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Abstract: This paper introduces a radio fingerprinting localization method for positioning unknown radio 

transmitters (URTs) based on received signal strength difference (RSSD). The method incorporates Kalman 

filter (KF) preprocessing, principal component analysis (PCA), similarity measures, and weighted k-nearest 

neighbors (WKNN). First, the Kalman filter is applied to the received signal strength (RSS) measurements to 

reduce noise. Next, PCA is used for dimensionality reduction and decorrelation by extracting the principal 

components from the RSSD data. In the final stage, the similarity between offline and online principal 

component databases is measured using various metrics, while WKNN estimates the transmitter’s position by 

assigning weights to nearby reference points (RPs). Simulations are conducted to evaluate the impact of 

preprocessing, the number of PCA components, and the choice of similarity measures on localization 

performance. The results provide a comprehensive analysis of the trade-offs between these techniques, 

highlighting their effectiveness in different environments and conditions for fingerprinting-based WLAN 

localization. 
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Introduction 
 

Recent technological advancements in mobile networks, coupled with the increasing demand for security, have 

led to the diversification of techniques for locating wireless device users. Radio signals, which are integral to 

daily life, play a crucial role in communication systems, facilitating applications such as mobile searches, 

emergency communications, and public safety (Zhang et al., 2019). However, these systems remain susceptible 

to interference from unauthorized or illegal transmissions. Unlicensed radios and intentional jammers, 

collectively known as Unauthorized Radio Transmitters (URTs), pose significant threats by illegally occupying 

wireless communication channels. As a result, the accurate detection of URTs has become a prominent area of 

research, drawing considerable attention in recent years. 

 

In this context, radio fingerprinting technology has gained widespread adoption, particularly for indoor 

localization. This technique involves creating a database of radio fingerprints unique to a specific environment. 

Most previous research on radio fingerprinting localization techniques uses RSS due to its availability in various 

environments and the fact that it does not require additional hardware. RSS measurements are collected during 
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the offline phase, and once the system is deployed, real-time measurements from the online phase are compared 

to the offline data to determine the location of URT (Zafari et al., 2019).  

 

The accuracy of fingerprint-based localization depends not only on the precision of RSS measurements but also 

on the effectiveness of the algorithm used to match real-time measurements with the offline RSS fingerprint 

database during the testing phase (Polak et al., 2021). However, even at the same location and within the same 

time interval, RSS values varied due to differences in the power output and antenna gain of the radio 

transmitters. RSSD-based fingerprint positioning techniques, which operate by calculating the difference in RSS 

among access points (APs), effectively eliminate the influence of radio emitter power and antenna gain (Zhang 

et al., 2023). Compared to traditional RSS methods, RSSD-based approaches offer greater stability in 

heterogeneous environments and enhance the ability to locate URTs. 

 

In Guenther & Julian )2016), a study on Wi-Fi location fingerprinting in indoor environments explores the use 

of Wi-Fi signal strength for positioning. The study evaluates nine distance metrics—including Manhattan, 

Euclidean, Chebyshev, and Cosine distances—to determine the most effective metric for accurate positioning. 

In (Zhang et al., 2019). A new KNN-based geo-location method utilizing RSSD and virtual reference points is 

proposed to improve URT localization. (Le et al., 2021)  . Present an indoor positioning method that enhances 

accuracy and reduces power consumption by utilizing RSS fingerprints. This approach involves selecting fixed 

APs in the offline phase, applying PCA, and employing kernel-based ridge regression. (Zhou et al., 2021). 

Propose a robust fingerprint localization method using an adaptive KNN approach that dynamically selects the 

optimal number of neighbors. Additionally, (Zhang et al., 2023). İnvestigate a method based on RSSD, PCA, 

and the Pearson correlation coefficient to enhance feature extraction and reduce redundancy and cross-

correlation in fingerprint data. 

