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Abstract: In this study, a state-space model of a representative missile was developed to analyze its dynamic 

behavior under various input conditions. Using MATLAB simulations, the system’s responses to different control 

inputs were examined to understand the missile’s natural dynamics and response characteristics. Subsequently, 

an LMI-based H-infinity controller was designed to enhance the stability and performance of the missile guidance 

system. The controller was developed by formulating an optimization problem within the Linear Matrix 

Inequalities (LMI) framework, ensuring maximum stability and disturbance attenuation. The control design also 

incorporated input saturation constraints and reference tracking by augmenting the system with integral action.  

The designed controller was implemented and tested in MATLAB, and its effectiveness was evaluated based on 

system stability, disturbance attenuation. The LMI-based design approach allowed the control gains to be 

optimally determined, considering external disturbances. Simulation results demonstrate that the LMI-based H-

infinity controller provides superior stability and improved disturbance attenuation. This study highlights that 

LMI-based optimization techniques can be effectively applied to missile guidance systems, offering a powerful 

tool for managing dynamic uncertainties and external disturbances. 
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Introduction 
 

Missile guidance and control systems play a critical role in ensuring precision engagement capabilities under 

dynamic and uncertain operational environments. These systems must cope with aerodynamic nonlinearities, 

external disturbances and rapid time-varying conditions, all while maintaining stability and accuracy. Over the 

past few decades, various control strategies have been developed to address these challenges, including classical 

PID controllers, optimal control techniques, and more recently, methods that ensure reliable performance under 

uncertain conditions. 

 

Advanced control theory, particularly 𝐻∞ control, has been extensively studied for aerospace applications due to 

its ability to attenuate the effect of worst-case disturbances and model uncertainties (Etkin, 1972; Etkin & 

Reid,1996; Mackenroth,2004)0.The H∞ framework provides mathematical tools for shaping closed-loop 

performance through the minimization of the transfer function norm between disturbance inputs and performance 

outputs (Boyd et al.,1994). Linear Matrix Inequality (LMI) formulations have further facilitated the practical 

implementation of advanced control laws, enabling the inclusion of multiple design constraints within a convex 

optimization framework (Duan & Yu, 2013). 

 

http://www.isres.org/
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In the context of missile guidance, various strategies have been explored in the literature, such as Proportional 

Navigation (PN), augmented PN, and Pure Pursuit guidance (Siouris, 2004; Yanushevsky,2007). While these 

strategies provide intuitive and effective target engagement mechanisms, their integration with modern control 

theory remains an area of active research, (Nielsen, 1960; Zarchan, 2012). Furthermore, simplifying assumptions 

such as constant speed and small angle approximations are often adopted to linearize the inherently nonlinear 

missile dynamics, leading to decoupled longitudinal and lateral-directional state-space models suitable for control 

synthesis (Stevens et al.,2015). 

 

In this study, a state-space missile model is constructed by applying linearization around an equilibrium condition 

under standard assumptions. The model incorporates aerodynamic forces and moments based on control surface 

inputs and flight conditions. A Pure Pursuit guidance law is employed to generate reference attitude commands, 

and 𝐻∞ controller is designed via LMI optimization to ensure closed-loop stability and disturbance rejection. The 

proposed control approach is validated through MATLAB/Simulink simulations under both nominal and 

disturbed scenarios, demonstrating the effectiveness and reliability of the controller. 

 

 

Conceptual Background 
 

Guidance, navigation, and control systems constitute fundamental components of modern missile technologies. 

In these systems, ensuring accurate guidance towards the target and maintaining stability against external 

disturbances are of paramount importance. In this study, the missile model is based on the Skid-to-Turn (STT) 

principle. In STT-type missiles, directional control is achieved by applying lateral and vertical forces without 

altering the nose orientation of the airframe. This approach allows for a simpler and more efficient control 

structure. 

 

The missile motion was modeled using six degrees of freedom (6-DOF) equations of motion, defined with respect 

to the Earth-Fixed Inertial Frame reference system. Force and moment equations were derived, aerodynamic 

coefficients were calculated using Athena Vortex Lattice (AVL) software, and the system was linearized 

separately for the longitudinal and lateral-directional planes. Previous studies have shown that linearized missile 

guidance models can yield highly accurate performance predictions under certain assumptions, making them a 

valid foundation for control design (Zarchan, 2012). 

 

In this study, the Pure Pursuit guidance method is employed to generate the reference attitude commands for the 

missile. In the Pure Pursuit approach, the missile continuously points its nose directly toward the target by aligning 

its velocity vector with the line-of-sight vector to the target. This strategy provides a simple yet effective 

mechanism for target interception. The generated reference signals for the pitch and yaw angles guide the missile 

towards the target position during flight. 

 

During the modeling process, several fundamental assumptions were adopted to simplify the system dynamics. 

First, the missile was treated as a rigid body, ignoring any structural deformation. The curvature of the Earth and 

Coriolis effects were also neglected, assuming a flat Earth model. Small angle approximations were applied during 

the linearization stage to facilitate analytical derivations. Finally, the missile was assumed to maintain a constant 

forward velocity throughout the flight. A basic guidance method was adopted to generate reference orientation 

angles for the missile, which will be detailed in subsequent sections. This method aligns with the objectives of 

achieving a simple and effective orientation control structure in this study. 

 

 

Mathematical Modeling 

 

Axis Systems 

 

In order to accurately model the missile dynamics, it is necessary to define reference frames associated with both 

the Earth and the missile itself. In this study, two primary reference frames are used: the Earth-Fixed Inertial 

Frame and the Body-Fixed Frame as shown in Figure 1. The definitions and transformations between these 

coordinate systems are consistent with those described in modern aerospace dynamics literature 0. 
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Figure 1. Missile body-fixed axis system and its orientation relative to the earth-fixed inertial frame 

 

 

Earth-Fixed Inertial Frame 

 

The Earth-Fixed Inertial Frame is a reference coordinate system assumed to be stationary relative to the Earth, 

and it is used to define the missile's position and velocity. In this frame, the XE axis points east, the YE axis points 

north, and the ZE axis is directed downward toward the center of the Earth. Here, the Flat Earth Assumption is 

adopted, neglecting the curvature and rotation of the Earth. Therefore, the Earth-Fixed Frame is considered 

inertial. 

 

 

Body-Fixed Frame 

 

The Body-Fixed Frame is a moving coordinate system attached to the missile. In this frame, the XB axis points 

forward along the missile’s nose, the YB axis points toward the right wing, and the ZB axis is directed downward. 

The missile's body dynamics are expressed in terms of forces and moments defined with respect to this coordinate 

system. 

