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Abstract: In this paper, as a continuation of our work on the determinants of cubic matrices of order 2 and
order 3, we have investigated the possibilities of developing the concept of determinants of cubic matrices with
three indexes, as well as the possibility of calculating them using the Laplace expansion method. We have
observed that the notion of permutation expansion, which is used for square determinants, and the concept of the
Laplace expansion method, which is used for square and non-square (rectangular) determinants, may be applied
to this novel concept of 3D determinants. In this research, we demonstrated that the Laplace expansion approach
is also applicable to cubic matrices of the second and third orders. These results are presented simply and with
extensive proof. The findings are also supported by illustrated cases. In addition, we provided an algorithmic
explanation for the Laplace expansion approach applied to cubic matrices.
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Introduction

Linear Algebra, Abstract Algebra and Geometry are very intertwined fields. The applications of these fields are
very important and useful. Considering that matrix theory has very important applications in Computer
Graphics, Game-Theory, Graph-Theory, Imagery, different problems from informatics, Partial differential
equations, etc., which are very important in many vital fields! We are trying to develop this further, introducing
the concept of a 3-dimensional matrix and step by step to first study the determinants for a 3-dimensional
matrix. More specifically, in this paper, we study the determinants of the cubic-matrix for order 2 and order 3.
Based on the determinant of 2D square matrices presented in (Artin, 1991; Bretscher, 2018; Schneide et al.,
1973; Lang, 2010), as well as the determinant of rectangular matrices presented in (Salihu & Marevci, 2021,
Amiri et al., 2010; Radi¢, 1966; Radi¢, 2005; Makarewicz et al., 2014) we have come to the idea of developing
the concept of the determinant of 3D cubic matrices in (Salihu-Zaka, 2023b), also in papers (Salihu-Zaka,
2023b) and (Salihu-Zaka, 2023a) we have studied and proved some basic properties related to the determinant
of cubic-matrix of order 2 and 3. Also during this paper, we consider the results obtained in the papers (Amiri et
al., 2010; Radi¢, 1966; Radi¢, 2005; Makarewicz et al., 2014; Salihu et al., 2022; Milne-Thomson, 1941; Gago
et al., 2022; Kuloglu et al., 2023), but also the results presented in books (Artin, 1991; Bretscher, 2018;
Schneide et al., 1973; Lang, 2010; Poole, 2006; Rose, 2002). The history of Determinants and Linear Algebra,
in general, is quite beautiful, for this we invite you to look (Eves, 1990; Grattan-Guinness, 2003) and some
classic and very rich texts with knowledge about determinants, such as (Lang, 2002; Leon et al., 2021; Lay et
al., 2022; Meyer, 2023; Muir, 1933; Price, 1947).
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In this paper, we study the properties of the determinants of the cubic-matrix of orders 2 and 3, related to the
Laplace expansion method, our concept is based on the permutation expansion method. Encouraged by
geometric intuition, in this paper, we are trying to give an idea and visualize the meaning of the determinants for
the cubic-matrix. Our early research mainly lies between geometry, algebra, matrix theory, etc., (see (Peters-
Zaka, 2023; Zaka & Peters, 2024; Zaka, 2019a; Zaka-Filipi, 2016; Filipi et al., 2019; Zaka, 2017; Zaka, 2018;
Zaka, 2016; Zaka & Peters, 2019a; Zaka & Peters, 2019b; Zaka & Mohammed, 2020a; Zaka & Mohammed,
2020b). This paper is a continuation of the ideas that arise based on previous research of 3D matrix rings with
elements from any whatever field (Zaka, 2017), but here we study the case when the field F is the field of real
numbers & also is a continuation of our research (Salihu & Zaka, 2023b) related to the study of the properties of
determinants for cubic-matrix of order 2 and 3. In this paper, we follow a different method from the calculation
of determinants of the 3D matrix, which is studied in (Zaka, 2019b). In contrast to the meaning of the
determinant as a multi-scalar studied in (Zaka, 2019b), in this paper, we give a new definition, for the
determinant of the 3D-cubic-matrix, which is a real-number.

In the papers (Zaka, 2017; Zaka 2019b), have been studied in detail, properties for 3D-matrix, therefore, those
studied properties are also valid for 3D-cubic-Matrix. Our point in this paper is to provide a concept of the
determinant of 3D matrices using the Laplace concept which is a well-known methodology for calculating the
determinant of square and rectangular matrices. Hence, our concept is based on the Laplace method which is
used for calculating 2D square and rectangular determinants (Poole, 2006; Rose 2002) also, during this work we
take into account the results achieved earlier, see (Rezaifar et al.i, 2007; Koprowski, 2022; Neto, 2015; Dutta &
Pal, 2011; Silvester, 2000; Muir, 1906; Sothanaphan, 2018). At the end of this paper, we have also presented an
algorithmic presentation for the Laplace expansion method, for the calculation of cubic-matrix-determinants.

