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Abstract: Frame structures are vulnerable to seismic impacts. The frame joint is the element that is often 

responsible for compromising frame structures. In recent years, shear force in the beam-column connection has 

been pointed out as the main culprit for damage in the nodes, and from there to the entire structure. The complex 

nature of the stressed and strained state of the joint is due to the poor knowledge of the forces passing in the 

beam-beam or column-column direction. For their more accurate determination, one departs from the standard 

acceptance of the static scheme of the axis line of the structural elements and works with their actual 

dimensions. With a skillful selection of the support devices, a mathematical model of the beam is created, 

allowing the determination of the forces that arise along its height and that enter the joint. The magnitudes of the 

support reactions of the beam are applicable both to operation in the elastic stage and to the plasticization of the 

beam and the occurrence of a crack between the beam and the column on the face of the column. In the present 

work, a cantilever beam loaded with a transverse force, occupying different possible positions on the beam, is 

considered. The expressions for the support reactions are derived. The unfavorable position of the loading force, 

which results in the greatest shear force, was investigated. A comparison is made of the corresponding shear 

force in the beam-to-column connection, with that recommended in the literature. The results demonstrate 

differences of up to 18.20%. The main parameters of the cantilever beam that were monitored are cross-

sectional shape, modulus of elasticity of concrete and position of the loading force. 

 

Keywords: Beam-to-column connection, Shear force, Reinforced concrete, Large deformations, Cracking in the 

beam 

 

 

Introduction 

 

One of the main elements in frame structures is the beam-column connection. Its main task is to ensure the not 

hindered passage of forces in the beam-beam and column-column direction while preserving the integrity of the 

beam-column connection. Disturbances in the beam-column joint are often responsible for the damage of part of 

the buildings or even their destruction. Over the past few decades, many frame structures have experienced 

sudden failure due to joint shear during cyclic loading, such as earthquakes. 

 

The first quantitative definition of shear strength was given in Hanson and Connor (1967). In their report on the 

test results of RC interior beam-column connections, the researchers defined joint shear as the horizontal force 

transferred to the mid-horizontal plane in a beam-column connection. They suggest that joint shear failure can 

be prevented by limiting the joint shear stress to the level at which joint shear failure occurs. 

 

Based on the assumption made, design codes of different countries are created. They provided a limit value of 

the shear stress of the joint. Detailed review of interior and exterior joints of special moment resisting reinforced 

concrete frames, with reference to three codes of practices: American Concrete Institute (ACI 318M-02), New 

Zealand Standards (NZS 3101:1995) and Eurocode 8 (EN 1998-1 :2003) was performed by Uma & Sudhir, 

(2006). A number of parameters have been defined that affect the shear strength of the joint. Researchers from 

different countries rely on different combinations of parameters (Park & Paulay, 1975; Paulay, 1989; Lowes & 
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International Conference on Research in Engineering, Technology and Science (ICRETS), August 22-25, 2024, Thaskent/Uzbekistan 

129 

 

Altoontash, 2003;  Celik & Ellingwood, 2008; Tran et al., 2014; Gombosuren & Maki, 2020). This makes it 

impossible to create a worldwide uniform procedure for designing the shear force in the beam-column 

connection. 

 

In Bakir and Boduroglu (2001), parametric studies were carried out on various parameters influencing the shear 

strength of the joint. The results of multiple studies on 5 parameters in relation to different countries are 

summarized. One of the main conclusions that emerge is that "the strength of the concrete cylinder increases the 

shear strength of the joint". 

 

In Yuan et al., 2013, “a number of RC/ECC composite beam-column joints have been tested under reversed 

cyclic loading to study the effect of substitution of concrete with ECC in the joint zone on the seismic behaviors 

of composite members.” “The substitution of concrete with ECC in the joint zone was experimentally proved to 

be an effective method to increase the seismic resistance of beam-column joint specimens.” 

 

In Doicheva et al. (2023-3) Seismic tests on reinforced concrete beam-column joint sub-assemblages subject to 

lateral and long-term vertical load was reported. The influence of an additional transverse force on the beam 

applied near the support of the cantilever beam is observed. It was reported that such a force did not 

significantly affect the beam column connection. 

 

Shiohara (2001) proposed a new model for calculating and detailing the beam-column connection based on the 

capacitive design. The study shows an irrationality in the joint shear model adopted in the most current codes 

for the design of reinforced concrete beam-column joints. The conclusions are based on the experimental test 

data of twenty reinforced concrete internal beam-column connections damaged by joint shear. The analysis 

showed that the joint shear stress increased in most specimens, even after the initiation of apparent joint shear 

failure. 