 

In this paper, we evaluate URT localization performance in WLAN networks by analyzing both accuracy and 

computational complexity (running time) based on various simulation parameters. These include the application 

of the Kalman filter, the number of PCA components used for dimensionality reduction, the choice of K in the 

WKNN algorithm, and different similarity test metrics. Specifically, the RSS measurements are preprocessed 

using a Kalman filter to reduce noise. Subsequently, the RSSD is calculated, and PCA is employed for 

dimensionality reduction in the offline phase. In the online phase, we apply the Kalman filter again on the RSS 

of URT, calculate the RSSD, and project the online RSSD onto the PCA coefficients derived from the offline 

phase. Various similarity tests are utilized to evaluate the similarity between the reduced datasets. Based on the 

results of these similarity tests, RPs are selected, and the WKNN algorithm is applied to accurately estimate the 

position of the URT. The remainder of this paper is organized as follows: Section 2 provides an overview of 

radio fingerprinting localization. Section 3 describes the system model used in the study. Section 4 presents the 

results and discussion. Finally, Section 5 concludes the paper, summarizing key findings and potential directions 

for future work. 

 

 

Fingerprint Localization  
 

Radio fingerprinting localization is a widely adopted technique for indoor positioning due to its high accuracy 

and ability to manage the complexities of indoor signal propagation. Unlike other methods, it does not require 

line-of-sight measurements of APs, has low complexity, and is well-suited for complex environments (Subedi & 

Pyun, 2017). This makes it widely applicable for accurate indoor localization, even in environments with 

challenging signal conditions. fingerprinting localization, typically require an environmental survey to collect 

fingerprints or features of the environment, which enhances the system's positioning accuracy. In this work, 

RSSD of different APs, which are deployed for network services, is used as feature location. The method 

consists of two main phases as shown in Figure 1, the offline phase and the online phase (Abed & Abdel-Qader, 

2019).  

 

In the offline phase, the area of interest is divided into grid points, referred to as RPs, each identified by 

Cartesian coordinates (𝑥𝑖 , 𝑦𝑖). At each RP, RSSD measurements between pairs of APs are collected along with 

the (𝑥𝑖 , 𝑦𝑖)coordinates of each RP to build a comprehensive fingerprinting database. These fingerprinting 

represent the unique signal characteristics of the environment and are stored for future comparison in the 

localization process. During the online phase, real-time RSS values received from the URT are converted into 

RSSD measurements by various APs within the area of interest. These RSSD measurements are then compared 

to entries in the fingerprinting database to estimate the URT's location using a pattern matching algorithm. The 

localization process determines the closest match between the real-time RSSD values and the stored fingerprints 

to accurately estimate the URT's position. To further enhance accuracy, multiple similarity metrics can be 
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applied to determine the optimal match, with the final location estimated through an average or weighted 

calculation of the closest reference points. 

 

 
Figure 1. Radio fingerprinting localization method 

 

 

System Model 
 

In this section, we present the methodology employed by the proposed positioning system for estimating the 

location of a URT. The operational process of the RSSD-based PCA-WKNN fingerprinting positioning system 

consists of two primary phases: the offline database creation phase and the online positioning phase, as 

illustrated in Fig. 2. 

 

During the offline phase, an appropriate grid distance is selected to partition the area into sub-positioning zones, 

with each vertex representing a RP. In our system, twelve APs are uniformly deployed. A known radio emitter 

is sequentially positioned at each RP, allowing for the collection of RSS measurements at each AP. Each RP 

corresponds to a unique set of location fingerprint vectors, capturing specific scene characteristics. Additionally, 

a Kalman filtering preprocessing step is employed to reduce noise in the RSS measurements, further improving 

the accuracy of the positioning system. The RP coordinates, along with the differences in observations from the 

APs, constitute the offline RSSD database. Notably, the RSSD values of adjacent calculations exhibit significant 

spatial and temporal correlation. To enhance computational efficiency in the online phase, we apply PCA on the 

offline database to extract the PCA coefficients, which are subsequently used to reduce dimensionality for both 

the offline and online databases. 

