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Abstract: In this project work, the impact of porosity on the nonlinear thermal buckling response of power 

law functionally graded beam with various boundary conditions is investigated; the derivation of equations is 

based on the Euler–Bernoulli beam theory where the distribution of material properties is imitated polynomial 

function. Using the nonlinear strain–displacement relations, equilibrium equations and stability equations of 

beam are derived. The beam is assumed under thermal loading, namely: Nonlinear temperature distribution 

through the thickness. Various types of boundary conditions are assumed for the beam with combination of 

roller, clamped and simply-supported edges equations for these types of structures. The effects of the porosity 

parameter, slenderness ratio and power law index on the thermal buckling of P-FG beam are discussed. 
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Introduction 

 

During last two decades, the need to design the high per Functionally graded materials (FGMs) are composite 

materials composed of two or more constituent phases with a continuously variable variation by gradually 

changing the  volume fraction. These materials type have been proposed, developed and successfully employed 

in industrial application since 1980s (Koizumi, 1993). FGMs were designed as a thermal barrier coating in 

aerospace application, such as ceramic-metal composite structure.  

 

Nowadays, FGMs are alternative materials widely employed in aerospace, civil, mechanical, nuclear, optical,  

electronic, chemical, shipbuilding, and biomechanical  industries (Akavci, 2016; Kar & Panda, 2015, 

2016;Eltaher et al., 2014; Belkorissat et al., 2015; Ait Atmane et al.,.2015; Akbas, 2015; Arefi 

2015a,2015b;Arefi & Allam, 2015b; Celebi  et al.,2016; Darabi & Vosoughi, 2016; Turan et al., 2016;  

Ebrahimi & Shafiei, 2016; Mouaici al.2016, Mouffoki et al.,2017; Zidi et al., 2017, Bellifa et al.,2017; Karami 

et al., 2018a, 2019a; Bennai et al., 2019; Bouamoud et al., 2019; Bellifa  et al., 2017, 2021; Batou et al., 2019; 

Chaabane  et al., 2019; Alwabli et al., 2021; Benbakhti et al., 2023 , 2024; Benfrid et al., 2023; Maachou et al., 

2024; Semmah et al., 2024). 

 

The problem of buckling of the porous materials with varying properties has been discussed by many authors. 

The buckling analysis of thin functionally graded (FG) rectangular plates based on the classical or first order 

shear deformation theory (FSDT) under various loads were discussed by Mohammadi et al. (2010). Jabbari et al. 

(2013, 2014) examined porosity distribution influence on buckling characteristics of plates. Buckling of metal 

foam porous beams using a shear deformation beam model was studied by Chen et al. (2015). In a recent study, 

http://www.isres.org/
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Bellifa et al. (2016) analyzed the wave propagation of an infinite FG plate having porosities by using various 

simple higher-order shear deformation theories. Ebrahimi et al. (2016) considered the thermal effects on linear 

free vibration of functionally graded Euler-Bernoulli beams with porosities for pinned-pinned and clamped 

pinned edges.  

 

To conclude, we have noticed through our reading in the literature that studies on the effect of porosity across 

the thickness of the FG beam are rare. For this, the aim of this paper first is to extend the Euler–Bernoulli beam 

theory proposed by Eslami and Kiani (2010) and Bellifa et al. (2017) to porous functionally graded (FG) beams, 

then to study the critical buckling temperature for FG beams with porosity for different types of boundary 

conditions and thermal loadings which are assumed to be non-linear distribution through the thickness. Material 

properties were assumed to be temperature dependent, and graded in the thickness direction according to a 

simple power law distribution. Finally, the results based on the Euler-Bernoulli beam theory and the effects of 

thermal loading, porosity, and other parameters on FG beam buckling thermo mechanical behaviour are 

investigated. 

 

 

Theoretical Formulations 
 

Kinematics  

 

The classic beam theory is applied throughout the work. Based on the Euler-Bernoulli assumption, the following 

displacement field can be obtained, (Kiani & Eslami 2010; Belbachir et al., 2024). 
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Where ),(0 yxu ,  ),(0 yxw  are the two unknown displacement functions of middle surface of the beam in the x 

and z directions. The Von-Karman-type of geometric non-linearity is taken into consideration in the strain–

displacement relations which are as follows  

 

xxx kz 0    

 

Where 
0

x  and xk  are, respectively, the nonlinear longitudinal strain and curvature defined as (Bellifa and al. 

2017) 
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Constitutive Relations 

  

Consider a FG rectangular beam with thickness h , length a and width b  The Cartesian coordinate system is 

established so that lx0  , and
2

z
2

-
hh

 . 

 

Functionally graded materials (FGMs) are composed of two kinds of materials: one is a metal and the other is 

ceramic. Here, Young’s modulus E (z) varies continuously through the beams thickness by a polynomial 

material law. We will consider a non-homogeneity material with a porosity volume function,   1)(0   . 

In such a way, the efficient material properties, as Young’s modulus E , the coefficient of thermal expansion  

and thermal conductivity K at a point are usually assumed to be given by the rule of mixture (Ait Atmane and 

al. 2017) 

 

(1) 

 

(2) 

     (3) 
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Where p  is the volume fraction exponent. The value of p  equal to zero represents a fully ceramic beam, 

whereas infinite p  indicates a fully metallic beam. The distribution of the combination of ceramic and metal is 

linear for 1p .  