 

 

Problem 

 

Hanson and Connor (1967) gave the first quantitative definition of the joint shear in an interior beam-column 

connection from Figure 1. The researchers defined it with Eq. (1). This is an internal force acting on the free 

body along the horizontal plane at the midheight of the beam-column connection.  
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Figure 1. Definition of joint shear in interior RC beam-column connection by Hanson and Connor (1967) 

 

j S C C C
V T C C V T T V          (1) 

 

where:  
S

C  and 
S

C   - compressive force in bottom and top longitudinal reinforcing bars in beam passing 

through the connection;  

C
C  and 

C
C   -  compressive force in concrete on the bottom and top edge of beam;  

T  and T   -  tensile forces in top and bottom reinforcing bars in beam passing through the connection;  

C
V  - column shear force  

 

The contribution of steel and concrete is taken into account separately. This definition is clear and has been used 

in the design of beam-column connections in different countries.  
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The difficulty encountered in determining the forces T  and T   from Eq. (1) leads to the adoption of another 

way of writing the expression for the shear force in the literature. Usually T  and T   are defined by Eq. (2). 

 

b

b

M
T

j
  and b

b

M
T

j


   (2) 

 

where:  
b

M  and 
b

M   - moment at column face; 

b
j  and 

b
j  - the length of bending moment arm at the column face. It is assumed to be constant and 

unchanging in the process of deformation. 

 

Then Eq. (1) is rewritten from moment in the beam section at column faces into Eq. (3).  

 

b b

j C

b b

M M
V V

j j


  


 (3) 

 

The assumption (2) obliges us to assume equal forces in the bottom and top reinforcement of the beam at the 

face of the column. In the author's previous publications, these values were shown to differ substantially 

(Doicheva, 2021), (Doicheva, 2022), (Doicheva, 2023-1), (Doicheva, 2023-2). 

 

In this article, the following tasks are set: 1. to determine expressions for the forces from Figure 1, at the column 

face for a cantilever beam loaded with a transverse force, occupying different possible positions on the beam. 2. 

to perform comparisons of the obtained results with the results of Eq. (2) and Eq. (3). 

 

 

Method 

 

Mathematical Model of Beams 

 

A cantilever beam is considered. The beam is statically indeterminate and prismatic. The beam is under the 

conditions of special bending with tension/compretion and Bernoulli-Euler hypothesis is considered.  

 
Figure 2. Supports of cantilever beam to column and symmetrical cross section 

 

The beam is loaded with a vertical force  P kN , which changes its position on the beam. It is monitored by the 

distance  g cm . The support takes place in vertical support 1, where a vertical support reaction occurs  А kN . 

At the level of the reinforcing bars, elastic supports 2  and 3 , with linear spring coefficients 
2

k  and 
3

k , are 

introduced. They are set as the reduced tension/compression stiffness of the reinforcing bar, Eq. (4).  

 

2 2

2

E A
k

L
    and   3 3

3

E A
k

L
  (4) 

 

where:   L cm  - the length of the beam; 
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2

2
A cm    and 2

3
A cm    - the area of the cross-section of bottom and top longitudinal reinforcing bars 

in beam passing through the connection; 
2

2
/E kN cm    and 2

3
/E kN cm    - the modulus of elasticity of the bottom and top longitudinal 

reinforcing bars in beam passing through the connection 

The supporting reactions that occur here are  2
H kN  and  3

H kN . 

 

Linear spring supports act along the vertical edge of the beam, taking into account the connection of the 

concrete of the beam with that of the column. The forces in all the springs are reduced to one force,  1
H kN . In 

case of large deformations, part of the vertical edge is destroyed. The unbroken edge has length  2b cm . The 

reaction  1
H kN , which is symmetrically located with respect to the intact lateral edge, moves along the height 

of the beam as the crack length increases. For convenience, it has been transferred  1
H kN  to the support along 

the bottom edge (support one), after applying Poinsot's theorem concerning the transfer of forces in parallel to 

their directrix. This necessitated the introduction of compensating moments  1
.H b kN cm . The coefficient of the 

linear spring is 
1

k . It is set as the reduced tensile/compressive stiffness of the concrete section, Eq. (5).  

 

1 1

1

E A
k

L
     (5) 

 

where:   L cm  - the length of the beam; 

2

1
A cm    - the area of the cross-section of the concrete 

2

1
/E kN cm    - the modulus of elasticity of the concrete 

 

As a consequence of the linear deformations in the cantilever beam, a normal axial force occurs  N kN , which 

is introduced at the free end.  