 

In the online phase, real-time RSS from the URT is received by the APs. The same Kalman filtering 

preprocessing applied in the offline phase is utilized during this phase. Subsequently, the URT RSSD database 

is constructed through difference operations. Dimensionality reduction and decorrelation processing of the 

RSSD are performed using the previously computed PCA coefficients. The primary objective of the online 

positioning phase is to identify the most closely related reference point (RP) combinations. Similarity is 

evaluated by calculating various similarity metrics. The results are based on the WKNN algorithm, ultimately 

facilitating the selection of RP coordinates to estimate the URT's position. 

 

 

RSSD Database Generation 
 

In a positioning area with K RPs and N APs, the offline RSS fingerprint database, initially records RSS 

measurements from various APs, resulting in multidimensional features that characterize each RP. After 
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applying Kalman filtering, the RSSD values are calculated, transforming the data into an RSSD fingerprint 

database, as depicted in Table 1 (Zhang et al., 2023). 

 

Table 1. The offline RSSD fingerprint database. 

Coordinates  RSSD sample 

(𝑥1, 𝑦1) 𝑅𝑆𝑆𝐷1,1−2 𝑅𝑆𝑆𝐷1,2−3 ... 𝑅𝑆𝑆𝐷1,𝑁−1 

(𝑥2, 𝑦2) 𝑅𝑆𝑆𝐷2,1−2 𝑅𝑆𝑆𝐷2,2−3 ... 𝑅𝑆𝑆𝐷2,𝑁−1 

(𝑥3, 𝑦3) 𝑅𝑆𝑆𝐷3,1−2 𝑅𝑆𝑆𝐷3,2−3 ... 𝑅𝑆𝑆𝐷3,𝑁−1 

..
. 

..
. 

..
. 

..
. 

..
. 

(𝑥𝐾 , 𝑦𝐾) 𝑅𝑆𝑆𝐷𝐾,1−2 𝑅𝑆𝑆𝐷𝐾,2−3 ... 𝑅𝑆𝑆𝐷𝐾,𝑁−1 

 

 
Figure 2. Flowchart of the studied scheme 

 

PCA is used to reduce the feature space dimensions and eliminate correlation among original features without 

losing critical information. The offline RSSD sample matrix, denoted as 𝑅𝑆𝑆𝐷𝑜𝑓𝑓  is structured as follow: 

 

𝑅𝑆𝑆𝐷𝑜𝑓𝑓 = (

𝑅𝑆𝑆𝐷1,1−2 𝑅𝑆𝑆𝐷1,2−3 … 𝑅𝑆𝑆𝐷1,𝑁−1

𝑅𝑆𝑆𝐷2,1−2 𝑅𝑆𝑆𝐷2,2−3 … 𝑅𝑆𝑆𝐷2,𝑁−1

⋮ ⋮ ⋮ ⋮
𝑅𝑆𝑆𝐷𝐾,1−2 𝑅𝑆𝑆𝐷𝐾,2−3 … 𝑅𝑆𝑆𝐷𝐾,𝑁−1

)    (1) 

 

Where 𝑅𝑆𝑆𝐷𝑖,𝑗 represents the RSSD value for the i-th RP and j-th AP. PCA coefficients (principal components) 

are extracted from 𝑅𝑆𝑆𝐷𝑜𝑓𝑓 . This process involves calculating the covariance matrix C of 𝑅𝑆𝑆𝐷𝑜𝑓𝑓 . Eigenvalue 

decomposition is then performed on C, yielding the matrix of eigenvectors, P. The eigenvectors are sorted in 

descending order according to their corresponding eigenvalues, with the top c eigenvectors selected as the c 

principal components. These selected eigenvectors are then combined to construct the projection matrix W 

(Jiang et al., 2021). Both the offline and online RSSD databases are then reduced by projecting onto the matrix 

W. The dimension reduction and RSSD decorrelation processing can be expressed as follows: 

 

𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓 = 𝑅𝑆𝑆𝐷𝑜𝑓𝑓 . 𝑊        (2) 

 

Where 𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓  is the reduced representation of the offline database. Similarly, during the online phase, the 

same matrix W is used to project the online RSSD data: 

 

𝑃𝑅𝑆𝑆𝐷𝑜𝑛 = 𝑅𝑆𝑆𝐷𝑜𝑛 . 𝑊        (3) 

 

Where 𝑃𝑅𝑆𝑆𝐷𝑜𝑛  is the reduced representation of the online database. 
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Similarity Testing 

 

After dimensionality reduction, similarity between the reduced offline and online RSSD databases is evaluated 

using various similarity metrics. These metrics quantify the closeness of the reduced feature vectors to estimate 

the position accurately. Specifically, Euclidean distance, Manhattan distance, Chebychev distance, Cosine 

similarty and correlation are applied as similarity measures to compare the reduced representations. The 

description of each similarity test, as outlined in (Moghtadaiee & Dempster, 2015;Guenther & Julian, 2016). İs 

discussed in the following subsection. 

 

 

Euclidean Distance 

 

Euclidean distance quantifies the shortest distance between two points in a Cartesian coordinate system, 

effectively measuring the straight-line distance between two vectors. 

 

𝑑𝑒 = √∑ (𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓,𝑗 − 𝑃𝑅𝑆𝑆𝐷𝑜𝑛 ,𝑗 )
2𝑐

𝑗=1      (4) 

 

where c is the number of principal components selected during PCA dimonsionality reuction. 

 

 

Manhattan Distance 

 

Manhattan distance, also known as city block distance, boxcar distance, or absolute value distance, is a 

commonly used metric for measuring similarity. This distance metric represents the distance between points on 

a grid-based. 

 

𝑑𝑚 = ∑ (𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓,𝑗 − 𝑃𝑅𝑆𝑆𝐷𝑜𝑛 ,𝑗 )
2𝑐

𝑗=1        (5) 

 

Chebychev Distance 

 

Chebychev distance, also known as the minimax metric or infinity norm. This distance calculation determines 

the maximum absolute difference between the corresponding elements of two vectors. It represents the greatest 

magnitude along any dimension of the vector space and is particularly useful in systems where calculation time 

is critical, as it can serve as an efficient alternative to other distance metrics. The Chebyshev distance is given 

by: 

 

𝐿∞ = max𝑐|𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓,𝑐 − 𝑃𝑅𝑆𝑆𝐷𝑜𝑛 ,𝑐 |        (6) 

 

 

Cosine Distance 

 

Cosine distance, 𝑑𝑐𝑜𝑠, is a measure of similarity between two vectors rather than a traditional distance or 

dissimilarity metric. It calculates the angular separation between vectors, with values ranging from -1 to 1, 

where higher values indicate greater similarity between the vectors. By subtracting this similarity term from 1, 

the result can be interpreted as a vector distance. A higher cosine similarity value signifies a smaller angular 

separation, indicating that the two objects are more alike. 

 

𝑑𝑐𝑜𝑠 = 1 −
∑ 𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓,𝑗.𝑃𝑅𝑆𝑆𝐷𝑜𝑛,𝑗

𝑐
𝑗=1

(∑ 𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓,𝑗
2𝑐

𝑗=1 .∑ 𝑃𝑅𝑆𝑆𝐷𝑜𝑛,𝑗
2𝑐

𝑗=1 )
1

2⁄
       (7) 

 

 

Correlation Distance 

 

Correlation distance measures the similarity between two vectors based on the linear relationship of their values. 