Preliminaries
3D Matrix

The following is the definition of 3D matrices provided in 2017 in (Zaka 2017): see Fig.1 for 3-D matrix
appearance

Definition 1 3-dimensional m = n x p matrix will call, a matrix which has: m-horizontal layers (analogous to

m-rows), n-vertical page (analogue with n- columns in the usual matrices) and p-vertical layers (p-1 of which
are hidden).

The set of these matrices is written as follows:

(1)

Figure 1. 3D-Matrix view.

The following presents the determinant of 3D-cubic matrices, as well as several properties which are adopted
from 2D square determinants.
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Cubic-Matrix of Order 2 and 3 and Their Determinants

A 3-dimensional-matrix A, .., for n = 2.3, ..., called "cubic-matrix of order n". For n =1 we have that the
cubic-matrix of order 1 is an element of F.

Let us now consider the set of cubic-matrix of order n, for n = 2 or n = 3, with elements from a field F (so
when cubic-matrix of order n, there are: n —vertical pages, n —horizontal layers and n —vertical layers). From
(Zaka 2017, Zaka 2019b) we have that, the addition of 3D-matrix stands also for cubic-matrix of orders 2 and 3.
Also, the set of cubic-matrix of order 2 and 3 forms a commutative group (Abelian Group) related to 3Dmatrix
addition.

Determinants of Cubic-Matrix of Order 2 and 3

In a paper (Salihu & Zaka 2023b), we have defined and described the meaning of the determinants of cubic-
matrix of order 2 and order 3, with elements from a field F. Recall that a cubic-matrix A, .., forn =2.3,..,

called "cubic-matrix of order n".

For n = 1 we have that the cubic-matrix of order 1 is an element of F.
Let us now consider the set of cubic-matrix of order =, with elements from a field F (so when cubic-matrix of
order n, there are: n —vertical pages, n —horizontal layers and n —vertical layers),

Mo (F) = {Anunen = ':ﬂl'_i'ic ]ﬂxnxnlﬂl'jk eF, Vi =T..‘r‘l:j =Llmk= In}

In this paper, we define the determinant of cubic-matrix as an element from this field, so the map,

det: M,(F) —F
VA € M,(F) ~det(d)eF.

Below we give two definitions, of how we will calculate the determinant of the cubic-matrix of orders 2 and 3.
Definition 2 Let A e M. {F)bea2x 2 x 2, with elements from a field F.

A _(”Lu. ﬂL:L|ﬂLL: Iﬂj.::)

frpp Gz l8zpz Opaz

The determinant of this cubic-matrix, we called,

11 ”L:L|ﬂn: Qyzn

detlds oa] = det (21

oy n:::) = Gyyy tGoon — Oyyo * Gazy — Gyny " Goys F Gpon Qo

The following example is a case where the cubic-matrix, is with elements from the number field E.
Example 1 Let’s have the cubic-matrix, with the element in the number field E,

4 —-3|-2 =1-)I

dm[ﬂ:x:x:] = dEt {—l 5 _? 3

then according to definition 2, we calculate the Determinant of this cubic-matrix, and have,

_ 4 —3]1-2 4 _ .

detfd,pa] = det (T 20|70 J)=43-(=2)-5-(=3) (-7 +4-(-1)
det[As,0,2] =12 — (—10)— 21 4+ (—4) =12 + 10 - 21 — 4 = -3.

We are trying to expand the meaning of the determinant of cubic-matrix, for order 3 (so when cubic-matrix,
there are: 3-vertical pages, 3-horizontal layers and 3-vertical layers).

Definition 3 Let A € M3 (F)be a3 x 3 x 3 cubic-matrix with an element from a field F,
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Agsegnz = (

Gy Bz
G2y Bozg
Oz Ogm

Oyap
Oazp
Oa3p

The determinant of this cubic-matrix, we called,

det[Az,z.2] = dEt(

det[Az,3.3] = @11y * G2zz

+ayyy -

tayys
i3
—Qy
—Qpm
—Qypza
a0y
+ayg

+ayg -

g2

33

B34

Gzpy

Ga11
Orzg " Ogz2
" Ozgp " O3z
gz tlggy
T fOgzyz 0333
" Oz " O3y
RS- TR S
" gz "z
T fOzyz " O3ag
Orag “Ogp2
SIS
T lzypn v gy