 

 

Symmetric Cross-Section 

 

h

e
a

e
a

h

 
Figure 3. Symmetrical cross-section of the beam 

 

The following notations have also been introduced: 

  h cm  - the heigth of the beam; 

 e cm  and  a cm  - offset of the reinforcing bars from the top and bottom edges of the beam and from 

the axis of the beam, respectively; 
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1 1 2 2 3 3

EA E A E A E A    - tensile (compressive) stiffness of the composite section, where 
2 2

E A , 

3 3
E A  and 

1 1
E A  are tensile (compressive) stiffness of the reinforcing bars and of the concrete, respectively; 

1 1 2 2 3 3
EI E I E I E I    - bending stiffness of the composite section, where 

2 2
E I , 

3 3
E I  and 

1 1
E I  are 

bending stiffness of the reinforcing bars and of the concrete cross-section, respectively; 

 1 1y
I I ,  2 2y

I I  and  3 3y
I I  are the moment of inertia of the concrete cross-section and of the top 

and bottom reinforcing bars relative to the principal axis of inertia у. 

 

 

Support Reactions 

 

The three equilibrium conditions of statics give us respectively: 

 

1. 0V A P    (6) 

3 1 2
2. 0H N H H H      (7) 

4 1 3 2 1
3. 0 0

2

h
M Pg H b H a H a H         (8) 

From Eq. (8) we express 
2

H : 

 

1

2 3

2

h
Pg H b

H H
a

 
  

 
   (9) 

The solution is based on Menabria's theorem about statically indeterminate systems in first-order theory. 

 

The potential energy of deformation in special bending, combined with tension (compressure) and with the 

effect of linear springs taken into account, will be, Eq. (10): 

 

   2 2 22 2L

31 2

0 0 1 2 3

1 1

2 2 2 2 2

LM x N x HH H
dx dx

EI EA k k k
       . (10) 

 

It is a well-known fact that, according to Menabria's theorem, the desired hyperstatic unknown is determined by 

the minimum potential energy condition with respect to it or will be, Eq. (11): 

 

1 2 3

0; 0; 0
H H H

  
  

  
. (11) 

 

The beam is twice statically indeterminate. This leads to using the first and third terms of Eq. (11). 

 

The bending moments for the two parts of beam are: 

 1 1 1 2 3
2

h
M x Ax H b H H a H a     , (12) 

   2 1 1 2 3
2

h
M x A g x H b H H a H a Pg       , (13) 

 

Substitute Eq. (6) in Eq. (12) and Eq. (13). Substitute the resulting expressions and Eq. (9), together with Eq. (7) 

in Eq. (10). We perform operations from Eq. (11). A system of two linear equations with respect to the two 

unknowns, 
1 3
;H H , is obtained. Substitute the obtained 

1 3
;H H  in Eq. (9), to express 

2
H . The solutions give the 

formulas of the three horizontal support reactions below: 

 

  
 

2

1 1 1 2 3 2 23 2

1

1 2

2 2 2Pgk EAh R EIL k a k n Lga K n
H

EI EAD D

   



 (14) 

  
 

2

2 2 1 3 13 2

2

1 2

8

2

Pgk EAаR EILa k k LgaK n
H

EI EAD D

  



 (15) 
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  
 

3 1 1 2 2 12 1 2

3

1 2

4 4 2

2

Pgk EAаR EIL k n k a LgaK n n
H

EI EAD D

  



 (16) 

where  
1

2h b h  ;   
1 1

2n a h  ; 
2 1

2n a h  ; 

12 1 2
K k k ;  

13 1 3
K k k ; 

23 2 3
K k k ; 

2

1 2
2R EI k ga  ;   2 2

2 1 1 3
8 4R EI g k h k a   ; 

                2 2

1 2 3 1 1
4D k k a k h   ;    2 2

2 1 2 1 1 3 2 2 3
2 8D L ak k n k k n k k a      (17) 

 

The positions of the force P, for which the support reactions 
1 2 3
, andH H H have an extremum with respect to 

the distance g , are respectively: 

 

  
1

1 2 3 2

2 2

2 1 23 2

2 2

2 2
H

EA EI h L k a k n
g

EAa k h La K n

 


  

 (18) 

 

 2

1 3

2 2 2

3 1 1 13 2

8

2 4
H

EI EA L k k
g

EA a k k h LK n

   


    

 (19) 

  
3

2 1 2

2

2 12 1 2

4 2 2

2 4
H

EI EAa L k a k n
g

a EAa k LK n n

 


  

 (20) 

 

We perform the same solution without considering the axial force in the potential energy expression. The 

support reactions are respectively: 

 

 
1 1 1

1 2 2

2 3 1 1
4

Pgk h R
H

EI a k k k h




   

 (21) 

 
2 2

2 2 2

2 3 1 1
2 4

Pagk R
H

EI a k k k h


   