Unlike other distance metrics, correlation distance quantifies the degree to which one vector varies in relation to 

the other, with values ranging between -1 and 1. A value close to 1 indicates strong positive correlation (similar 

direction), 0 indicates no correlation, and -1 indicates strong negative correlation (opposite direction). 
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𝑑𝑐𝑜𝑟 =
∑ (𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓,𝑗−𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅).(𝑃𝑅𝑆𝑆𝐷𝑜𝑛,𝑗−𝑃𝑅𝑆𝑆𝐷𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑐

𝑗=1

(∑ (𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓,𝑗−𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑐

𝑗=1 .∑ (𝑃𝑅𝑆𝑆𝐷𝑜𝑛,𝑗−𝑃𝑅𝑆𝑆𝐷𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑐

𝑗=1 )
1

2⁄
      (8) 

 

Where 𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and 𝑃𝑅𝑆𝑆𝐷𝑜𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the mean values of 𝑃𝑅𝑆𝑆𝐷𝑜𝑓𝑓  and 𝑃𝑅𝑆𝑆𝐷𝑜𝑛,, respectively. 

 

For position estimation, the RP coordinates with the highest coefficients are selected. We use WKNN algorithm 

to obtain the estimated coordinate(𝑥𝑈𝑅𝑇 , 𝑦𝑈𝑅𝑇)  of the URT, which is expressed by: 

 

{
𝑥𝑈𝑅𝑇 =

1

𝐾
∑ 𝑥𝑖

𝐾
𝑖=1

𝑦𝑈𝑅𝑇 =
1

𝐾
∑ 𝑦𝑖

𝐾
𝑖=1

   )      (9) 

 

where (xi, yi) represents the coordinate of the i-th RP and K is the number of selected RPs 

 

 

Results and Discussion 
 

In this section, we present simulations that were conducted to assess the performance of a wireless localization 

system based on radio fingerprinting for URT positionning. The goal of these simulations is to evaluate the 

impact of different parameters and preprocessing techniques on localization accuracy and computational 

efficiency. The performance was analyzed under varying conditions, including the application of Kalman filter 

preprocessing, PCA components, similarity tests, and influnce of varying WKNN values. The simulation takes 

place in a 2D area of 100×100 meters. The environment consists of 12 fixed APs positioned throughout the area, 

which provide RSS measurements.The performance criteria used in these simulations include Localization error, 

defined as the distance between the estimated position of the URT and its true position. This error measures the 

system's accuracy. Running time which reflects the computational efficiency of the system under different 

configurations,     

 

 

APs Distribution and URT Trajectory 
 

The simulation area is divided into a grid of RPs spaced 0.5 meters apart. 12 fixed APs are positioned 

throughout the area, to ensure sufficient coverage, as shown in Figure 3. To simulate the movement of the URT, 

a series of key reference points was selected to form a path covering a significant part of the environment, 

dipected in Figure Y. The step size between trajectory points is set to 0.5 meters, allowing for detailed and 

precise simulation of the URT’s motion 

 
Figure 3. APs distribution and URT trajectory with 0.5m steps 

 

 

RSS Modeling 

 

To generate the RSS values in an indoor environment, a log-distance path loss model is used in (Zhang et al., 

2019). This model is defined by the following equation: 
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𝑃(𝑑p,q)  =  𝑃(𝑑0)  −  10.. 𝑙𝑜𝑔
𝑑𝑝,𝑞

𝑑0
 +  𝑥q 

 

where: 

 

 𝑃(𝑑p,q) is the RSS at the q-th RP located at a distance 𝑑𝑝,𝑞 p-th AP, 

 𝑃(𝑑0)  is the RSS at the reference distance 𝑑0, 

 𝑑0 is the reference distance, 

  is the path loss exponent,  

 𝑑𝑝,𝑞 represents the distance between the p-th AP and the q-th RP, 

 𝑥q is a Gaussian random noise following the distribution N(0,σ
2
), 

 σ
2 
represents the variance of the RSS measurement. 

