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Abstract: This article discusses the software implementation of an encryption algorithm based on the Glushkov 

product of finite automata. The main focus of this work is on the application of this mathematical model in 

cryptography, which allows formalizing the process of key generation and construction of block ciphers. The 

paper provides a theoretical overview of finite automata without output, their properties and features, as well as a 

formal definition of the Glushkov product. The encryption algorithm is described, its stages are detailed, including 

the construction of a key automaton and the process of encryption and decryption of data. To confirm the 

effectiveness of the proposed method, its software implementation in Python was carried out. Experimental results 

demonstrate the practical applicability of the algorithm, its cryptographic resistance and potential directions for 

further development. The study shows that the Glushkov product can serve as a basis for the development of new 

cryptographic schemes with a high degree of protection. 
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Introduction 

 

Nowadays, automata theory and cryptography are two important areas of theoretical computer science that are 

actively used in modern information technologies. Automata theory, which studies models of discrete 

computations and their behavioral characteristics, provides a powerful tool for analyzing and synthesizing data 

processing algorithms. In turn, cryptography, based on mathematical methods of transforming information, plays 

a key role in ensuring confidentiality, integrity and authentication of data in digital systems (Idrees et.al., 2020). 

One of the fundamental concepts of automata theory is the finite state machine model, an abstract computing 

device that has been successfully applied to describe a variety of processes, including formal languages, pattern 

recognition, and processing of input data streams. These principles are also reflected in cryptographic algorithms, 

especially in stream encryption, where the generation of pseudorandom sequences is based on finite state 

machines.  

http://www.isres.org/
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There are two main classes of finite automata (Shakhmetova et.al.,2024a) – automata with output and automata 

without output. A finite automaton without output or an automata-recognizer is designed to check whether an 

input sequence belongs to a certain set. Its main task is to analyze the input data and make a decision on compliance 

with a given language or rules. In turn, a automata-transducer converts input data into output, thereby 

implementing an automaton mapping. Both of these types of finite automata are widely used in cryptographic 

systems.  

 

Automata with outputs, which include Mealy and Moore machines, are widely used in cryptosystems 

implementing data transformations (Shakhmetova et.al.,2024b). They are used to build both symmetric and 

asymmetric cryptographic algorithms, providing key generation, stream encryption, and hashing. In particular, 

Mealy machines are used in cryptosystems based on weak inversion. The founder of the use of finite automata 

was the scientist Tao Renji, who in 1985 presented a cryptosystem- FAPKC- Finite Automata Public Key 

Cryptosystem, which has different versions: FAPKC, FAPKC3 and FAPKC4 (Tao&Chen, 1986; Tao et.al.,1997; 

Tao &Chen, 1999). In 1995 Gysin proposed a One-key cryptosystem based on a non-linear extended Mealy 

machine (Gysin, 1995). Lakshmi and Gandhi (2012) in their paper considered Mealy/Moore finite automata and 

recursive functions as applied to cryptographic problems. In (Abubaker&Kui) a system DAFA was proposed that 

combines elements of DES and finite state machines. Peña and Torres (2016) developed a method for 

authenticated encryption based on finite state machines with memory (Peña& Torres, 2016). In 2022, a group of 

scientists Kodada et al. (2022) presented a cryptosystem for cloud computing based on finite-state machines with 

finite-order memory (Kodada, 2022). 

 

No less interesting for cryptologist scientists were automata without outputs. This group includes cryptographic 

methods based on deterministic and non-deterministic finite automata that operate without an output. In 2010, P. 

Domosi's cryptosystem was proposed based on the Rabin-Scott model (Domosi, 2010). In 2015, Horvath and 

Domosi developed a cryptosystem based on Glushkov's product (permutation automata) 

(Domosi&Horváth,2015). In 2016, improved cryptographic schemes using nondeterministic finite automata 

without outputs were presented, including: Modified Domosi cryptosystem (Khaleel et.al.,2016a), a stream cipher 

based on nondeterministic finite automata (Khaleel et.al., 2016b), a new block cipher based on finite automata 

systems (Khaleel et.al., 2016c). In (Jawaharlal, 2020), a multi-factor key cryptographic system based on 

deterministic finite automata was proposed. In 2023, scientists Moatsum Alawida et al. presented a new image 

encryption scheme for UAV data protection using a combination of DNA encoding and finite automata 

(Alawida,2023). 