 

 

Transformation Matrices 

 

The transformation between the Earth-Fixed Inertial Frame and the Body-Fixed Frame is defined using Euler 

angles. In this transformation, Yaw (ψ) represents the rotation about the vertical ZE axis, Pitch (θ) represents the 

rotation about the lateral YB axis, and Roll (ϕ) represents the rotation about the longitudinal XB axis. Using these 

angles, the transformation matrix from the Body Frame to the Earth Frame is expressed as: 

 

𝐶𝐵/𝐸 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

] (1)   

 

where ϕ is the Roll angle, θ is the Pitch angle and ψ is the Yaw angle. This transformation matrix enables the 

conversion of vectors defined in the Body Frame into the Earth-Fixed Frame. 

 

 

Force Equations 

 

The forces acting on the missile consist of aerodynamic forces and gravitational forces. Since a constant forward 

velocity is assumed in this study, thrust force is not included in the model. The aerodynamic force components 

are defined with respect to the body-fixed frame as follows: 

 

𝐹𝑋 =
1

2
𝜌𝑉𝑇

2𝑆𝐶𝑋 (2)   

𝐹𝑌 =
1

2
𝜌𝑉𝑇

2𝑆𝐶𝑌 (3)  

𝐹𝑍 =
1

2
𝜌𝑉𝑇

2𝑆𝐶𝑍 (4)  
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Here, FX represents the force acting along the missile's longitudinal axis (forward), FY represents the force acting 

along the lateral axis (side), and FZ represents the force acting along the vertical axis (downward). ρ denotes the 

air density, VT is the total velocity, and S is the reference surface area. The terms CX, CY, and CZ correspond to 

the aerodynamic force coefficients along the X, Y, and Z directions, respectively. The gravitational force is 

defined in the Earth-Fixed Inertial Frame and acts downward. It is transformed into the body-fixed frame using 

the transformation matrix CB/E. The total force vector in the body frame is expressed as: 

 

𝐹𝐵 = 𝐹𝑎𝑒𝑟𝑜 + 𝐶𝐵/𝐸𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 (5)  

 

 

Moment Equations 

 

The moments acting on the missile originate from aerodynamic effects. In this study, only aerodynamic moments 

are considered, and engine-generated moments or other external moments are neglected. The aerodynamic 

moment components are defined with respect to the body-fixed frame as follows: 

 

𝑀𝑋 =
1

2
𝜌𝑉𝑇

2𝑆𝑙𝐶𝐿 (6)  

𝑀𝑌 =
1

2
𝜌𝑉𝑇

2𝑆𝑙𝐶𝑀 (7)  

𝑀𝑍 =
1

2
𝜌𝑉𝑇

2𝑆𝑙𝐶𝑁 (8)  

 

Here, MX represents the roll moment (rotation about the X-axis), MY represents the pitch moment (rotation about 

the Y-axis), and MZ represents the yaw moment (rotation about the Z-axis). ρ denotes the air density, VT is the 

total velocity, S is the reference surface area, and l is the reference length. The coefficients CL, CM, and CN 

correspond to the roll, pitch, and yaw moments, respectively. The total aerodynamic moments are expressed with 

respect to the body-fixed frame and are associated with the changes in angular momentum in the dynamic 

equations. 

 

 

Aerodynamic Coefficients and Derivatives 

 

The aerodynamic forces and moments acting on the missile are modeled using specific aerodynamic coefficients. 

These coefficients are functions of the angle of attack (α), sideslip angle (β), control surface deflections, and 

angular rates. The aerodynamic force coefficients are defined as: 

 

𝐶𝑋 = 𝐶𝑋0
+ 𝐶𝑋𝛼

𝛼 + 𝐶𝑋𝑞

𝑞𝑙

2𝑉
+ 𝐶𝑋𝛿𝑒

𝛿𝑒 (9)  

𝐶𝑌 = 𝐶𝑌𝛽
𝛽 + 𝐶𝑌𝑝

𝑝𝑙

2𝑉
+ 𝐶𝑌𝑟

𝑟𝑙

2𝑉
+ 𝐶𝑌𝛿𝑎

𝛿𝑎 + 𝐶𝑌𝛿𝑟
𝛿𝑟 (10)  

𝐶𝑍 = 𝐶𝑍0
+ 𝐶𝑍𝛼

𝛼 + 𝐶𝑍𝑞

𝑞𝑙

2𝑉
+ 𝐶𝑍𝛿𝑒

𝛿𝑒 (11)  

 

The aerodynamic moment coefficients are defined as: 

 

𝐶𝐿 = 𝐶𝐿𝛽
𝛽 + 𝐶𝐿𝑝

𝑝𝑙

2𝑉
+ 𝐶𝐿𝑟

𝑟𝑙

2𝑉
+ 𝐶𝐿𝛿𝑎

𝛿𝑎 + 𝐶𝐿𝛿𝑟
𝛿𝑟 (12)  

𝐶𝑀 = 𝐶𝑀0
+ 𝐶𝑀𝛼

𝛼 + 𝐶𝑀𝑞

𝑞𝑙

2𝑉
+ 𝐶𝑀𝛿𝑒

𝛿𝑒 (13)  

𝐶𝑁 = 𝐶𝑁𝛽
𝛽 + 𝐶𝑁𝑝

𝑝𝑙

2𝑉
+ 𝐶𝑁𝑟

𝑟𝑙

2𝑉
+ 𝐶𝑁𝛿𝑎

𝛿𝑎 + 𝐶𝑁𝛿𝑟
𝛿𝑟 (14)  

 

Here, α represents the angle of attack, β denotes the sideslip angle, p is the roll rate (angular velocity about the X-

axis), q is the pitch rate (angular velocity about the Y-axis), and r is the yaw rate (angular velocity about the Z-

axis). The terms δe, δa, and δr correspond to the elevator, aileron, and rudder control surface deflections, 

respectively. Additionally, l denotes the reference length, and VT is the total velocity. The theoretical framework 

for aerodynamic coefficient modeling in this study aligns with classical missile aerodynamics formulations 

presented by Nielsen (1960). The aerodynamic stability and control derivatives used in this study were obtained 

using the AVL (Athena Vortex Lattice) software. The derivative values were computed based on nine different 
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combinations of angle of attack (α) and sideslip angle (β) values, each selected as −15o, 0o and 15o. These 

derivatives were directly integrated into the linearized missile dynamics model.  

 

Table 1 summarizes the aerodynamic derivatives and their physical meanings. 