Gyz1
Gazp

G371

— Oy
— Oy
— O3
+
+ ay0s
+ ay0s
+ 25
— g
— O3z
— O3z

— a3z

" fg3g

31
Gagp
fg31

Qygn
Ozyn

Ogpn

LC50
LGS
" lzgy
a3
LCSE
LGS
" lzgy
a3
LCSE
" Gzzg

g

Gyzz Hyaz
frzz fzaz

fgzz  Ogaz

Gz Gpaz
Gz Goaz

Gz Ggaz

— Gy " Gngr v Ogng

" gay t+ dpys
" gay tdpgg

“fgan + 8yt

" fgze + G0y
" gz — Gy
Tlgpy — Gy

“figyy — Gpg t
flgzn — Opgp t
" gag t+ dyg -
gy tdgg

sfgyo + Oy

Oy13
Ozypa

Ogpz O3

Qg2
Gr3z2

Gg3z
— Oy
" By
F gt
trg2
" fags
F g
Tyt

" g

Gz Gpzz  Opag
Gzy3  Gpzz  Grag |

Qyzg  Hyag
Qzzg  Gz3z |

23 agza

o)

G313 Ggzz G333
"fzng " Hgaz

“Ozzp

G332

"z
L TE
“Ozzp

G332

“fgpg
L TE
“Ogrg

G322

“Ogyge

The following example is a case where the cubic-matrix, is with elements from the number field E.

Example 2 Let’s have the cubic-matrix of order 3, with an element from the number field (field of real

numbers) K,

det[Az,3.3] = de‘t(

30
2 5
0o 3

—41-2 4 0
-1-3 0 3
—21-3 2 &

31
i1
0o 4

0
)
3

Then, we calculate the Determinant of this cubic-matrix following Definition 3, and have that,

det[Az,3.3] = det (2 3

30

o 3

41-2 4 0
1|-3 0 3
al-3 2 5

31
31
0 4

0
2)
3

=3.0-3-3-3-4-3-1-543-2:-2—(=2)5-34 (—21(-2)+ (-2)(-1) -4 —(-2)2-3
+5-5-5-5-0-(-2)-5-(-1)-2+4+5-3-3-0-(-3)-3+0-3-5+0-3-0-0-2-(-3)
+4-2.3-4.3-(-2)-4.(-1)-0+4-2.0-1-2-54+1- (- (-)+1-(-1)-(-3)-1-3-0
+(-4)(-3)-4 - (—93-2 - (—4)0- 0+ (—4)1(-3)-0-2-4+0-3-340-5-0-0-1-0+
+0-2-2-0-(-3)-3-0-5-(=3)+0-0-0

SO,

detld;,2.] =0-36-15+12+30+4+8+12+125+0+10+454+0+0+0+0+24+24+0
+0-10+6+3-0+48+24+0+12-0+0+0—-0+0+0+0+0=326.

3
det (2
0

Minors and Co-factors of Cubic-Matrix of Order 2 and 3

Hence,

0
3
3

-4
-2

-2
-3
-3

4
0
2

0] 1 0
313 1 2)
210 4 3

= 326.

In this section, we will present the meaning of Minors and co-factors for the cubic-matrix of order 2 and order 3.

Minors of Cubic-Matrix

195



International Conference on Research in Engineering, Technology and Science (ICRETS), August 22-25, 2024, Thaskent/Uzbekistan

Let us start by defining minors.

Definition 4 Let 4, be an % n x n cubic-matrix (with n = 2). Denote by 4;5 the entry of cubic-matrix 4 at the
intersection of the i —th horizontal layers, j —th vertical pages and k —th vertical layers. The minor of A;; is

the determinant of the sub-cubic-matrix obtained from A by deleting its i —th horizontal layer, j —vertical page
and k —vertical layer.

We now illustrate the definition with an example.

Example 3 Let’s have the cubic-matrix of order 3, with an element from the number field (field of real

numbers) &,
3 0 -4 3 1 0
A,mg=(2 5 -1 31 2).

0 3 -2
Take the entry 4,,, = 3, The sub-cubic-matrix obtained by deleting the first-horizontal layer, first-vertical page
and first-vertical layer is,

2
-3
3

4 0
0o 3
2 5

,--'-=-
(=
LW
e =

Ll P
R —

Thus, the minor of 4,,, is

o 31 2

My, =det (5 [y 3

)=0-3-1-5-3-442-2=-5-12+4=-13,

Take the entry A,.; =1, The sub-cubic-matrix obtained by deleting the first-horizontal layer, 2-vertical page
and 3-vertical layer is,

(2 —-1]-3 3)
0 -2l-3 355
Thus, the minor of A,.; is

2 11—
My, =det(2 7173 3

0 —21-3 5)=2'5_{_3]'{—2]—{—1]'{—3]+3-U=1[]—6—3+[]=1.