 (22) 

 
3 1

3 2 2

2 3 1 1

2

4

Pagk R
H

EI a k k k h


   

 (23) 

 

The maximum value of the support reactions is obtained when the loading force is located at a distance g from 

the support, respectively.: 

 

1 2

2

H

EI
g

k a
 ;     

 2 2 2

3 1 1

8

2 4
H

EI
g

a k k h



 

;     
3 2

2
2

H

EI
g

k a
  (24) 

 

 

Asymmetric Cross-Section 
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Figure 4. Asymmetrical cross-section of the beam 
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Figure 5. Supports of cantilever beam to column and asymmetrical cross section 

 

The dimensions that are different for the asymmetrical beam compared to the symmetrical one are: 

 c cm  and  e cm  - offset of the reinforcing bars from the top and the bottom edges of the beam, 

respectively; 

 a cm  and  d cm  - offset of the top and the bottom reinforcing bars from the axis of the beam, 

respectively; 

 z cm  - offset of the principal axis of inertia у to the bottom edge of the beam; 

 

The equilibrium conditions from statics are Eq. (6) and Eq. (7). Then Eq. (8) will be: 

 

4 1 3 2 1
3. 0 0M Pg H b H d H a H z         (25) 
From Eq. (25) we express 

2
H : 

 

 1 3

2

Pg H z b H d
H

a

  
  (26) 

 

The bending moments for the two parts of the beam are respectively: 

 

 1 1 1 2 3
M x Ax H b H z H a H d      (27) 

   2 1 1 2 3
M x A g x H b H z H a H d Pg       , (28) 

 

The solution is performed as described for the symmetric section solution. The three supporting reactions are: 

 

    
 

1 2 1 2 3 4 23 4

1

3 4

2

2

Pgk EAh R EIL k a k n LgaK a d n
H

EI EAD D

    



 (29) 

  
 

2

2 3 1 3 13 4

2

3 4

2

2

Pgk EAаR EILa k k LgaK n
H

EI EAD D

  



 (30) 

    
 

2

3 1 2 1 4 12 4 2 2

3

3 4

2

2

Pgk EAdR EIL k a k n LgK a an h dh
H

EI EAD D

    



 (31) 

where  
2

h b z  ;   
3 2

n d h  ; 
4 2

n h d  ; 

12 1 2
K k k ;  

13 1 3
K k k ; 

23 2 3
K k k ; 

2

1 2
2R EI k ga  ;   2 2

3 1 2 3
2R EI g k h k d   ; 

              2 2 2

3 1 2 2 3
D k h k a k d   ;         2

4 1 2 2 1 3 4 2 3
D L ak k a h k k n k k a a d        (32) 
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The extremum study of Eq. (29), Eq. (30) and Eq. (31) with respect to the position of the load P gives us the 

expressions for g to the three support reactions. 

 

  
 1

2 2 3 4

2

2 2 23 4

2

2
H

EA EI h L k a k n
g

EAa k h LaK a d n

 


   

 (33) 

 

 2

1 3

2 2 2

3 1 2 13 4

2

2
H

EI EA L k k
g

EA d k k h LK n

   


    

 (34) 

  
 3

2 1 4

2 2

2 12 4 2 2

2

2
H

EI EAd L k a k n
g

a EAda k LK a an h dh

 


    

 (35) 

 

A solution for an asymmetrical section was performed without considering the axial force in the strain potential 

energy expression. 

 

1 2 1

1 2 2 2

2 3 1 2
2

Pgk h R
H

EI k a k d k h




   

 (36) 

2 2

2 2 2 2

2 3 1 2
2

Pagk R
H

EI k a k d k h


   

 (37) 

3 1

3 2 2 2

2 3 1 2
2

Pdgk R
H

EI k a k d k h


   

 (38) 

 

The support reactions have an extremum with respect to the distance g, which gives the position of the force P. 

For each support reaction, it is respectively: 

 

1 2

2

H

EI
g

k a
 ;     

 2 2 2

3 1 2

2

2
H

EI
g

k d k h





;     

3 2

2

H

EI
g

k a
  (39) 

 

The all solutions was performed in the symbolic environment of the MATLAB R2017b program. 

 

 

Results and Discussion 
 

For the numerical results, a beam with a cross-section of 75 / 75 cm  and 30 / 30 cm  were introduced. For all 

examples considered P const , the distances  3e cm  and  3c cm . And more 2

2 3
75A А cm      for a 

cross-section of 75 / 75 cm  and 2

2 3
30A А cm      for a cross-section of 30 / 30 cm . The modulus of elasticity 

of reinforcing bars are 2

2 3
39000 /E Е kN cm     . Two examples with a difference only in the modulus of 

elasticity of concrete are considered. The modules used are 2

1
1700 /E kN cm     for normal concrete and 

2

1
3900 /E kN cm     for High-strength concrete. The beam is with a length of 200L cm . 