 

Table 1. Aerodynamic derivatives and their physical meanings 

Symbol Physical Meaning 

𝐶𝑋𝑎
 X-force coefficient derivative with respect to angle of attack (α) 

𝐶𝑋𝑞
 X-force coefficient derivative with respect to pitch rate (q) 

𝐶𝑋𝛿𝑒
 X-force coefficient derivative with respect to elevator deflection (δe) 

𝐶𝑌𝛽
 Side force coefficient derivative with respect to sideslip angle (β) 

𝐶𝑌𝑝  Side force coefficient derivative with respect to roll rate (p) 

𝐶𝑌𝑟  Side force coefficient derivative with respect to yaw rate (r) 

𝐶𝑌𝛿𝑎
 Side force coefficient derivative with respect to aileron deflection (δa) 

𝐶𝑌𝛿𝑟
 Side force coefficient derivative with respect to rudder deflection (δr) 

𝐶𝑙𝛽
 Roll moment coefficient derivative with respect to sideslip angle (β) 

𝐶𝑙𝑝 Roll moment coefficient derivative with respect to roll rate (p) 

𝐶𝑙𝑟
 Roll moment coefficient derivative with respect to yaw rate (r) 

𝐶𝑙𝛿𝑎
 Roll moment coefficient derivative with respect to aileron deflection (δa) 

𝐶𝑙𝛿𝑟
 Roll moment coefficient derivative with respect to rudder deflection (δr) 

𝐶𝑛𝛽
 Yaw moment coefficient derivative with respect to sideslip angle (β) 

𝐶𝑛𝑝
 Yaw moment coefficient derivative with respect to roll rate (p) 

𝐶𝑛𝑟
 Yaw moment coefficient derivative with respect to yaw rate (r) 

𝐶𝑛𝛿𝑎
 Yaw moment coefficient derivative with respect to aileron deflection (δa) 

𝐶𝑛𝛿𝑟
 Yaw moment coefficient derivative with respect to rudder deflection (δr) 

𝐶𝑍𝛼
 Normal force coefficient derivative with respect to angle of attack (α) 

𝐶𝑍𝑞
 Normal force coefficient derivative with respect to pitch rate (q) 

𝐶𝑍𝛿𝑒
 Normal force coefficient derivative with respect to elevator deflection (δe) 

𝐶𝑚𝛼
 Pitch moment coefficient derivative with respect to angle of attack (α) 

𝐶𝑚𝑞
 Pitch moment coefficient derivative with respect to pitch rate (q) 

𝐶𝑚𝛿𝑒
 Pitch moment coefficient derivative with respect to elevator deflection (δe) 

 

 

Flight Parameters 

 

In the modeling of missile dynamics, flight parameters play a crucial role in defining the system's state variables. 

In Figure 2, the following flight parameters are illustrated. Forward Velocity (u) is the missile’s velocity 

component along the body-fixed X-axis. It is assumed to be constant throughout the analysis. Also, Angle of 

Attack (α) is the angle between the body X-axis and the forward velocity vector. It is used under the small angle 

assumption. 

 

 
Figure 2. Angle of attack (α) definition 
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In Figure 3, the Sideslip Angle (β) is shown. It is the angle between the body X-axis and the projection of the 

velocity vector on the Y-Z plane. It is used under the small angle assumption. 

 

 
Figure 3. Sideslip angle (β) definition 

 

These parameters are fundamental in the linearization of the missile model and in the formulation of the state-

space representation. The use of these parameters and assumptions in missile flight modeling is well established 

in classical flight dynamics literature (Etkin ,1972). 

 

 

Translational Kinematic Equations 

 

The translational motion of the missile in the Earth-Fixed Inertial Frame can be represented using the body-fixed 

velocity components u, v, w and the Euler angles ϕ, θ, ψ. This formulation provides the foundation for describing 

the missile’s motion in three-dimensional space with respect to its center of mass. 

 

�̇� = 𝑢 cos 𝜃 cos ψ + 𝜐(sin 𝜙 sin θ cos𝜓 − cos𝜙 sin 𝜓) + 𝑤(cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓) (15)  

�̇� = 𝑢 cos 𝜃 sin ψ + 𝜐(sin𝜙 sin θ sin𝜓 + cos𝜙 cos𝜓) + 𝑤(cos𝜙 sin 𝜃 sin 𝜓 − sin𝜙 cos𝜓) (16)  

�̇� = −𝑢 sin 𝜃 + 𝜐 sin 𝜙 cos θ + 𝑤 cos𝜙 cos 𝜃 (17)  

 

These equations describe the instantaneous translational velocity of the missile’s center of mass in the Earth-Fixed 

Inertial Frame and form the basis for modeling the translational dynamics of the missile. Here, u, v and w represent 

the velocity components along the body-fixed X, Y, and Z axes, respectively. These equations describe the 

instantaneous translational velocity of the missile’s center of mass in the Earth-Fixed Inertial Frame and serve as 

the basis for modeling the translational dynamics of the missile. 

 

 

Rotational Kinematic Equations 

 

The orientation changes of the missile are described using Euler angles (ϕ, θ, ψ), and their time derivatives are 

expressed in terms of the body-fixed angular rates (p, q, r). The rotational kinematic equations for the Euler angles 

are given as: 

 

�̇� = 𝑝 + tan 𝜃 (𝑞 sin𝜙 + 𝑟 cos𝜙) (18)  

�̇� = 𝑞 cos 𝜙 − 𝑟 sin 𝜙 (19)  

�̇� =
𝑞 sin𝜙 + 𝑟 cos𝜙

cos 𝜃
 (20)  

 

These equations describe the evolution of the missile's orientation over time based on the angular rates and provide 

the kinematic model of the rotational motion. This formulation of rotational motion based on Euler angle 

derivatives is directly aligned with the classical treatment in (Etkin & Reid, 1996). 

 

 

Linearization 

 

To enable the missile dynamics to be used in control system design, the nonlinear equations of motion are 

linearized under specific simplifying assumptions. The key assumptions include the small-angle approximation, 

where angles such as the angle of attack (α), sideslip angle (β), and roll angle (ϕ) are considered small enough to 

justify the linear relations sin 𝛼 ≈ 𝛼, cos 𝛼 ≈ 1, sin 𝛽 ≈ 𝛽, sin 𝛽 ≈ 𝛽, sin 𝜙 ≈ 𝜙, and cos𝜙 ≈ 1. Additionally, 
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the forward velocity component u is assumed to be constant throughout the flight, leading to the simplification 

�̇� ≈  0. Under the mentioned assumptions, the nonlinear equations of motion are linearized around small 

perturbations from an equilibrium condition. Following the linearization, the system dynamics are decoupled into 

two independent subsystems: the longitudinal and the lateral-directional planes. The longitudinal plane includes 

the states w, q, θ, and Z, which represent vertical velocity, pitch rate, pitch angle, and vertical position, 

respectively. The lateral-directional plane consists of the states v, p, r, ϕ, ψ, and Y, representing lateral velocity, 

roll rate, yaw rate, roll angle, yaw angle, and lateral position. Separate state-space models are derived for each 

plane, and the control design is carried out individually based on these linearized subsystems. 

 

 

State-Space Representation 

 

The linearized missile dynamics are expressed in state-space form separately for the longitudinal and lateral-

directional planes. Independent state and input vectors are defined for each plane, and system matrices are 

constructed accordingly. 