Co-Factors of Cubic-Matrix of Order 2 and 3

A co-factor is a minor whose sign may have been changed depending on the location of the respective matrix
entry.

Definition 5 Let 4, be an % n % n cubic-matrix (with n = 2). Denote by M;;, the minor of an entry A; ;.. The
co-factor of 4;; is

,:'I._i.;__ = I:_1],-+ Jtk Mn‘jk .

As an example, the pattern of sign changes (—1}*#*¥ of a cubic-matrix of order 3 is

Example 4 Let’s have the cubic-matrix of order 3, with an element from the number field (field of real
numbers) &,
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30 —4]-2 4 02 1 0
Azygnz = (2 3 -1|-3 0 3|3 1 2).
03 -21-3 2 310 4 3

Take the entry 4,,, = 3. The minor of 4,,, is

My, = det {g §|L 2) =13

o
LFN]

and its cofactor is
Cipp = (DM My, = —Myy, = —(—13) = 13,

Take the entry A;.; = 1. Thus, the minor of A, is

Myap = det (g :é :g g]= 1

and its co-factor is

€z = {_'1]L+:+3 My =My =1

Laplace Expansion for Determinants of Cubic-Matrix of Order 2 and 3

We are now ready to present the Laplace expansion. Following the Laplace expansion method for 2D square-
matrix, we are conjecturing this method for 3D cubic-matrix,

Laplace Expansion for Determinants of Cubic-Matrix of Order 2

Laplace Expansion

If we have A a cubic-matrix of order 2 or 3. Denote by C;; the co-factor of an entry A; ;.. Then:

For any ‘horizontal layer’ i, the following “horizontal layer’ expansion holds:
det(A) =Z e o
ik
For any ’vertical page’ j , the following ’vertical page’ expansion holds:
det(A) = Z A Coppe
ik
For any vertical layer’ k, the following ’vertical page’ expansion holds:

det(A) =Z Ay * Cige
=

Below we prove that this method is valid for calculating the determinants of the cubic-matrix of order 2.
Theorem 1 Let A be a cubic-matrix of order 2,

A_{“LLL Qyzy | Bpaz ﬂ].::)
Gpyy  Oony | Gags  Gons
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The determinant of this cubic-matrix is invariant into the expansion of three "ways" to Laplace expansion.
Proof. We will prove all three expansion types, L. L.. L.

i L, For any horizontal layer i (i = 1,2), the following ’horizontal layer’ expansion holds:

det(A) =E; A - C

ik

If we take i = 1, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 2,
which we described above, we have:

Oy Bym | Bz Byoz )

detld; 2,21 = (ﬂ:u_ Bazy

= ay,, -det(@z22) — ay,, -det(@212) — @y, -det(@221) + a5, - det{@21;)

Ozpz Gooz

SO,
det [A:x:x:] =@y " Boop — Bpyz t Bany — Gyny " Gyz F Gpan - By 3)

This result is the same as that in the Definition 2.
Now similarly we take i = 2, and we consider the meaning of the minors and co-factors for the cubic-matrix of
order 2, which we described above, we have:

_(Bany By | Bps ﬂ].::)
det[A: x2xz] (ﬂ:u. Oz ltzyz Ooo
=a,,, - det(@22) — a,,, -det(8y2) — 6y, - det(8121) + a,n, - detl(ayy, )
_ 4)
=@yt Byop — Bapy t Bpyx — Gzyp “Gyoy + Gop 8y
50,
detfAz,0nz] =82y " Byzr — Gpzy " Gyyz — B2yp Gz F Brar Gy

We see that we have the same result as the Definition 2.
{ L.): for any ’vertical page’ j , the following ’vertical page’ expansion holds:
We see that we have the same result as the Definition 2.
{ L.): for any ’vertical page’ j , the following ’vertical page’ expansion holds:

.jet{_..‘j] = Z ‘,.’jl.-i.;; . ':f_;'i;-
ik

If we take j =1, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 2,
which we described above, we have:

_ (“LLL G2y |”u.: Iﬂj.::)
Q11 Gazp
= 3y " dEt{ﬂ:::] + oyt det {ﬂL:::I
_ﬂ]_]_: " dEt{n::L:] - ﬂ:]_: " dEt{ﬂL:L:] (5)
=yt Gozp + Byt oo

det[As0.2] Gays  Gaa

—iyys " @any + dogs - Gyag.