 

For our simulation, the following values for the model constants were used: P(d0)=10 dB, d0=1meter, α=1.8 and 

σ
2
=5.2 dB 

 

 

Simulation Setup and Results  

 

In the following subsections, we present the detailed results of various simulations. The process begins with the 

application of Kalman filter preprocessing on the RSS measurements. After preprocessing, we compute the 

RSSD by calculating the difference between the RSS values of different APs at the same RP. Next, we analyze 

the impact of PCA and various similarity tests on localization accuracy and computational complexity. Finally, 

the influence of different WKNN values on the performance of the radio fingerprinting localization system is 

evaluated, with a focus on both accuracy and efficiency. 

 

 

Impact of Kalman Filter 

 

In this simulation, we employ the Euclidean distance metric with 80 WKNN to estimate the position of URT. 

The objective is to compare the localization error under two scenarios: one without preprocessing and another 

where a Kalman filter is applied to RSS measurements during both the offline and online phases. The Kalman 

filter is utilized to reduce noise in the RSS data, aiming to enhance the localization accuracy.  

 
Figure 4. Localization error of URT. 

 

The simulation results demonstrate that incorporating the Kalman filter leads to a significant reduction in 

localization error. The Kalman filter effectively smooths the RSS measurements, minimizing the impact of noise 

and fluctuations. Consequently, this improves the accuracy of matching real-time RSS data with the 

precomputed fingerprint database, yielding more precise location estimates. These findings underscore the 

importance of filtering techniques, such as the Kalman filter, in enhancing the reliability of indoor localization 

systems. 
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Impact of PCA Components 

 

This simulation evaluates the effect of PCA on the accuracy and computational efficiency of fingerprinting-

based localization. PCA is applied with varying numbers of components, ranging from 3 to 9, to assess its 

impact on localization error. PCA components 1 and 2 are excluded from the analysis due to their insignificant 

results, while components beyond 9 (i.e., 10 and 11) yield similar outcomes to those with 9 components, 

offering no further improvement.  

 

The similarity between the online and offline RSSD databases is determined using correlation, while location 

estimation of the URT is achieved using 80 WKNN. A Kalman filter is also implemented in both the offline and 

online phases to reduce noise in the RSS measurements. Additionally, we compare these results with a scenario 

in which PCA is not applied, aiming to find an optimal balance between dimensionality reduction for improved 

computational speed and accurate localization performance. 

 
Figure 5. CDF of localization error for PCA components 

 
Figure 6. Runing time vs. PCA components (Including no PCA) 

 

The simulation results, as illustrated in figures 5 and figure 6, reveal several important insights regarding the 

impact of PCA components on both localization accuracy and computational efficiency. Firstly, as the number 

of PCA components increases, the localization error decreases. This improvement occurs because higher 

numbers of PCA components retain more significant features from the original RSSD data, enhancing the 

system’s ability to distinguish between different locations. However, beyond eight components, the localization 

accuracy shows minimal improvement, indicating that the additional components contribute marginally to error 

reduction. Secondly, the running time exhibits a positive correlation with the number of PCA components, 
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reflecting the increased computational complexity required for higher-dimensional data. Notably, an anomaly is 

observed when using three PCA components, where the running time is unexpectedly higher. This irregularity 

could be attributed to inefficiencies in processing lower-dimensional data within the PCA framework. Lastly, 

performing localization without PCA yields a marginally lower localization error since no information is lost 

during dimensionality reduction. However, this comes at the cost of significantly longer running times, 

highlighting the computational inefficiency associated with handling high-dimensional data directly. 

 

These findings underscore the trade-off between localization accuracy and computational cost. While using up 

to eight PCA components strikes a balance between minimizing error and maintaining efficient processing 

times, further increases in components offer diminishing returns in accuracy while imposing a heavier 

computational complexity. 

 

 

Impact of Similarity Tests 

 

In this simulation, we investigate the effectiveness of various similarity tests. Utilizing 8 PCA components, we 

apply an 80 WKNN algorithm alongside a Kalman filter for noise reduction in both the offline and online RSS 

databases. The aim is to compare the performance of different similarity metrics, including Euclidean, 

Manhattan, Chebyshev, Cosine, and Correlation, to determine their impact on localization accuracy and 

computational efficiency. 