 

 

Longitudinal Plane State-Space Model 

 

State and input vectors: 

 

𝑥𝑙𝑜𝑛 = [𝑤, 𝑞, 𝜃, 𝑍]𝑇  (21)  

𝑢𝑙𝑜𝑛 = [𝛿𝑒] (22)   

 

State-space equations: 

 

�̇�𝑙𝑜𝑛 = 𝐴𝑙𝑜𝑛𝑥𝑙𝑜𝑛 + 𝐵1𝑙𝑜𝑛
𝑊𝑙𝑜𝑛 + 𝐵2𝑙𝑜𝑛 𝑢𝑙𝑜𝑛 (23)   

 

System matrices: 

 

𝐴𝑙𝑜𝑛 = [

𝑍𝑤 𝑍𝑞 −𝑢 0

𝑀𝑤 𝑀𝑞 0 0

0 1 0 0
0 0 −𝑢 0

] (24)  

𝐵1𝑙𝑜𝑛
= [1 1 0 0]𝑇 (25)  

𝐵2𝑙𝑜𝑛 = [𝑍𝛿𝑒
𝑀𝛿𝑒

0 0]𝑇 (26)   

 

The elements of the system matrices are defined as follows: 

 

𝑍𝑤 = 
𝜌𝑉𝑇𝑆𝑟𝑒𝑓

𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑍𝛼
 (27)   

𝑍𝑞 =
𝜌𝑆𝑟𝑒𝑓𝑙

2 𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑍𝑞
 (28)   

𝑀𝑤 =
𝜌𝑉𝑇𝑆𝑟𝑒𝑓𝑙

𝐼𝑦𝑦

⋅ 𝐶𝑚𝛼
 (29)   

𝑀𝑞 =
𝜌𝑆𝑟𝑒𝑓𝑙

2

2 𝐼𝑦𝑦

⋅ 𝐶𝑚𝑞
 (30)   

𝑍𝛿𝑒
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓

𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑍𝛿𝑒
 (31)   

𝑀𝛿𝑒
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓𝑙

𝐼𝑦𝑦

⋅ 𝐶𝑚𝛿𝑒
 (32)   

 

 

Lateral-Directional Plane State-Space Model 

 

State and input vectors: 
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𝑥𝑙𝑎𝑡 = [𝑣, 𝑝, 𝑟, 𝜙, 𝜓, 𝑌]𝑇  (33)   

𝑢𝑙𝑎𝑡 = [𝛿𝑎, 𝛿𝑟] (34)   

 

State-space equations: 

 

�̇�𝑙𝑎𝑡 = 𝐴𝑙𝑎𝑡𝑥𝑙𝑎𝑡 + 𝐵1𝑙𝑎𝑡
𝑊𝑙𝑎𝑡 + 𝐵2𝑙𝑎𝑡 

𝑢𝑙𝑎𝑡  (35)   

 

System matrices: 

 

𝐴𝑙𝑎𝑡 =

[
 
 
 
 
 
𝑌𝑣 𝑌𝑝 𝑌𝑟 −𝑔cos (𝜃0) 0 0

𝐿𝑣 𝐿𝑝 𝐿𝑟 0 0 0

𝑁𝑣 𝑁𝑝 𝑁𝑟 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 𝑢 0]

 
 
 
 
 

 (36)   

𝐵1𝑙𝑎𝑡
= [1 0 1 0 0 0]𝑇 (37)   

𝐵2𝑙𝑎𝑡 
= [

𝑌𝛿𝑎
𝐿𝛿𝑎

𝑁𝛿𝑎
0 0 0

𝑌𝛿𝑟
𝐿𝛿𝑟

𝑁𝛿𝑟
0 0 0

]
𝑇

 (38)   

 

The elements of the system matrices are defined as follows: 

 

𝑌𝑣 =
𝜌𝑉𝑇𝑆𝑟𝑒𝑓

𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑌𝛽
 (39)   

𝑌𝑝 =
𝜌𝑆𝑟𝑒𝑓𝑙

2𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑌𝑝  (40)   

𝑌𝑟 =
𝜌𝑆𝑟𝑒𝑓𝑙

2𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑌𝑟  (41)   

𝐿𝑣 =
𝜌𝑉𝑇𝑆𝑟𝑒𝑓𝑙

𝐼𝑥𝑥

⋅ 𝐶𝑙𝛽
 (42)   

𝐿𝑝 =
𝜌𝑆𝑟𝑒𝑓

2 𝑙

2𝐼𝑥𝑥

⋅ 𝐶𝑙𝑝  (43)   

𝐿𝑟 =
𝜌𝑆𝑟𝑒𝑓

2 𝑙

2𝐼𝑥𝑥

⋅ 𝐶𝑙𝑟  (44)   

𝑁𝑣 =
𝜌𝑉𝑇𝑆𝑟𝑒𝑓𝑙

𝐼𝑧𝑧

⋅ 𝐶𝑛𝛽
 (45)   

𝑁𝑝 =
𝜌𝑆𝑟𝑒𝑓

2 𝑙

2 𝐼𝑧𝑧

⋅ 𝐶𝑛𝑝
 (46)   

𝑁𝑟 =
𝜌𝑆𝑟𝑒𝑓

2 𝑙

2 𝐼𝑧𝑧

⋅ 𝐶𝑛𝑟
 (47)   

𝑌𝛿𝑎
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓𝑙

𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑌𝛿𝑎
 (48)   

𝑌𝛿𝑟
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓𝑙

𝑀𝑚𝑖𝑠𝑠𝑖𝑙𝑒

⋅ 𝐶𝑌𝛿𝑟
 (49)   

𝐿𝛿𝑎
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓𝑙

𝐼𝑥𝑥

⋅ 𝐶𝑙𝛿𝑎
 (50)   

𝐿𝛿𝑟
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓𝑙

𝐼𝑥𝑥

⋅ 𝐶𝑙𝛿𝑟
 (51)   

𝑁𝛿𝑎
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓𝑙

𝐼𝑧𝑧

⋅ 𝐶𝑛𝛿𝑎
 (52)   

𝑁𝛿𝑟
=

𝜌𝑉𝑇
2𝑆𝑟𝑒𝑓𝑙

𝐼𝑧𝑧

⋅ 𝐶𝑛𝛿𝑟
 (53)   
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Pure Pursuit Guidance Law 

 

In the Pure Pursuit guidance method, the missile continuously adjusts its flight path to directly aim at the 

instantaneous position of the target. The missile aligns its velocity vector with the line-of-sight (LOS) vector to 

the target at every moment. This principle ensures that the missile always attempts to minimize the angular 

separation between its own heading and the target's location. Although Pure Pursuit is simple to implement and 

highly intuitive, it may not guarantee interception against highly maneuverable targets, as the missile may tend to 

follow a curved path that lags behind rapid target movements. Nevertheless, for stationary or low-maneuvering 

targets, Pure Pursuit provides an effective and computationally efficient guidance strategy, and it is classified 

under direct (external) guidance methods as illustrated in Figure 4 (Siouris, 2004). 