So we have the same result as the Definition 2.
Now similarly we take j = 2, and we consider the meaning of the minors and co-factors for the cubic-matrix of
order 2, which we described above, we have:
Gy B

detldsnia] = (o000 2
= —a,,, - det(8212) — a,,, - det{@y:)
+0y00  det (G210 ) + Gosn - det(yy) (6)
= —fyny fppn T Gpng v Oz

Qyiz ﬂ].::)
Qg2 ooz

Fiypon r doyy + Gaon t gy

So we have the same result as the Definition 2.
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i Ly): For any ’vertical layer’ & , the following ’vertical layer’ expansion holds:
det(A) :Z Aiji * Cijie
T

If we take k = 1, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 2,
which we described above, we have:

— (ﬂLLL Q71 |“LL: ﬂ].::)
Gapp G2z
= fyyy " det{ﬂ::::l — gy " dﬂt{ﬂ:j_:]
+ﬂ:]_]_ " dEt{ﬂl:::] - ﬂ::]_ " dEt':ﬂj_j_::] (7)
= @ypy v Gpop T Gpng " Ozpa

det[As . n.] Gryn  Baas

+8zyy " 8y20 — Bazy * By,

So we have the same result as the Definition 2.
Now similarly we take k& = 2, and we consider the meaning of the minors and co-factors for the cubic-matrix of
order 2, which we described above, we have:

_ (“LLL By |ﬂu.: n].::)
fzyy  fazy
= —ay,, - det(8221) + a5, - det(822,)
—0gy; +det(@y21) + aop, - detlagy) ®)
= —fyyp * Gany + Gypon Gany

dEt["q:}i.:h:] -y - Lrnn

—ipys "@yay + Gann Gy

So we have the same result as the Definition 2.
The following example is a case where the cubic-matrix of second order, is with elements from the number field
E.

Example 5 Let’s have the cubic-matrix, with the element in the number field &,

4 -2 =1-)

Azyays = {_1 E—|3| -7 3

then according to Theorem 1, we calculate the Determinant of this cubic-matrix, and have,

4 —-31-2 4
det[As,0,0] = det (_-J_ 5 1—-7 3)'
Fori = 1, we have:
4 —-31-2 4
dEt[H:x:x:] = (_1 5 -7 3)

=4 -det(3) — (—3) - det{(—7)
—(—2) - det(5) +4 -det(-1)
=4-3-(=3)-(=7)—-(-2)-5
+4.(-1)=-3.

We see that we have the same result as the Example 1.
For i = 2, we have:
1 -31-2 4

det[ds,2x2] = (_1 s |l_g 3)
=—1-det(4) - 5- det(-2)
—(=7) - det(—3) + 3 - det(4)
=-1:4-5-(=2)— (=7)- (-3)
+3-4=-3.
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So we get the same result as the Example 1.
For j =1, we have:

—31-2
det[Ayy2.2] = (il 5 3|_§ ::I
=4 -det(3) + (—1)- det(q)
—(—2) - det(3) — (-7} - det(-3)
=4-3+(-1)-4-(-2)-5
—(-7) - (—3) = -3.

So we get the same result as the Example 1.
For j = 2, we have:

=(4 -31-2 4)
-1 5 l-7 3

=—(—3) -det(=7) — 5 det(-2)
+4 - det(—1) + 3 - det(4)
=3-(-N-5(-2)—-4-(-1)
+3-4=-3.

det[As . n.]

So we get the same result as the Example 1.
For k = 1, we have:
4 -3|-2 4

detldnnl =(5, 37|25 3)
=4 -det(3) — (—3) - det(-7)
+(—1) - det(4) —5 - det(-2)
=4.3 —(=3)- (-4 (-1)-4
—5.(-2) = -3.

So we have the same result as the Example 1.
For k& = 2, we have:

(4 -31-2 4)
-1 5 1-7 3
=—(—2) - det(5) + 4 - det(3)
—(=7) - det(—3) + 3 - deti4)
—(=2)-5+4-5—-(=-7)-(-3)
+3-4=-3.

det[A; . 0x0]

So we have the same result as the Example 1.

Laplace Expansion for Determinants Of Cubic-Matrix of Order 3
Below we prove that this method is valid for calculating the determinants of the cubic-matrix of order 3.