 

This paper studies finite automata without output and the Glushkov product in the context of their application in 

cryptography. A theoretical overview of key concepts related to finite automata without output, as well as a formal 

definition and properties of the Glushkov product, is presented. A model of a cryptographic algorithm based on 

this mathematical construction is described and its formal analysis is carried out. A software implementation of 

the studied model is carried out, the results of which are confirmed by experimental data demonstrating the 

efficiency and practical applicability of this cryptographic protocol. Possible directions for further research in the 

field of application of the Glushkov product in cryptographic systems are also discussed. 

 

 

Method 

 

Finite Automata without Outputs 

 

An automaton without an output, also known as a finite automata-recognizer, is a mathematical model used to 

recognize certain sequences of symbols (languages). Unlike automata with outputs, where each state or transition 

corresponds to a certain output signal, automata without outputs focus exclusively on determining whether the 

input sequence belongs to a given language. Despite this feature, this type of automata has found its application 

in data encryption. 

 

According to (Tao, 2008), the finite automata are an algebraic structure 𝐴 = < 𝑋, 𝑄, 𝛿 >, where: 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛}  is a non-empty and finite set of the input alphabet; 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚}  is a non-empty and finite 

set of states; δ: 𝑄 × 𝑋 → 𝑄 is the transition function. The elements of the set 𝑄+ are called states of the finite 

automata, and the elements of the set 𝑋∗ are called input symbols, where 𝑋∗ is the set of all possible words, 

including the empty set ε, and 𝑄+ is 𝑄+\{𝜀}.  

 

Finite automata without output are divided into deterministic and non-deterministic (Sharipbay, 2015). A non-

deterministic finite automaton (NFA) is a finite automaton in which the transition function is ambiguous, and 
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during the operation of the NFA, in one cycle it can make a transition to one or more states different from the 

initial one. In turn, a deterministic finite automaton (DFA) is a special case of an NFA in which for each pair 

(𝑞, 𝑥) there is a unique next state. Further work is based on the use of a deterministic finite automaton without an 

output, which will be defined in the text as a finite automaton. 

 

The operation of a finite automaton is represented as follows: the relation (𝑞, 𝑎𝑥) ├ (𝑞′, 𝑥) means that, being in 

the current state q, reading the input symbol 𝑎, the automaton goes to the state 𝑞′ and then reads the next symbol 

of the word 𝑥. In the row of states 𝑞0, 𝑞1, … , 𝑞𝑚 ({𝑞0, 𝑞1, … , 𝑞𝑚}  ∈ 𝑄), the sequence of states 𝑞1, 𝑞2, … , 𝑞𝑚−1 is 

called intermediate states. An extended version of the transition function will be considered: 

 

𝛿∗: 𝑄 × 𝑋∗ → 𝑄+, 
 

 where  𝛿∗(𝑞, 𝜀) = 𝑞 ,  𝛿∗(𝑞, 𝑥𝑎) = 𝛿(𝑞, 𝑥) 𝛿∗(𝛿(𝑞, 𝑥), 𝑎) = 𝑞, 𝑞 ∈ 𝑄, 𝑥 ∈ 𝑋, 𝑎 ∈ 𝑋∗. On other words, under the 

action of empty word ε, the automaton 𝐴 does not go anywhere, and for each input word  𝑥1, 𝑥2, … , 𝑥𝑛 ∈
𝑋+, where 𝑋+ = 𝑋∗\𝜀, and 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋 there exist  𝑞0, 𝑞1, … , 𝑞𝑚 ∈ 𝑄  with transition functions  

 

𝛿(𝑞0, 𝑥1) = 𝑞1, 𝛿(𝑞1, 𝑥2) = 𝑞2, … , 𝛿(𝑞𝑚−1, 𝑥𝑛) = 𝑞𝑚 

 

such that  𝛿(𝑞0, 𝑥1𝑥2 … 𝑥𝑛) = 𝑞1 … 𝑞𝑚. 

 

In what follows, the transition function is considered in an expanded form, so we will denote it by 𝛿. For clarity 

and convenience of presentation of the transition function of a finite automata, it is advisable to use a tabular 

format (see Table 1). 

