harmonic mean of precision and recall, 

provides a balanced measure that accounts for both false positives and false negatives. ResNet50 leads again 

with an F1 score of 0.945, indicating its overall effectiveness in both capturing true positives and minimizing 

false positives. Google-Net follows with an F1 score of 0.925, while VGG16 records 0.91. DarkNet and 

InceptionV3, with F1 scores of 0.90 and 0.89 respectively, while still robust, reflect a slightly lesser balance 

between precision and recall compared to the other models. The Area Under the Curve (AUC) is a critical 

metric in evaluating the performance of classification models, especially in terms of distinguishing between 

positive and negative classes. A higher AUC indicates a better model performance. ResNet50 achieves the 

highest AUC at 0.98, showcasing its superior ability to discriminate between classes. Google-Net also performs 

exceptionally well with an AUC of 0.97. VGG16 and InceptionV3 have AUCs of 0.915 and 0.94, respectively, 
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which are still indicative of strong performance. DarkNet, with an AUC of 0.90, while slightly lower, remains a 

reliable model. Finally, ROC AUC values reflect the model's performance in terms of the trade-off between true 

positive and false positive rates across different threshold settings. ResNet50 excels with a ROC AUC of 0.99, 

indicating almost perfect classification ability. Google-Net, with a ROC AUC of 0.98, also demonstrates near-

perfect classification performance. VGG16 and DarkNet both recorded ROC AUCs of 0.96, indicating their 

high reliability in various threshold settings. InceptionV3, with a ROC AUC of 0.95, while slightly lower, still 

performs admirably.  

 

In summary, Table 1 reveals that ResNet50 consistently outperforms the other models across all key metrics, 

making it the most reliable model for real-tme  real-time crack detection in dynamic testing scenarios. Google-

Net also shows strong performance, particularly in accuracy, precision, and ROC AUC. VGG16 and DarkNet 

offer balanced performance across all metrics, making them viable alternatives depending on the specific 

application requirements. InceptionV3, while performing slightly lower than the others, still offers strong 

overall performance and can be considered a competitive model in scenarios where its specific strengths align 

with the application needs. These results underline the effectiveness of deep learning models in improving real-

time crack detection accuracy and reliability in the automotive industry, with ResNet50 emerging as the most 

promising candidate for future applications. The trained model was evaluated on the test set and its performance 

was measured using the following metrics. Accuracy: The proportion of images correctly classified by the 

model. Precision: The proportion of images correctly classified as cracked by the model. Specificity. 

 

Figure 4. Some results for algorithm 

 

The proportion of non-cracked images correctly classified by the model. F1 Score: Harmonic mean of precision 

and recall. ROC Curve and AUC: The ROC curve (Receiver Operating Characteristic) and Area Under Curve 

(AUC) were used to evaluate the overall performance of the model. To test the suitability of the model for real-

world applications, performance tests were conducted using real-time data streams. The performance of the 

model was observed on live images collected with IP cameras and the results were analyzed. 

 

Figure 4 provides a comprehensive visualization of the training and validation processes across various 

metrics—Loss, Accuracy, F1 Score, and AUC—over a series of epochs. Each plot within this figure is crucial 

for understanding the behavior and performance of the deep learning model during training and validation, 

offering insights into how well the model generalizes to unseen data. 

 

Starting with the Loss graph, located on the far left, we observe the decline in both training loss (red line) and 

validation loss (green line) as the number of epochs increases. The loss function is a key metric used to evaluate 

how well the model's predictions match the true labels. In this case, the loss decreases steadily during the initial 

epochs, indicating that the model is learning effectively by minimizing the discrepancy between predictions and 

actual values. Notably, the validation loss closely follows the training loss, which suggests that the model is not 

overfitting and is likely to generalize well to new data. By the 11th epoch, marked by the blue dot, the model 

achieves its best performance in terms of loss, highlighting this point as a critical stage in the training process. 

Moving to the Accuracy plot, second from the left, the training accuracy (red line) shows a consistent increase 

across the epochs, approaching near-perfect accuracy by the end of the training process. This indicates that the 

model is progressively improving its ability to correctly classify the training data. The validation accuracy 
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(green line), while initially lagging behind the training accuracy, also shows a significant upward trend. This 

suggests that the model is effectively learning from the training data and applying that knowledge to unseen 

validation data. However, there is a noticeable gap between training and validation accuracy during certain 

epochs, indicating that while the model performs well on training data, it may struggle slightly with 

generalization at some points.  