Theorem 2 Let A be a cubic-matrix of order 3,

Gpin Gpn Gy | @z Bpzz Gpaz| @z Bpzz G
A=|8zy G2y Oogg | Onpz Oroz Gpzz|Ozpz G2z Oogz |
Ogp1  Ggzp Oyl Bgpz  Ogzp  Hggpl gy fgzg  COggg

The determinant of this cubic-matrix is invariant into the expansion of three "ways" to Laplace expansion.
Proof. We will prove all three expansion types, L,. L. Ly also for the third order.
L, For any horizontal layer i (i = 1.2,3), the following ’horizontal layer’ expansion holds:

det(4) = Y A Cie
ik
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If we take i = 1, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:

Gy Bz gy | fuaz @pzz Gpgz| Q. Sz Bz
det{ A} = det (ﬂ:u. Ozzp  Oa2zp | Ozpz Ooon Oogn| Oop Ooog “:3!)
fgyp  Ggzp Oggyl gy Qgzz Oggzl G353 O3z oz
= ayy, _{ﬂ::: Ifl::4:| (g ﬂ:zz) — gy _{”:L: gz |ﬂ:Lz ﬂ:zs) T aygy - (”:L: ﬂ:::| fr13 n::3)
Ogzn  Oggal Ggog  O3gg - Ogpz  Oggzlfgyg  Ozag Ggpz  Ogpzlfgpz  Ogzg
—ayy _(ﬂ::L ”:3L|ﬂ::3 ﬂ:zz) T ayz _{ﬂ:LL Ifl::u.|“:u ﬂ:zz) — @y _{ﬂ:LL ﬂ::J.|ﬂ:1.:4 ﬂ::3)
< Migmy  GOggplflzzg  COagzg ©T Mgy Gyl gy fggg < Mhgyy  Hgpplftggy Oazg
tay,, _(ﬂ::L n::u.|ﬂ::: ﬂ:s:) —ay. _{ﬂ:LL n::u.| Ozyz ﬂ:s:) g _{ﬂ:LL ﬂ::J.| Ozypz ﬂ:::).
Ogzy  Oggp @32z Ogaz - Ogpp  fggy | Ogpz Ogaz Ogpp  Ogzpl @3z Ogoz

After expanding further the above determinant based on Theorem 1, we see that this result is the same as the

result of Definition 3.

If we take i = 2, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:

Gy1n Gz Gagn | Bz Bpoz
det (A) = det| G211 @z2;  Bo3y | 822 Gozo
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After expanding further the above determinant based on Theorem 1, we see that this result is the same as the

result of Definition 3.

If we take i = 3, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:

Q11
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After expanding further the above determinant based on Theorem 1, we see that this result is the same as the

result of Definition 3.

If we take j =1, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:

Oy By Bm
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After expanding further the above determinant based on Theorem 1, we see that this result is the same as the

result of Definition 3.

If we take j = 2, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:

By11
det (A) = det (ﬂ:u.
Oapp
= aypy _(ﬂ:L: ﬂ:3:|ﬂ:u ”:3!) _
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Gygy | Bpz Gpoz Gpgz| Gz Gpzz Gy

fogy | P21z Gzzz Opgo| Oz Oozz Oog; )

Oggyp 1 8gpz  Ogzz Qggzl gz Ogzz Ogz;

@ygz Gyaz |ﬂLL3 “L!!) + _(”LL: gz |ﬂLL3 ”L!!)
ftggz  Oggr lfQ333 Hgag 2L \ayyp  Gpgp lan g i
By11 Bymp |“LL! ﬂLH!) e - (ﬂLLL Oyap |”LL3 ﬂLH!)
fgp1  Oggp 18333 O3z I \ayyy  Gogy 0213 Goag
Gy By |“LL: ﬂL!:) + o - (ﬂLLL Gy31 |“LL: ﬂL!:)
fgpp  Oggp 8337 Hgaz 1 \any, g lOne G

After expanding further the above determinant based on Theorem 1, we see that this result is the same as the

result of Definition 3.

If we take j = 3, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:

Gypp Bz Oy | Buiz Bpo
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After expanding further the above determinant based on Theorem 1, we see that this result is the same as the

result of Definition 3.

If we take k = 1, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:
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After expanding further the above determinant based on Theorem 1, we see that this result is the same as the

result of Definition 3.

If we take k = 2, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,

which we described above, we have:
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ta (ﬂL:L fyz1 |Bzza ”:ss) 0 (ﬂj.u. fyap |Pizz ”Lss)_l_ﬂ (ﬂj.u. Oz |Pra3 ﬂ].:!)
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After expanding further the above determinant based on Theorem 1, we see that this result is the same as the
result of Definition 3.