 

 
Figure 7. CDF of localization error for ifferent similarity measures 

 
Figure 8. Running time vs similarity tests 

 

The comparison between the different similarity measures—Euclidean, Manhattan, Chebyshev, Cosine, and 

Correlation—reveals several important findings related to both localization accuracy and computational 
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efficiency. From the perspective of accuracy, the Euclidean and Chebyshev distance metrics provide the best 

performance, yielding the lowest localization error. Manhattan distance and Cosine similarity perform slightly 

worse but are still close in terms of accuracy to the best-performing metrics. The correlation-based similarity 

measure, however, exhibits the poorest accuracy, resulting in higher localization errors compared to the other 

methods. In terms of computational efficiency, Euclidean, Manhattan, and Chebyshev distances demonstrate the 

best performance with comparable running times, making them the most computationally efficient in this 

comparison. Cosine similarity incurs a higher computational cost, resulting in a longer running time. 

Correlation, while being the least accurate, also presents the highest running time, performing worse than 

Cosine in terms of speed.These results suggest that Euclidean and Chebyshev distances provide the best trade-

off between accuracy and computational efficiency, making them ideal choices for practical fingerprinting 

localization applications. In contrast, correlation should be avoided due to both its lower accuracy and higher 

computational burden. 

 

 

Impact of WKNN Values 

 

In this simulation, the impact of varying WKNN values on localization error was evaluated using Euclidean 

distance as the similarity measure and applying a Kalman filter to RSS measurements during both the offline 

and online phases. By testing WKNN values ranging from 10 to 150, the goal was to determine the optimal 

number of neighbors that minimize localization error. 

 
Figure 9. CDF of localization error for different WKNN values 

 
Figure 10.  Running time vs. WKNN values 

 

The results of the localization error analysis reveal an optimal range for WKNN values between 60 and 120, 

where localization accuracy is consistently high. Specifically, WKNN values of 60, 80, 100, and 120 show the 

best performance in terms of accuracy. In contrast, lower WKNN values (10, 20, 40) and the higher value of 150 
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exhibit slightly decreased accuracy, suggesting that an excessively small or large number of neighbors may 

negatively affect localization precision. 

 

Regarding running time, there is a noticeable variation across different WKNN values. For WKNN = 10, the 

running time is 1.1248 seconds, which increases as WKNN grows, peaking at WKNN = 20 with 2.4803 

seconds. Interestingly, after WKNN = 40 (2.0492 sec), the running time starts decreasing and stabilizes, with the 

best results found for WKNN = 80 (1.2566 sec) and WKNN = 100 (1.1921 sec). As WKNN increases further, 

there is a slight increase in running time, reaching 1.3593 seconds for WKNN = 150. The running time results 

suggest that a WKNN value between 60 and 120 strikes the best balance between high localization accuracy and 

computational efficiency. Values higher than 120 result in diminishing returns in terms of both accuracy and 

speed. These findings highlight the importance of selecting an appropriate WKNN value to ensure optimal 

localization performance in practical systems. 

 

 

Conclusion  
 

This study evaluates the performance of a radio fingerprinting localization system for localizing URTs in 

WLAN environments, employing a radio fingerprinting technique based on RSSD. It highlights the crucial role 

of Kalman filter preprocessing in reducing noise and enhancing localization accuracy. The analysis reveals that 

using up to eight PCA components achieves an optimal balance between accuracy and computational efficiency, 

while additional components offer diminishing returns. Among various similarity measures, Euclidean and 

Chebyshev distances demonstrated superior effectiveness in both accuracy and efficiency, whereas correlation 

performed poorly. Furthermore, an optimal WKNN range of 60 to 120 was identified, providing a balance 

between high localization accuracy and computational efficiency. These findings emphasize the importance of 

judiciously selecting preprocessing techniques, dimensionality reduction methods, similarity measures, and 

WKNN values to optimize localization performance in practical applications. 
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