 

 
Figure 4. Common missile guidance methods (Adapted from George M. Siouris, Missile Guidance and Control 

Systems, 2004) 

 

Various studies have examined the integration of classical guidance laws such as Pure Pursuit into modern missile 

control frameworks 0 . In order to steer the missile toward the target position, reference attitude angles are 

generated using a Pure Pursuit guidance law. The procedure is as follows: 

 

First, the target direction vector is calculated: 

 

𝑉𝑇𝑎𝑟𝑔𝑒𝑡 = [

𝑋𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑥

𝑌𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑦

𝑍𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑧
] (54)  

 

Then, the direction vector is normalized: 

 

𝑉𝐷𝑖𝑟 =
𝑉𝑇𝑎𝑟𝑔𝑒𝑡

∥ 𝑉𝑇𝑎𝑟𝑔𝑒𝑡 ∥
 (55)  

 

The reference yaw angle (ψref) is computed as: 

 

𝜓𝑟𝑒𝑓 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑉𝐷𝑖𝑟,𝑦, 𝑉𝐷𝑖𝑟,𝑥) (56)  

 

The reference pitch angle (θref) is computed as: 

 

𝜃𝑟𝑒𝑓 = 𝑎𝑟𝑐𝑡𝑎𝑛2(−𝑉𝐷𝑖𝑟,𝑧, √𝑉𝐷𝑖𝑟,𝑥
2 + 𝑉𝐷𝑖𝑟,𝑦

2 ) (57)  

 

The reference roll angle (ϕref) is set to zero: 

 

𝜙𝑟𝑒𝑓 = 0 (58)  

 

Since the missile model adopts a Skid-to-Turn (STT) control architecture where roll dynamics are not actively 

utilized during the guidance phase. This simple approach allows the missile to dynamically adjust its orientation 

towards the target throughout the flight, as illustrated in Figure 5. 
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Figure 5. Representation of the target direction vector 

 

 

Control Design 
 

Control Objectives 

 

The main objectives of the control design for the missile system are summarized in Figure 6. These objectives 

include ensuring stability in the presence of external disturbances, minimizing their effects through disturbance 

attenuation, and achieving optimal performance by minimizing the H∞ norm. Such objectives align closely with 

the goals of advanced control theory, which aims to maintain performance despite modeling errors and 

unmeasured perturbations (Mackenroth, 2004).  

 

In this study, the disturbance input is selectively introduced into the angular channels, specifically affecting the 

pitch (θ) and yaw (ψ) angles, in the form of zero-mean white noise. These perturbations represent realistic 

environmental effects such as sensor noise or aerodynamic uncertainties. These objectives are addressed through 

an H∞ optimization framework formulated using Linear Matrix Inequalities (LMI), which explicitly incorporates 

stability and disturbance attenuation into the design process. 

 

 
Figure 6. Summary of control objectives considered in the H∞-based missile guidance design 
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State-Feedback H∞ Controller Design 

 

In order to analyze the closed-loop performance of the missile guidance system under external disturbances, the 

design equations for a static state-feedback H∞ controller have been obtained (Boyd et al., 1994). The missile 

dynamics are represented in the linearized state-space form as: 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤(𝑡) + 𝐵2𝑢(𝑡) + 𝐵𝑟𝑒𝑓𝑟(𝑡) (59)  

𝑧(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11 𝑤(𝑡) + 𝐷12𝑢(𝑡) (60)  

 

In this representation, 𝑥(𝑡) ∈ 𝑅𝑛 denotes the state vector of the system, while 𝑤(𝑡) ∈ 𝑅𝑚𝑤represents the 

exogenous disturbance input acting on the system. The signal 𝑟(𝑡) ∈ 𝑅𝑚𝑟  is the reference command, introduced 

into the system via the input matrix 𝐵𝑟𝑒𝑓 . The term 𝑢(𝑡) ∈ 𝑅𝑚𝑢  corresponds to the control input applied to the 

system. The performance output 𝑧(𝑡) ∈ 𝑅𝑝 is defined as the performance variable, which is minimized in the H∞ 

sense to ensure stability performance under disturbances. The matrices 𝐶1, 𝐷11, and 𝐷12 define how the 

performance output depends on the state, disturbance, and control input, respectively.   

 

To incorporate reference tracking into the H∞ control framework, the state-space model is augmented with an 

integral action on the tracking error. This is achieved by extending the system matrices to include the integral of 

the error between the reference signal 𝑟(𝑡) and the corresponding state variable. The extended state vector, input 

matrices, and output matrices are defined as follows: 

 

[
�̇�(𝑡)
𝑒(𝑡)

] = [
𝐴 0

−𝐶𝑡 0
] [

𝑥(𝑡)

∫ 𝑒(𝑡)
] + [

𝐵1

0
] [

𝑤(𝑡)
0

] + [
𝐵2

0
] 𝑢(𝑡) + [

0
𝐼
] 𝑟(𝑡) (61)  

 

Suppose that the control input is linear function of the state, i.e., 

 

𝑢(𝑡) = 𝐾𝑥(𝑡) (62)  

 

where 𝐾 ∈ ℜ
𝑚𝑢×𝑛

 is the state feedback gain. The closed-loop system is given by 

 

�̇� (𝑡) = (𝐴 + 𝐵2𝐾)𝑥(𝑡) + 𝐵1𝑤(𝑡) (63)  

𝑧(𝑡) = (𝐶1 + 𝐷12)𝑥(𝑡) + 𝐷11𝑤(𝑡) (64)  

 

The state-feedback H∞ controller design is carried out separately for the longitudinal and lateral-directional 

motion planes. For each case, the control gain K is obtained by solving a convex optimization problem subject to 

Linear Matrix Inequality (LMI) constraints derived from the bounded real lemma. In addition to performance 

criteria, input saturation bounds are imposed to ensure that the control signals remain within physically meaningful 

limits. The optimal nominal H∞ state-feedback controller can be obtained by searching minimum allowable 𝛾, 

which satisfies the following LMI for 𝑋 = 𝑋𝑇 > 0 and any matrix L. 

 

[

𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵2𝐿 + 𝐿𝑇𝐵2
𝑇 𝐵1 𝑋𝐶1

𝑇 + 𝐿𝑇𝐷12
𝑇

𝐵1
𝑇 −γI 𝐷11

𝑇

𝐶1𝑋 + 𝐷12𝐿 𝐷11 −γI

] < 0 (65)  

[
𝑋 𝐿𝑇

𝐿 𝑈𝑚𝑎𝑥
2 I

] > 0 (66)  

[
𝑌 𝐼
𝐼 𝑋

] > 0 (67)  

 

where 𝑈𝑚𝑎𝑥 denotes the maximum allowable deflection for the corresponding control surfaces. If there exists a 

feasible solution to the optimization problem (65), (66) and (67), the optimal H state-feedback controller can be 

constructed as K = LX-1.  