 

 

Case I – Symmetrical Cross Section 

 

The distance  b cm  varies in the interval  37.5, 0  and  15, 0  for a cross-section of 75 / 75 cm  and 

30 / 30 cm , respectivly. It is monitored by the ratio /h b . In Figure. 6 shows the variation of the parameters of 

the three support reactions for two cross-sections - 75/75cm and 30/30cm, with two modulus of elasticity of the 

concrete - E1=1700kN/cm
2 

and E1=3900kN/cm
2
, for the position of the force P at g =L=200cm. We see that as 

the cross section of the beam decreases, the forces 
1 2 3
, andH H H  increase. An increase in the modulus of 

elasticity of concrete leads to an increase in 
1

H , a decrease in 
2

H  and a slight increase in 
3

H , followed by a 

steeper decrease with increasing crack size. 
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Example I- the modulus of elasticity of the concrete 

is 2

1
1700 /E kN cm     

Example II- the modulus of elasticity of the 

concrete is 2

1
3900 /E kN cm     

 

 

 

 
a) b) 

Figure 6. The parameters of the three support reactions for symmetrical cross section; a) 75/75cm and 

30/30cm for E1=1700kN/cm
2
; b) 75/75cm and 30/30cm for E1=3900kN/cm

2
 

 

Example I- the modulus of elasticity of the concrete 

is 2

1
1700 /E kN cm     

Example II- the modulus of elasticity of the concrete 

is 2

1
3900 /E kN cm     

 

 

 

 
a) b) 

 

 

 

 
c) d) 

Figure 7. Changing the parameters of the three support reactions for values of g=L=200cm; 150cm; 100cm; 

50cm; 20cm for various cross sections and E1 modules; а) 75/75cm E1=1700kN/cm
2
; b) 75/75cm 

E1=3900kN/cm
2
; c) 30/30cm E1=1700kN/cm

2
; d) 30/30cm E1=3900kN/cm

2
 

 

Figure 7 is a summary of the values to the parameters of the three support reactions for different positions of the 

force P, set by g=L=200cm; 150cm; 100cm; 50cm; 20 cm. We have two cross-sections, at two modulus of 

elasticity of concrete. From Figure 7 the same conclusions can be drawn as than Figure 6. 
1

H  has a value of 0 

before the crack appears. 
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Case II – Asymmetrical Cross Section 

 

The distance  b cm  varies in the interval  , 0
C

z . It is monitored by the ratio /h b .  

 

Example III- the modulus of elasticity of the concrete is 
2

1
1700 /E kN cm     

Example IV- the modulus of elasticity of 

the concrete is 2

1
3900 /E kN cm     

  

 

 

 

 
a) b) 

Figure 8. The parameters of the three support reactions for asymmetrical cross section; a) 75/75cm and 

30/30cm for E1=1700kN/cm
2
; b) 75/75cm and 30/30cm for E1=3900kN/cm

2
 

 

Example III- the modulus of elasticity of the concrete 

is 2

1
1700 /E kN cm     

Example IV- the modulus of elasticity of the concrete 

is 2

1
3900 /E kN cm     

 

 

 

 
a) b) 

 

 

 

 

c) d) 

Figure 9. Changing the parameters of the three support reactions for values of g=L=200cm; 150cm; 100cm; 

50cm; 20cm for various asymmetrical cross sections and E1 modules; а) 75/75cm E1=1700kN/cm
2
; b) 75/75cm 

E1=3900kN/cm
2
; c) 30/30cm E1=1700kN/cm

2
; d) 30/30cm E1=3900kN/cm

2
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Figure 8 shows the parameters of the three support reactions for two asymmetric cross-sections - 75/75cm and 

30/30cm, for two modulus of elasticity of concrete - E1=1700kN/cm
2
 and E1=3900kN/cm

2
, for position of force 

P at g=L=200cm. The increasing trend of the three support reactions with decreasing cross-sectional size is 

maintained. It is noticeable that the increase in H1 is weak. In the asymmetrical cross-sections, H1 has negative 

values, until the appearance of a crack, i.e. it is on tension at the assumed cross-sectional shape. At 

E1=3900kN/cm
2
 

1
H  increases, 

2
H decreases and 

3
H  slightly increases, and after b/h= 2,4 it decreases steeply. 

 

Figure 9 is a summary of the values of the parameters of the three support reactions for different positions of the 

force P, set by g=L=200cm; 150cm; 100cm; 50cm; 20 cm. We have two cross-sections, at two modulus of 

elasticity of concrete. The trend is maintained that as the cross section of the beam decreases, the forces 

increase. It is noteworthy that, while for all considered cases, moving the force P away from the support (g 

increases) leads to a rapid increase in H1, for the smaller asymmetric cross-section – 30/30cm H1 has larger 

values at g=150cm and 100cm. Increasing the modulus of elasticity of concrete results in an increase in 
1

H , a 

decrease in 
2

H , and a slight increase in 
3

H , followed by a steeper decrease with increasing crack size. 