If we take k = 3, and we consider the meaning of the minors and co-factors for the cubic-matrix of order 3,
which we described above, we have:
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After expanding further the above determinant based on Theorem 1, we see that this result is the same as the
result of Definition 3.

The following example is a case where the cubic-matrix of the third order, is with elements from the number
field K.

Example 6 Let’s have the cubic-matrix, with the element in the number field &,
3 0 -4 5 10
-"J]gkgxg = (2 3 -1 i1 2)
0 4 3

o0 3 -2
then according to Theorem 2, we calculate the Determinant of this cubic-matrix, and have,

—2
-3
3

0
3
]

| S e T

30 —4]-2 4 0|5 1 0
det[Ay,5,4] = det (2 5 —1|]-3 0 3|3 1 2).
0 3 —21-3 2 slo 4 3
For i = 1, we have:
30 —4/-2 4 0]5 1 0
det (4) = det (2 5 —1|-3 0 3|3 1 2)
0 3 —20—3 2 slo 1 3
_ . (0 3|1 2y . (=3 33 2y, . (=3 0|3 1y_, .. (5 -11 2
=3-(; sl 3) 0 {—3 sl o SJH * (—3 2|U +) (=2) {3 _2|+ 3)

].
#:(5 Dlo 3)-0-G e Jes-G 2l5 916 SIT 940G 35 0

det (A) = 326.

After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the

same as the result of Example 2.
For i = 2, we have:

3 0 —4]-2 4 05 1 0
det(A) = det (z 5 —1]-3 0 33 1 2)]
0 3 —-2l-3 2 slo & 3
. i 3 . o
=25 sly 3)-5(5 4lg )+ (5 2R J-e0-G Sl 3
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3 =45 0 3 015 1 5 =1 3 . 72 —-1]-3 3 2 31-3 0
+U'(n —2lp 3)_3'{0 3lp 4]+5'(3 —2|2 5)_L'(n —2l-3 5)“]'(0 3l-3 z)
SO
det (A) = 326,
After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the

same as the result of Example 2.
For i = 3, we have:

30 —4]-2 4 0|3 1 0
det(A) = det (z 5 —1/-3 0 3|3 1 2)]
o0 3 —-20—-3 2 310 4 3
=0-(g 3l 2-35(5 33 D+ (35 G D-e»G Il )

0
2
2 Tk -G sk D+ Tilo 3)-+G IS 9GS5 0

So
det (A) = 326.
After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the

same as the result of Example 2.
For j =1, we have:

3 0 —4/-2 4 05 1 0
det(A) = det (z 5 —1]-3 0 33 1 2)]
0 3 —-2l-3 2 slo & 3
B . :
=3:( 3ly 9-2-G 5ly 9+ (5 3l )
-2 Sl 9+ca-G Sl P-e-G Dl 3)
5. 5k 9-3G 5k 9+ Tl 3)

So
det (4) = 326.
After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the

same as the result of Example 2.
For j = 2, we have:

30 —4]-2 4 035 1 0

det(A) = det (z 5 —-1|-3 0 3|3 1 2)]

0 3 -21—3 2 slop 4 3
-3 3|3 2 -2 0|5 0 -2 015 0 2 —1]3 2
=U'{—3 5o 3)_5'(—3 5lp 3)+3'(—3 3l3 2)_4'{0 —21lp 3)

— _ 2 11— — -2
w0-(g 5l 3-2G 15 D@ 25 -G 25 9
— -2
++-{§ —Tl—é g)=326.

After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the
same as the result of Example 2.
For j = 3, we have:
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30 —4/-2 4 05 1 0
det(A) = det (2 5 —1|-3 0 3l3 1 2)]
0 3 —20-3 2 slp 4 3
_ 7 -2 1 i 1 2 [
<o 96 Do I Den G )06 36 )
+3:(5 55 9-5G 55 Do @ 315 2-2Q 315 )
+3-(3 2:5 g)=376

After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the
same as the result of Example 2.
For k = 1, we have:

30 —4-2 4 0|5 1 0
det(A) = det (z 5 —1|-3 0 3|3 1 2)]
o3 -21-3 2 30 4 3
1 2 — 2 — ] j
5@ 2 D03 3 Deco-(3 26 D2 3B 9
5.3 3 -0 2B Do I D 20

+{—2)-{:§ gg :D=326.

After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the
same as the result of Example 2.
For k& = 2, we have:

30 —4]-2 05 1 0
det(A) = det (2 5 —1|-3 33 1 2)
0 3 —20-3 slo 4 3

I~a

p—
+
=

—

=2-G Sl 39-+G 2o 3 2 -G 39
+0-(o 3l 936 sl Dre»-G Tl 9-2G Ik 2

+5-(3 2P :lj —326 = det(A) = 326.