 

The objective is to ensure that the control input does not exceed a predefined magnitude bound for all admissible 

system trajectories (Parlakcı & Kucukdemiral, 2010). Assuming that the control input is subject to a magnitude 

constraint expressed as ‖𝑢‖2 ≤ 𝑢𝑚𝑎𝑥, where 𝑢 is the control input and 𝑢𝑚𝑎𝑥 denotes the saturation threshold. 

Based on the definition of the Euclidean norm: 

 

 ‖𝑢‖2 ≤ 𝑢𝑚𝑎𝑥

 
⇔ √𝑢𝑇𝑢 ≤ 𝑢𝑚𝑎𝑥

 
⇔𝑢𝑇𝑢 ≤ 𝑢𝑚𝑎𝑥

2  (68)  
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Since 𝑢(𝑡) = 𝐾𝑥(𝑡) and 𝐿 = 𝐾𝑋, we can express the condition as: 

 

𝑥𝑇(𝑡)𝑋−1𝐿𝑇𝐿𝑋−1𝑥(𝑡)

𝑢𝑚𝑎𝑥
2

≤ 1 (69)  

 

If we define the ellipsoidal set 𝛯𝑃 as: 

 

𝛯𝑃 = {𝑥|𝑥𝑇(𝑡)𝑃𝑥(𝑡) ≤ 1} (70)  

 

then inequality (69) becomes equivalent to: 

 

𝑥(𝑡) ∈ 𝛯𝑋−1𝐿𝑇𝐿𝑋−1

𝑢𝑚𝑎𝑥
2

 
(71)  

 

To ensure that all admissible state trajectories remain within the control bounds, we require: 

 

𝛯𝑋−1 ⊆ 𝛯𝑋−1𝐿𝑇𝐿𝑋−1

𝑢𝑚𝑎𝑥
2

 
(72)  

 

This is equivalent to the matrix inequality: 

 

𝑋−1 ≥
𝑋−1𝐿𝑇𝐿𝑋−1

𝑢𝑚𝑎𝑥
2

 (73)  

 

To simplify inequality (73) a congruence transformation is performed. Both sides are pre- and post-multiplied 𝑋 

resulting in: 

 

𝑋 ≥
𝐿𝑇𝐿

𝑢𝑚𝑎𝑥
2

 (74)  

 

which, by Schur complement (Boyd et al.,2004), is equivalently expressed as: 

 

[
𝑋 𝐿𝑇

𝐿 𝑢𝑚𝑎𝑥
2 𝐼

] ≥ 0 (75)  

 

It is worth noting that so far, the enlargement of the ellipsoid has not been addressed. Geometrically, the volume 

of the ellipsoid 𝛯𝑋−1  is proportional to √det (𝑋−1). Given that: 

 

√det (𝑋−1) ≤ (
𝑡𝑟𝑎𝑐𝑒(𝑋−1)

𝑛
)

𝑛

 (76)  

 

it is reasonable to minimize 𝑋−1. However, since 𝑋−1 is not directly a decision variable, we define an auxiliary 

variable 𝑌 = 𝑌−𝑇 ≥ 𝑋−1. Then, minimizing trace(Y) provides an ellipsoid enlargement objective. Using Schur 

complement again, the constraint 𝑌 ≥ 𝑋−1 is rewritten as: 

 

𝑌 − 𝐼𝑋−1𝐼 > 0
 

⇔[
𝑌 𝐼
𝐼 𝑋

] ≥ 0 (77)  

 

In this study, the control signal limit was chosen as 𝑢𝑚𝑎𝑥 = 30°, reflecting the maximum allowable deflection of 

the control surfaces. This value was used directly in the actuator saturation LMI condition during controller 

synthesis. The LMI optimization problem was implemented and solved in MATLAB using the YALMIP toolbox, 

with MOSEK employed as the underlying convex optimization solver. This computational setup provided reliable 

and efficient handling of matrix inequality constraints under numerical precision.  

 

 

Simulation Study 

 

In this section, numerical simulations are conducted to evaluate the performance of the designed H∞ state-

feedback controllers under external disturbances and reference tracking requirements. The missile model is 
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analyzed separately in the longitudinal and lateral-directional motion planes, using the extended state-space 

formulation described previously. The closed-loop response is examined with respect to stability, disturbance 

attenuation, and control effort limitations. 

 

 

Longitudinal Motion Plane 

 

The extended state-space matrices for the longitudinal motion plane, augmented for reference tracking, are given 

as follows: 

 

𝐴𝑙𝑜𝑛 =

[
 
 
 
 
𝑍𝑤 𝑍𝑞 −𝑢 0 0

𝑀𝑤 𝑀𝑞 0 0 0

0 1 0 0 0
0 0 −𝑢 0 0
0 0 −1 0 0]

 
 
 
 

 (78)  

𝐵1𝑙𝑜𝑛
= [0 1 0 0 0]𝑇 (79)  

𝐵2𝑙𝑜𝑛 = [𝑍𝛿𝑒
𝑀𝛿𝑒

0 0 0]𝑇 (80)   

𝐵𝑟𝑒𝑓𝑙𝑜𝑛
= [0 0 0 0 1]𝑇 (81)   

𝐶1𝑙𝑜𝑛
= [

0 0 −1 0 0
0 0 0 0 1

]  
(𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 − 𝜃)

(𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 ∫ 𝑒𝜃(𝑡))
 (82)   

𝐷11𝑙𝑜𝑛
=[0 0]𝑇 (83)   

𝐷12𝑙𝑜𝑛
= [0 0]𝑇 (84)   

 

 

Lateral-Directional Motion Plane 

 

The extended system matrices for the lateral-directional motion plane are constructed similarly. The augmented 

state-space model used for controller synthesis is represented as follows: 

 

𝐴𝑙𝑎𝑡 =

[
 
 
 
 
 
 
 
𝑌𝑣 𝑌𝑝 𝑌𝑟 −𝑔cos (𝜃0) 0 0 0 0

𝐿𝑣 𝐿𝑝 𝐿𝑟 0 0 0 0 0

𝑁𝑣 𝑁𝑝 𝑁𝑟 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 𝑢 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0]

 
 
 
 
 
 
 

 (85)   

𝐵1𝑙𝑎𝑡
= [0 0 1 0 0 0 0 0]𝑇  (86)   

𝐵2𝑙𝑎𝑡 
= [

𝑌𝛿𝑎
𝐿𝛿𝑎

𝑁𝛿𝑎
0 0 0 0 0

𝑌𝛿𝑟
𝐿𝛿𝑟

𝑁𝛿𝑟
0 0 0 0 0

]
𝑇

 (87)   

𝐵𝑟𝑒𝑓𝑙𝑎𝑡
= [

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]
𝑇

 (88)   

𝐶1𝑙𝑎𝑡
= [

0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]  

(𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 −  𝜙)

(𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 − 𝜓)

(𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 ∫ 𝑒𝜙(𝑡))

(𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 ∫ 𝑒𝜓(𝑡))

 (89)   

𝐷11𝑙𝑎𝑡
=[0 0 0 0]𝑇 (90)   

𝐷12𝐿𝑜𝑛
= [

0 0 0 0
0 0 0 0

]
𝑇

 (91)   

 

 

Controller Synthesis Results 

 

In this section, the definitions of the state trajectory �̇�(𝑡) and performance output 𝑧(𝑡), which are used in the H∞ 

controller synthesis, are provided explicitly for both the longitudinal and lateral-directional subsystems. Below, 

the resulting expressions for �̇�𝑙𝑜𝑛(𝑡), 𝑧𝑙𝑜𝑛(𝑡), �̇�𝑙𝑎𝑡(𝑡) and 𝑧𝑙𝑎𝑡(𝑡) are provided accordingly. 