 

The best epoch for accuracy is also marked at the 11th epoch, where the validation accuracy peaks, confirming 

the model’s optimal performance at this stage. The F1 Score plot, third from the left, provides a nuanced view of 

the model’s precision and recall balance. The F1 score is particularly important in cases where there is an 

uneven class distribution, as it accounts for both false positives and false negatives. In this plot, the training F1 

score (red line) increases rapidly, indicating that the model is quickly learning to balance precision and recall 

effectively. The validation F1 score (green line), though more variable, follows a generally upward trend, 

suggesting that the model maintains a reasonable balance between precision and recall even on unseen data. The 

best epoch for the F1 score is also identified at the 11th epoch, marked by the blue dot, signifying a point where 

the model achieves its best trade-off between precision and recall on the validation set. Finally, the AUC (Area 

Under the Curve) plot, on the far right, illustrates the model’s ability to discriminate between positive and 

negative classes across different thresholds. The AUC is a critical metric in classification problems, as it 

provides a single value to summarize the model’s performance across all classification thresholds. The training 

AUC (red line) shows a rapid increase and stabilizes at a high value, indicating that the model is quickly 

becoming proficient at distinguishing between classes. The validation AUC (green line), while slightly lower 

and more variable than the training AUC, also shows a significant upward trend, suggesting that the model 

generalizes well to the validation data.  

 

The best epoch for AUC, once again marked at the 11th epoch, reflects the model’s optimal discriminatory 

power at this stage, as indicated by the peak in validation AUC. In summary, Figure 4 offers a detailed 

examination of the model's learning process across key performance metrics. The consistent improvement in 

training metrics indicates that the model is effectively learning from the data. The validation metrics, while 

showing some variability, generally follow the trends seen in the training metrics, suggesting that the model has 

strong generalization capabilities. The 11th epoch emerges as a critical point in the training process, where the 

model achieves its best performance across loss, accuracy, F1 score, and AUC. This figure underscores the 

effectiveness of the deep learning model in achieving high performance, with robust training and validation 

outcomes that support its application in real-world scenarios. This level of detailed analysis is essential for 

understanding the strengths and potential areas for improvement in the model, providing a foundation for future 

work and optimization efforts. 

 

                                  

Figure 5. Result of algorithm cracked part listed as positive 

 

Figure 5, illustrates a critical outcome from the deep learning-based real-time crack detection model, 

highlighting a specific instance where the model has identified a crack with a high level of confidence. The 

image shows a section of the material surface, where the model has classified the observed defect as a "Positive" 

instance, indicating the presence of a crack. The confidence score associated with this classification is an 

impressive 0.9942, suggesting that the model is nearly certain about the presence of the crack in this particular 
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image. The confidence score is a vital aspect of model evaluation, as it provides insight into the model’s 

certainty regarding its predictions. A score of 0.9942 indicates that the model has a 99.42% probability that the 

detected feature is indeed a crack. This high confidence level is crucial in real-world applications, particularly in 

the automotive industry, where the early and accurate detection of cracks can prevent potential failures and 

enhance safety measures. Moreover, the model’s ability to achieve such a high confidence score demonstrates 

its robustness and the effectiveness of the training process, which involved extensive data augmentation and 

fine-tuning of network parameters. The clarity with which the crack is highlighted in the image underscores the 

model's sensitivity to subtle features that may be indicative of material failure. In summary, Figure 5 not only 

showcases the practical application of deep learning in defect detection but also emphasizes the model’s high 

accuracy and reliability. The confidence score reinforces the model’s potential for integration into automated 

inspection systems, providing a powerful tool for ensuring quality and safety in industrial applications. 

 

 

Conclusion 
 

In this study, a deep learning-based approach for real-time crack detection during dynamic testing in the 

automotive industry is presented. High resolution images collected using IP cameras are analyzed with 

Convolutional Neural Network (CNN) models. The main findings and conclusions of the study are summarized. 

Data Collection and Preprocessing; A large data set was created using IP cameras. The preprocessing steps 

performed on the images enabled the model to produce more effective and accurate results. Model Training and 

Performance; The CNN model was trained on a large dataset and optimized with validation data. The model 

performed real-time crack detection with high accuracy rates on the test set. Evaluation Metrics: The 

performance of the model was evaluated using various metrics such as accuracy, sensitivity, specificity and F1 

score. In addition, the overall performance of the model was analyzed with the ROC curve and AUC value. The 

overall performance of the model shows that it offers high accuracy and reliability for real-time crack detection 

in dynamic tests. These results show that deep learning-based approaches can be successfully used in critical 

tasks such as real-time crack detection in the automotive industry. In the future, it is envisioned that these 

approaches can be further improved with larger data sets and advanced model architectures. 
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