 

 

Case III - Symmetrical Cross Section Without Considering the Axial Force in the Potential Energy 

Expression 

 

Example V- the modulus of elasticity of the concrete 

is 2

1
1700 /E kN cm     

Example VI- the modulus of elasticity of the 

concrete is 2

1
3900 /E kN cm     

  
a) b) 

Figure 10. The parameters of the three support reactions for symmetrical cross section and neglected 

axial force; a) 30/30cm for E1=1700kN/cm
2
; b) 30/30cm for E1=3900kN/cm

2
 

 

The comparison of Figure 6 and Figure 10 shows that neglecting the axial force in the strain potential energy 

expression does not lead to quantitative differences in H1, while H2 increases from 9% to 2,5%, H3 decreases 

from 22% to 75% for E1= 1700kN/cm
2
. For E1=3900kN/cm

2
, H1 increases from 20% to 15%, H2 first increases 

from 5% and then decreases to 4,6%, H3 decreases from 9% to 90%. 

 

Example V - the modulus of elasticity of the concrete is 
2

1
1700 /E kN cm     

Example VI - the modulus of elasticity of the 

concrete is 2

1
3900 /E kN cm     

 

 

 

 
a) b) 

Figure 11. Changing the parameters of the three support reactions for values of g=L=200cm; 150cm; 100cm; 

50cm; 20cm for various E1 modules, symmetrical cross section and neglected axial force; a) 30/30cm for 

E1=1700kN/cm
2
; b) 30/30cm for E1=3900kN/cm

2
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A comparison of Figure 7 c) and d) with Figure 11 shows that H1 is preserved without much change in value, H2 

increases, H3 decreases for E1=1700kN/cm
2
. For E1=3900kN/cm

2
 H1 increases, H2 increases, H3 decreases. 

 

 

Case IV - Asymmetric Cross-Section Neglected Axial Force in the Strain Potential Energy Expression 

 

Example VII- the modulus of elasticity of the 

concrete is 2

1
1700 /E kN cm     

Example VIII- the modulus of elasticity of the 

concrete is 2

1
3900 /E kN cm     

  
a) b) 

Figure 12. The parameters of the three support reactions for asymmetrical cross section and neglected 

axial force; a) 30/30cm for E1=1700kN/cm
2
; b) 30/30cm for E1=3900kN/cm

2
 

 

A comparison of Figure 8 and Figure 12 shows that neglecting the axial force in the strain potential energy 

expression leads to an increase in H1 about 2 times. H2 remains almost unchanged, and H3 decreases from 30% 

to 110%. 

 

Example VII - the modulus of elasticity of the 

concrete is 2

1
1700 /E kN cm     

Example VIII - the modulus of elasticity of the 

concrete is 2

1
3900 /E kN cm     

 

 

 

 
a) b) 

Figure 13. Changing the parameters of the three support reactions for values of g=L=200cm; 150cm; 100cm; 

50cm; 20cm for various E1 modules and asymmetrical cross section; a) 30/30cm for E1=1700kN/cm
2
; b) 

30/30cm for E1=3900kN/cm
2
 

 

Figure 13 shows the variation of the parameters of the three support reactions for an asymmetric cross-section of 

30/30cm for different positions of the loading force P, measured by the distance g. Values for two modulus of 

elasticity of concrete are demonstrated. It can be seen that as the concrete strength increases, H1 increases, H2 

slightly decreases, and H3 increases. 

 

 

New Definition of Joint Shear in Interior RC Beam-Column Connection With the Calculated Forces H1, 

H2 and H3. 

 

We already know the magnitudes of the forces 
3 2 1
;H H and H  . Then the determination of the Shear Force in 

RC Interior Beam-Column Connections instead of Eq. (3) will be by Eq. (40). 

 

3 2 1j c
V H H H V      (40) 
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P

P

Vj

Vc

column

column

beam beam

b

bH1

b

H3

H1'

H2

H1

H2'

H3'

g

g

bH1

 
Figure 14. New definition of joint shear in interior RC beam-column connection with the calculated forces H1, 

H2 and H3 

 

If the frame is symmetric and other conditions being equal, we will have the equality of 
1 1

H H  , 
2 2

H H   

and 
3 3

H H  . Then Eq. (40) becomes Eq (41)  

3 2 1j c
V H H H V    .  (41) 

The comparison of Eq. (3) and Eq. (41) will be carried out by Eq. (42) 
?