 

�̇�𝑙𝑜𝑛 = 𝐴𝑙𝑜𝑛𝑥𝑙𝑜𝑛(𝑡) + 𝐵1𝑙𝑜𝑛
𝑤𝑙𝑜𝑛(𝑡) + 𝐵2𝑙𝑜𝑛 𝑢𝑙𝑜𝑛(𝑡) + 𝐵𝑟𝑒𝑓𝑙𝑜𝑛

𝜃𝑟𝑒𝑓 (92)   
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𝑧𝑙𝑜𝑛(𝑡) = 𝐶1𝑙𝑜𝑛
𝑥𝑙𝑜𝑛(𝑡) + 𝐷11𝑙𝑜𝑛

 𝑤𝑙𝑜𝑛(𝑡) + 𝐷12𝑙𝑜𝑛
𝑢𝑙𝑜𝑛(𝑡) (93)  

�̇�𝑙𝑎𝑡 = 𝐴𝑙𝑎𝑡𝑥𝑙𝑎𝑡 + 𝐵1𝑙𝑎𝑡
𝑤𝑙𝑎𝑡 + 𝐵2𝑙𝑎𝑡 

𝑢𝑙𝑎𝑡 + 𝐵𝑟𝑒𝑓𝑙𝑎𝑡
[𝜙𝑟𝑒𝑓 , 𝜓𝑟𝑒𝑓] (94)  

𝑧𝑙𝑎𝑡(𝑡) = 𝐶1𝑙𝑎𝑡
𝑥𝑙𝑎𝑡(𝑡) + 𝐷11𝑙𝑎𝑡

 𝑤𝑙𝑎𝑡(𝑡) + 𝐷12𝑙𝑎𝑡
𝑢𝑙𝑎𝑡(𝑡) (95)  

 

To obtain the optimal state feedback gains K𝑙𝑜𝑛 and K𝑙𝑎𝑡 the optimization problem is formulated as minimizing 

the γ performance bound subject to the LMI conditions given in (65), (66) and (67). These constraints ensure the 

H∞ performance requirement. The optimal control gain for suppressing the disturbances affecting the system with 

the state feedback control law is achieved by solving  

 

min γ 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: (65), (66) and (67) 

 

optimization problem. This solution is solved for 9 cases each for the Longitudinal Plane and Lateral-Directional 

Plane. The cases are given in Table 2. In the simulation, control gains corresponding to different flight conditions 

were determined from a predefined set of nine operating scenarios, created by varying angle of attack (α) and 

sideslip angle (β) values. The gain matrices were stored in a structured look-up table, enabling the controller to 

dynamically select appropriate feedback gains according to the current flight condition. 

 

Table 2 Flight condition cases used for controller synthesis 

Case Angle of Attack (α) [Degree] Sideslip Angle (β) [Degree] Mach Altitude [m] 

1 -15 -15 

0.6 1000 

2 -15 0 

3 -15 15 

4 0 -15 

5 0 0 

6 0 15 

7 15 -15 

8 15 0 

9 15 15 

 

The solution to this optimization problem yields different γ performance levels for each defined flight condition. 

Table 3 summarizes the minimum closed-loop γ values obtained for each case, separately for the longitudinal and 

lateral-directional motion planes.  

 

Table 3 Closed-loop γ values for longitudinal and lateral-directional planes 

Case Longitudinal Closed-Loop γ Lateral-Directional Closed-Loop γ 

1 0.0175 14.7850 

2 0.0160 12.9523 

3 0.0180 64.9524 

4 0.0159 271.3944 

5 0.0146 226.3793 

6 0.0160 233.3257 

7 0.0177 37.1123 

8 0.0161 22.3868 

9 0.0177 37.8336 

 

The optimal state feedback gain matrices K, computed for each defined flight condition, are presented in Table 4. 

Each gain matrix is computed individually using the LMI-based synthesis approach and is associated with one of 

the predefined operating conditions. It is important to note that the open-loop system exhibits instability under all 

evaluated flight conditions. As a result, analyzing the open-loop H∞ performance level (γ) is not meaningful, and 

such values are therefore omitted from the comparison. Instead, the effectiveness of the proposed state-feedback 

controller is assessed through the minimum closed-loop γ values obtained from the LMI-based optimization. As 

shown in Table 3, the closed-loop γ values for the longitudinal motion plane are consistently low across all nine 

flight cases, indicating reliable disturbance attenuation and strong stability performance along the longitudinal 

axis. In the lateral-directional plane, the closed-loop γ values vary more significantly depending on the sideslip 

angle and angle of attack, yet remain within an acceptable range. Additionally, closed-loop stability analysis has 

been performed by evaluating the eigenvalues of the system matrices under each flight condition. In all cases, the 

eigenvalues are located in the left-half complex plane, confirming that the designed controller ensures asymptotic 

stability of the closed-loop system in both motion planes.  
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Table 4. State feedback gain matrices (K) for each case 

Ca

se 
Longitudinal Lateral-Directional 

1 𝐾𝑙𝑜𝑛1 = [−0.0020 0.2637 1.5379 0.0 −1.6587] 
𝐾𝑙𝑎𝑡1 

= [
−5.2450 17.4657 0.9132 30.0508 0.5136 0.0 −0.1534 −0.1251
1.8144 −6.1221 −1.8803 −10.4746 −1.0268 0.0 0.1428 0.2510

] 

2 𝐾𝑙𝑜𝑛2 = [−0.0018 0.2567 1.5589 0.0 −1.7109] 𝐾𝑙𝑎𝑡2 = [
−4.748 14.5610 0.5657 26.1161 0.3464 0.0 −0.1559 −0.0941
1.6784 −5.2236 −1.7203 −9.3085 0.9521 0.0 0.1464 0.2383

] 

3 𝐾𝑙𝑜𝑛3 = [−0.0018 0.2613 1.5072 0.0 −1.6327] 𝐾𝑙𝑎𝑡3 = [
−2.4412 8.1303 0.4167 13.9871 0.1268 0.0 −0.0789 −0.0178
−0.3078 0.9868 −1.1389 1.7587 −0.4278 0.0 −0.0272 0.0726