 

The constitutive relation of a FG beam under thermal and mechanical conditions using thermo-elasticity can be 

expressed as 

 

))(( rxx TTE  
                                                             (5)

 

 

Where x ,T and rT  are, respectively, the axial stress, the temperature distribution through the thickness and the 

reference temperature. The axial force N  , the bending moment M caused by thermal stress, respectively are 

written as 
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By substituting Eq. (4) and Eq. (5) into Eq. (6) we obtain 
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Total potential energy of the FGM beam may be expressed as follows 
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    Substituting Eq.(3) and Eq.(5) into Eq.(8) and integrating with respect to z and y, The total potential energy of 

the beam is given by  
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   (9) 

 

  The stability equations of the beam may be derived by the adjacent equilibrium criterion. Assume that the 

equilibrium state of the FGM beam under thermal loads is defined in terms of the displacement components

),,,( 1
0

0
0

1
0

0
0 wwuu . The displacement components of a neighboring stable state differ by ),,,( 2121 wwuu  with 

respect to the equilibrium position. Thus, the total displacements of a neighboring state are 

(4) 
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The stability equation of an FGM beam under thermal loading is assumed to be given by eliminating )( 1

0
u as  
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The parameter is a constant and the Eq. (11) is a linear homogeneous equation whose general solution is 
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Where 1D , 2D , 3D and 4D are undetermined constants calculated via the boundary conditions. 
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The following boundary conditions are imposed at the edges for FGM beam 
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Finally, the critical thermal force of the beam, TcrN for all cases of boundary conditions, can be expressed as 

follows 
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Where D is a constant and depends on the type of boundary conditions (clamped-clamped, simply supported-

simply supported, clamped-roller edges, simply supported-roller edges, clamped-simply supported). 

 

 

Thermal Buckling Solution 

 

Buckling of FGM Beams Under Non-Linear Temperature Across the Thickness 

 

The FGM beams are subjected to transversely non-linear temperature rise, and the increments of temperature on 

top surface and bottom surface are tT
and bT

, respectively. Four sides of the beam are adiabatic with 

environment. Due to the increments of transversely temperature inside FGM beams are assumed to be the 

(11) 

(13) 

(14) 

(12) 
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(16) 
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function of thickness coordinate z, the increments 
)(zTT 

satisfy the following one-dimensional thermal 

conduction equation 

 

  0
















dz

dT
zK

dz

d

 
 

This model ignores the time of heat conduction, and the change of temperature due to work produced by the 

deformations is also neglected. However, the non-linear temperature fields can be obtained easily by using the 

boundary conditions as 
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Numerical Results and Discussion 
 

In this study, various numerical examples are presented and discussed for verifying the accuracy and efficiency 

of the present theory in predicting buckling stability of FG beams with various boundary conditions under 

mechanical nonlinear thermal loadings through the thickness. For the verification purpose, the results obtained 

by the present theory are compared with the existing data in the literature. It is assumed that the functionally 

graded beam is made of a mixture of aluminum and alumina. The Young modulus and coefficient of thermal 

expansion for aluminum are 70mE GPa, 
61023 m /°C and 204mK W/m˚K and for alumina are 

380cE GPa, 
6104,7 c /°C and 4,10cK W/m˚K, respectively. It is assumed that the temperature 

difference between the metal-rich surface of the FGM and reference temperature is CTT rm  5 . 

 

Table 1 present the comparisons of the critical buckling temperature for a CR FG beam under non-linear 

temperature rise with results of Kiani and Eslami (2015) for different values power law index p. It can be 

concluded that the results obtained by the present model and those obtained by Kiani and Eslami (2015) are 

identical for all considered values of power law index p. As we can see, our results are in excellent agreement 

with those published. It can be concluded that the present theory is efficient for the prediction of critical thermal 

buckling loads. 

 

Table 1. Critical buckling temperature for a CR FG beam non-linear temperature rise for different values of 

power law index p with porosity coefficient 0 ,  8/ hl   

Temperature 

load 
Theory 

p  

p=0.2 p=1 p=2 p=4 p=5 p=6 p=10 

Non linaire 
Kiani(2010) 1542.24 965.23 745.45 541.15 325.70 245.12 141.52 

Present  1542.24 965.23 745.45 541.15 325.70 245.12 141.52 

 

Critical buckling temperature of FG beam under linear and non-linear temperature rise for different values of 

power law index p, porosity coefficient


 and thickness ratio hl /  is illustrated in table 2. For nonlinear 

temperature distribution across the thickness, the buckling temperature decreases with the increase of the power 

law index p. It can be conclude that the critical buckling temperature difference decreases as the thickness ratio 

and power law index increases and that the maximum critical buckling temperature is obtained with a porosity 

coefficient equal to 2.0 . 

 

(17) 

(18) 

(19) 
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Table 2 Critical buckling temperature for a SS FG beam under non-linear temperature rise for different values of 

power law index p, porosity coefficient  and thickness ratio hl /  

 
 

 

Conclusion  
 

This article deals with thermo-mechanical analysis of nonlinear thermal buckling behaviour of porous FG beams 

with various combinations of boundary conditions under non-linear thermal loadings distribution through the 

thickness based on Euler–Bernoulli beam theory. Comparison studies are presented out for a large number of 

beams with different values of thickness ratio, power law index and various combinations of boundary 

conditions. It can be conclude that the critical buckling temperature difference decreases as the thickness ratio 

and power law index increases. From the results and the comparisons between the different porosity 

distributions, it was found that the different distributions give values that are more at least close with the 

exception of . Finally, some new results critical thermal buckling loads of FG beams with porosity are reported 

in tabular form for a wide range of thickness ratio and power law index. This new results can be used for 

comparison with other beam models developed in the future. 
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