3 2 1

b b

b b

M M
H H H

j j


   


.  (42) 

where - 
b

M Pg  is the moment of the cantilever beam on the face of the column. 

 

 

Comparison of the Results of Eq. (3) and Eq. (41) by Eq. (42) 
 

Case I - symmetrical cross section 

Example I- the modulus of elasticity of the concrete is 
2

1
1700 /E kN cm     

Example II- the modulus of elasticity of the concrete 

is 2

1
3900 /E kN cm     

 

 

 

 
a) b) 

Figure 15. Comparison of the results of Eq. (3) and Eq. (41) for symmetrical cross section; a) 75/75cm for 

E1=1700kN/cm
2
; b) 75/75cm for E1=3900kN/cm

2
 

 

Figure 15 shows comparison of the results of Eq. (3) and Eq. (41) for different possible positions of the force P, 

set by g=L=200cm; g=100cm; g=50cm; g=20cm. For all positions of the force P, the shear force determined 

with the exact values of the forces H1, H2 and H3 is greater than what is recommended in the Eq. (3) - 

b b

b b

M M

j j





. The difference is from 13.15% to 10.57%. 

 

The following Table 1, Table2 and Table3 show the percentage differences between the part of the shear force 

determined according to Eq. (3) and the one calculated with the exact forces H1, H2 and H3. 
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Table 1. Comparison of the results of Eq. (3) and Eq. (41) for symmetrical cross section 

section g  /h b  
3 2 1

H H H

P

 

 

b b

b b

M M

j j

P





 

 

 

3 2 1

3 2 1

100%

b b

b b

M M
H H H

j j

H H H

 
    

 

 

 

Si 

me 

tri 

cal 

75/75 200 4,3 6,67 5,80 13,15 

 150 4,3 4,96 4,35 12,27 
E1=1700 100 3,8 3,28 2,90 11,54 

 50 3,5 1,63 1,45 10,92 

 20 3,5 0,65 0,58 10,57 

Si 

me 

tri 

cal 

30/30 200 7,9 18,61 16,67 10,42 

 150 4,8 13,68 12,5 8,61 
E1=1700 100 3,8 8,98 8,33 7,22 

 50 3,5 4,44 4,17 6,15 

 20 3,2 1,77 1,67 5,61 

Si 

me 

tri 

cal 

75/75 200 3,5 7,04 5,80 17,61 

 150 3,2 5,27 4,35 17,51 
E1=3900 100 3,2 3,51 2,90 17,50 

 50 3,2 1,76 1,45 17,49 

 20 3,2 0,70 0,58 17,48 

Si 

me 

tri 

cal 

30/30 200 3,8 19,04 16,67 12,44 

 150 3,5 14,13 12,5 11,52 
E1=3900 100 3,5 9,34 8,33 10,76 

 50 3,2 4,63 4,17 10,10 

 20 3,2 1,85 1,67 9,74 

 

Table 2. Comparison of the results of Eq. (3) and Eq. (41) for asymmetrical cross section 

section g  /h b  
3 2 1

H H H

P

 

 

b b

b b

M M

j j

P





 

 

 

3 2 1

3 2 1

100%

b b

b b

M M
H H H

j j

H H H

 
    

 

 

 

Asi 

me 

tri 

cal 

75/75 200 4,3 5,91 5,80 1,91 

 150 3,8 4,54 4,35 4,14 
E1=1700 100 3,5 3,10 2,90 6,46 

 50 3,2 1,59 1,45 8,76 

 20 3,2 0,65 0,58 10,14 

Asi 

me 

tri 

cal 

30/30 200 6,5 16,34 16,67 -2,02 

 150 4,4 12,42 12,5 -0,64 
E1=1700 100 3,6 8,44 8,33 1,23 

 50 3,3 4,31 4,17 3,28 

 20 3,0 1,75 1,67 4,55 

Asi 

me 

tri 

cal 

75/75 200 3,2 6,55 5,80 11,46 

 150 3,2 5,02 4,35 13,37 
E1=3900 100 2,9 3,42 2,90 15,25 

 50 2,9 1,75 1,45 17,12 

 20 2,9 0,71 0,58 18,20 

Asi 

me 

tri 

cal 

30/30 200 3,6 16,88 16,67 1,28 

 150 3,3 12,94 12,5 3,41 
E1=3900 100 3,0 8,83 8,33 5,58 

 50 3,0 4,52 4,17 7,82 

 20 3,0 1,83 1,67 9,11 

 