] 

4 𝐾𝑙𝑜𝑛4 = [−0.0022 0.2574 1.5693 0.0 −1.7131] 𝐾𝑙𝑎𝑡4 = [
−0.0038 4.4404 −0.0390 0.9337 0.0137 0.0 −0.0461 0.0002
−0.0253 0.0590 −0.8086 0.3342 −0.2440 0.0 0.0029 0.0335

] 

5 𝐾𝑙𝑜𝑛5 = [−0.0020 0.2504 1.5897 0.0 −1.7702] 𝐾𝑙𝑎𝑡5 = [
−0.0041 3.4551 −0.0452 0.8394 0.0169 0.0 −0.0468 −0.0008
−0.0262 0.1214 −0.8002 0.3461 −0.2547 0.0 0.0027 0.0374

] 

6 𝐾𝑙𝑜𝑛6 = [−0.0020 0.2567 1.5589 0.0 −1.7359] 𝐾𝑙𝑎𝑡6 = [
−0.0056 3.2778 −0.0610 0.8632 0.0174 0.0 −0.0459 −0.0011
−0.0293 0.1987 −0.8455 0.4027 −0.2654 0.0 0.0030 0.0397

] 

7 𝐾𝑙𝑜𝑛7 = [−0.0023 0.2631 1.5283 0.0 −1.7275] 𝐾𝑙𝑎𝑡7 = [
2.1981 4.9679 −0.9032 −2.3137 −0.3299 0.0 −0.1816 0.0536
0.0097 −2.5254 −1.0155 −5.4980 −0.3944 0.0 0.0908 0.0720

] 

8 𝐾𝑙𝑜𝑛8 = [−0.0023 0.2567 1.5583 0.0 −1.7617] 𝐾𝑙𝑎𝑡8 = [
2.1049 5.1919 −1.0891 −1.4278 −0.4386 0.0 −0.1682 0.0812
0.0976 −1.8277 −1.1078 −4.5925 −0.4878 0.0 0.1122 0.1012

] 

9 𝐾𝑙𝑜𝑛9 = [−0.0022 0.2631 1.5272 0.0 −1.7286] 𝐾𝑙𝑎𝑡9 = [
1.9502 5.0097 −0.8772 −0.7729 −0.3273 0.0 −0.1894 0.0539
0.0346 −2.2077 −1.0556 −4.9718 −0.4129 0.0 0.0833 0.0754

] 

 

 

 

Results 
 

To evaluate the system’s resilience against external disturbances, zero-mean white noise signals were introduced 

into the pitch (θ) and yaw (ψ) channels. Figure 7 displays the disturbance signals applied over time. These inputs 

exhibit continuous, stochastic variations, simulating real-world aerodynamic uncertainties. The disturbance 

amplitudes remain within physically reasonable bounds and serve as a meaningful benchmark to test the control 

structure. 

 

 
Figure 7. Disturbance signals applied to pitch (θ) and yaw (ψ) channels in the form of zero-mean white noise 
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The effectiveness of the proposed H∞ controllers is evaluated through time-domain simulations involving 

reaching the desired position and external disturbances. In the primary scenario, the missile is commanded to 

reach a spatial reference position at coordinates 𝑋, 𝑌, 𝑍 = 40000, 40000, 40000  meters as seen in Figure 8. In 

the absence of external disturbances, the terminal position error is approximately 27 meters. Remarkably, when 

zero-mean white noise is introduced into the pitch and yaw channels, the deviation reduces slightly to 26 meters. 

This counterintuitive improvement is attributed to the dynamic characteristics of the controller, which actively 

attenuates disturbance effects and guides the missile along a smooth trajectory. 

 

 
a) 

 
b) 

Figure 8. Missile trajectory under a) nominal conditions without external disturbances b) disturbance conditions 

(white noise applied to θ and ψ) 
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In addition, the control surface deflections generated by the designed controller are examined to ensure that 

actuator constraints are respected. Figure 9 presents the control inputs (aileron, elevator, and rudder deflections) 

over time for both nominal and disturbance cases. In both scenarios, the control signals remain within the 

acceptable range, not exceeding approximately 30 degrees, which corresponds to the predefined actuator limits 

imposed during the LMI-based synthesis. The deflection signals exhibit smooth and bounded behavior, 

confirming that the controller operates effectively without driving the actuators into saturation. Moreover, the 

similarity of the control profiles between the nominal and disturbance cases highlights the robustness of the control 

structure against external perturbations. 

 

 
a) 

 
b) 

Figure 9. Control surface deflections for a) nominal conditions without external disturbances b) disturbance 

conditions (white noise applied to θ and ψ) 
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Discussion 
 

The simulation results confirm that the proposed H∞ controller provides reliable performance in missile trajectory 

tracking and disturbance rejection across a variety of flight conditions. Notably, the closed-loop system maintains 

stability and control effectiveness even when subject to continuous white noise disturbances applied to critical 

angular states. The final position error with respect to the spatial reference remains within tight bounds, and 

actuator deflections stay below physical saturation levels, which validates the practicality of the designed control 

law under operational constraints. 

 

 

Conclusion 
 

In this study, an H∞ state-feedback controller was developed for missile guidance applications using an LMI-

based synthesis framework. The missile dynamics were modeled separately for longitudinal and lateral-directional 

planes in a linearized state-space form, with aerodynamic stability and control derivatives derived via AVL 

simulations. The control design incorporated input saturation constraints and reference tracking by augmenting 

the system with integral action. Time-domain simulations were conducted across multiple flight conditions, 

including the presence of white noise disturbances applied to pitch and yaw angles. 

 

Results demonstrate that the proposed controller enables the missile to reach a spatial reference target with high 

precision, maintaining final position errors under approximately 30 degrees and keeping control inputs within 

actuator limits. The system remained stable under all tested conditions, confirming the effectiveness and practical 

viability of the approach. This LMI-based H∞ control methodology provides a promising solution for advanced 

missile guidance systems requiring consistent performance under varying operational scenarios and external 

disturbances. 

 

 

Recommendations 
 

Based on the findings of this study, several directions are suggested to further improve missile guidance control 

strategies. One promising avenue is the development of hybrid H2/H∞ controllers, which could offer a balanced 

trade-off between disturbance attenuation and control effort, thereby enhancing overall system efficiency. 

Additionally, extending the controller design to nonlinear missile models would provide a more realistic 

assessment of flight dynamics, especially under extreme operating conditions. The incorporation of adaptive or 

gain-scheduled control techniques may also increase the controller’s flexibility in handling model uncertainties 

and changing flight regimes. Finally, validating the proposed method through hardware-in-the-loop simulations 

or physical test platforms is essential to ensure its practical feasibility and real-time implementation capability. 

These extensions would collectively support the development of more robust, intelligent, and adaptable missile 

guidance systems. 
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