Do D e

After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the
same as the result of Example 2.
For k& = 3, we have:

30 —4-2 4 05 1 0
det{A) = det 5 —-1|-3 0 3|3 1 2
(EI 3 -21-3 2 3o 4 3)]
— 2 —-11- 2 —
=5-(; 5k 9)-1G Sl5 50 (G 515 926 S5 9)

0
2
+1:(5 315 9-2:G EIZ; roe(s Sl 9-+G 1l 9

+3.(3 §|Z§ g) = det(4) = 326.

After expanding further the minors of the above determinant based on Theorem 1, we see that this result is the
same as the result of Example 2.

From Theorem 1 and Theorem 2, we have true the following Theorem,

Theorem 3 The Laplace Expansion for Determinant calculation, applies to the cubic-matrix of order 2 and the
cubic matrix of order 3.
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Algorithmics Implementation of Determinants for Cubic-Matrix of order 2 and 3

In a paper (Salihu-Zaka 2023b) we have presented the pseudo-code of algorithm based on the permutation
expansion method as presented in Definition 1. In the following, we have also presented the pseudo-code of the
algorithm based on the Laplace method as presented in Theorem 3.

tw]

P 1: Laplace method for determinants of cubic matrices of order 2 and 3

tw]

Step 1: Determine the order of determinants:

[m.n, 0] = size(A):

Step 2: Checking if the 3D matrix is cubic:

ifm ~mm~=on~=o

disp(’A is not square, cannot calculate the determinant’)

d =0

return

end
Step 3: Checking if the 3D matrix is higher than the 3rd order:

ifm=3;

disp(’A is higher than the third order, hence can not be calculated.”)

d =0,

return

end
Step 4: Initialize d = 0;
Step 5: Handling base case.

ifm==1

d = A;

return

end
Step 6: Select which plan we shall use to expand the determinant:

Horizontal Layer: x1 =1 or 2 or 3; or

Vertical Layer: x2 =1 or 2 or 3; or

Vertical page: x3=1or2or 3;
Step 7: Calculate the 3D determinant of orders 2 and 3 based on Laplace methodology:

Create a loop from 1 to 2 or 3 (Depending on the order of the cubic matrix):

Create a loop from 1 to 2 or 3 (Depending on the order of the cubic matrix):

If the horizontal layer is selected:

d=d+{—-1)"(1+xl+i+j)=AxL i)+ det_3DLaplace (A([Ll:xl — 1xl + 1em]. [1:i — 1i +
Lin], [l — 1 4+ 1:m])):

end

If the vertical layer is selected:
d=d+ (1" (1+i+x2 + )= A0 x2,j)» det_3DLaplace (A([L1:i — Li + Lim], [L:x2 — 122 +
Lin]. [l — 1 + 1:m])):

end

If the vertical page is selected:
d=d+ (-1 (1+i+j+x3)=A{.i.x3) = det_3DLaplace (A([L:i — Li+ Lm]. [L:j—1j +
Lin]. [L:x3 — 1x3 + 1:m])h

end

end

end
Step 8: Return the result of the 3D determinant.

tw]

Conclusions

In this paper, we have continued our work on determinants of cubic-matrices. We have provided that Laplace
method which is used on determinants of square and rectangular matrices similarly can be used also for the
calculation of determinants of cubic-matrices of order 2 and order 3. In both cases, we have provided the proof
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of expanding cubic-matrix in any element, and similar to the determinant of square and rectangular matrices we
have used also cubic-minors by removing the horizontal layer, vertical page and vertical layer of the
corresponding element. In addition, we have also provided examples for each case, as well as we have provided
a computer algorithm that can be used to calculate determinants of cubic-matrices of orders 2 and 3.

We are currently working on: systems of linear and non-linear equations with 3-dimensional representations,
presenting them with 3D matrices, this way, we think, significantly reduces the representations and actions of
difficult and complex problems, we are also studying *3D-matrix transformations’, etc. The understanding and
study of determinants for cubic-matrix, we think opens new paths for future research related to cubic-matrix
applications.

We think that the concept of 3D matrices can be applied very well, in complex problems of Game-Theory,
Graph-Theory, Computer Graphics, Imagery, different problems from informatics, Partial differential
equations, etc. Therefore, we recommend that future research, based on this paper but also on other papers that
we have for 3D-matrix, focused on the possible applications of 3D-matrices and the Determinants of cubic-
matrices.
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