The results of Table 1 show differences between the exact method (
3 2 1

H H H  ) and the approximate method 

b b

b b

M M

j j

 
 

 
 used in Eq.(3) for symmetrical section. For sections with normal concrete - E1=1700kN/cm

2
 and 

large cross-sections (75/75cm) the differences between the two methods is more than 10%, for all positions of 

the loading force P (g=L=200cm; 150cm; 100cm; 50cm; 20cm).For smaller cross-sections (30/30cm) the 
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difference is over 10% only at g=L=200cm. When using high-strength concrete with E1=3900kN/cm
2
, all 

differences between the two methods, for all sections and all positions of the force, are over 10%. For all types 

of concrete, the difference is greatest when the force P is farthest from the support. 

 

The results in Table 2 are for an asymmetric cross-section. Close to 10% are the differences between the two 

methods for the large cross-sections (75/75cm). When the concrete is high-strength, the differences increase and 

become greater than 10% for the large cross-sections (75/75cm). The differences between the two methods are 

greatest for force P standing closer to the support. 

 

Table 3. Comparison of the results of Eq. (3) and Eq. (41) for symmetrical cross section and without considering 

the axial force in the strain potential energy expression. 

section g  /h b  
3 2 1

H H H

P

 

 

b b

b b

M M

j j

P





 

 

 

3 2 1

3 2 1

100%

b b

b b

M M
H H H

j j

H H H

 
    

 

 

 

Si 

me 

tri 

cal 

30/30 200 3,2 17,37 16,67 4,03 

 150 3,2 13,12 12,5 4,70 
E1=1700 100 3,2 8,81 8,33 5,36 

 50 3,2 4,43 4,17 6,01 

 20 3,2 1,78 1,67 6,39 

Si 

me 

tri 

cal 

30/30 200 3,2 18,40 16,67 9,43 

 150 3,2 13,95 12,5 10,39 
E1=3900 100 3,2 9,40 8,33 11,32 

 50 3,2 4,75 4,17 12,24 

 20 3,2 1,91 1,67 12,78 

Asi 

me 

tri 

cal 

30/30 200 2,8 16,89 16,67 1,33 

 150 2,8 12,88 12,5 2,91 
E1=1700 100 2,8 8,72 8,33 4,45 

 50 2,8 4,43 4,17 5,94 

 20 2,8 1,79 1,67 6,81 

Asi 

me 

tri 

cal 

30/30 200 2,8 18,25 16,67 8,67 

 150 2,8 13,94 12,5 10,30 
E1=3900 100 2,8 9,46 8,33 11,87 

 50 2,8 4,81 4,17 13,39 

 20 2,8 1,94 1,67 14,27 

 

The results of Table 3 show the differences between the exact method, (H1+H2+H3) and the approximate one 

b b

b b

M M

j j

 
 

 
 used in Eq. (3) for symmetric and asymmetric section 30/30cm, when the contribution of the axial 

force in the expression of the potential energy of deformation is neglected. For ordinary concrete, the difference 

exceeds 5% when the force P is close to the support for both types of sections – symmetric and asymmetric. For 

both types of sections, with high-strength concrete, the differences exceed 10%. 

 

 

Conclusion  
 

A solution of a cantilever beam with a special arrangement of the support devices and different possible 

positions of the loading force was carried out. The actual dimensions of the beam are taken into account. The 

influence of the material properties of its components are taken into account to.The obtained expressions for the 

reactions of the horizontal supports give results that clearly show the distribution of the forces along the height 

of the cantilever beam. Calculations were performed for a symmetric and asymmetric cross section. Results of 

varying only one material characteristic, the modulus of elasticity of the concrete, are shown. The support 

reactions of the cantilever beam for different positions of the loading force were calculated. 

 

A comparison of the contribution of the cantilever beam forces to the shear force value for RC internal beam-

column connections with that of the literature is made. The obtained results show differences in the amount of 

shear force determined in the two ways up to 18.20%. The complex nature of variation in the contribution of the 
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cantilever beam forces to the shear force value is demonstrated, given the multitude of monitored parameters 

and their influence on the results. 

 

The obtained results represent an important part of the beam-column connection research in determining the 

force distributions with the variation of various parameters from the connected beams and columns. This article 

may be of interest to both researchers and practicing engineers in interpreting the results obtained from 

structural analyses. 

 

 

Recommendations 

 

This article will focused attention on how the forces are distributed from the cantilever beam along its height 

and the subsequent load from the beam on the beam-column connection with an emphasis on determining the 

shear force at the beam-to-column connection. 
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