 

Table 1. Finite automata transition functions 

 𝑞0 𝑞1 … 𝑞𝑚 

𝑥1 𝛿(𝑞0, 𝑥1) 𝛿(𝑞1, 𝑥1) … 𝛿(𝑞𝑚 , 𝑥1) 

𝑥2 𝛿(𝑞0, 𝑥2) 𝛿(𝑞1, 𝑥2) … 𝛿(𝑞𝑚 , 𝑥2) 

… … … … … 

𝑥𝑛 𝛿(𝑞0, 𝑥𝑛) 𝛿(𝑞1, 𝑥𝑛) … 𝛿(𝑞𝑚, 𝑥𝑛) 

 

In the transition table, the rows correspond to the input symbols of the automaton 𝑥 ∈ 𝑋∗, and the columns 

correspond to its states 𝑞 ∈ 𝑄. Each cell of this table contains a state to which the automaton transitions in 

accordance with the transition function 𝛿(𝑞, 𝑥). If the value of the transition function is not defined for some pair 

(𝑞, 𝑥), the corresponding cell remains empty. 

 

 

Product Glushkov of Automata 

 

The Glushkov product of automata is a collection of permutation automata. Each automaton included in this 

collection changes its state under the influence of a local state transition function and a global input. In this case, 

the synchronous action of local transitions affects the global transition of the entire collection of automata. 

Consequently, the result of the Glushkov product of automata is a new finite automaton with a consistent state 

dynamic (Domosi & Horváth, 2015). Next, we consider the formal definition of the Glushkov product of automata. 

First, a permutation automaton will be defined.  

 

An automaton 𝐴 = < 𝑋, 𝑄, 𝛿 >  is called permutational if all rows in the transition table are permutations of the 

set of states. In other words, for each pair 𝑏 ∈ 𝑄, 𝑥 ∈ 𝑋, there is only one 𝑎 ∈ 𝑄 such that 𝛿(𝑎, 𝑥) = 𝑏. (Dömösi 

& Horváth, 2015). 

 

Let there be a collection of permutation automata 𝒜𝑖 = (𝑋𝑖 , Q𝑖 , 𝛿𝑖), where 𝑖 ∈ {1, … , 𝑛}, 𝑛 ≥ 1. The feedback 

function 𝜑𝑖 is defined as a mapping 𝑄1 × … ×  𝑄𝑛 × 𝑋 → X𝑖 (𝑖 ∈ {1, … , 𝑛}). 

 

The automaton 𝒜 = 𝒜1 × … × 𝒜𝑛(X, (𝜑1, … , 𝜑𝑛)) is called the Glushkov product of automata 𝒜𝑖 taking into 

account the feedback function 𝜑𝑖, which has a set of final states 𝑄 = 𝑄1 × … ×  𝑄𝑛, a finite set of input symbols 

𝑋, and the transition function 𝛿 is defined as follows: 

 

𝛿((𝑞1, … , 𝑞𝑛), 𝑥) = (𝛿1(𝑞1𝜑1(𝑞1, … , 𝑞𝑛 , 𝑥)), … , 𝛿𝑛(𝑞𝑛 , 𝜑𝑛(𝑞1, … , 𝑞𝑛 , 𝑥))) for all (𝑞1, … , 𝑞𝑛, ) ∈ 𝑄 and 𝑥 ∈ X. 
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The feedback function 𝜑𝑖 , 𝑖 ∈ {1, … , 𝑛} is used in the extended sense: 𝜑𝑖
∗: 𝑄1 × … ×  𝑄𝑛 × X∗ → X𝑖

∗ , where 

𝜑𝑖
∗(𝑞1, … , 𝑞𝑛 , 𝜀) = 𝜀, and   

 

𝜑𝑖
∗(𝑞1, … , 𝑞𝑛 , 𝑎𝑥) =  𝜑𝑖

∗(𝑞1, … , 𝑞𝑛 , 𝑎)𝜑𝑖(𝛿1(𝑞1, 𝜑𝑖
∗(𝑞1, … , 𝑞𝑛, 𝑎)), … , 𝛿𝑛(𝑞𝑛 , 𝜑𝑛

∗ (𝑞1, … , 𝑞𝑛 , 𝑎)), 𝑥),   for all 𝑞𝑖 ∈

𝑄, 𝑖 ∈ {1, … , 𝑛}, 𝑎 ∈ Σ∗, 𝑥 ∈ X. Further in the article, 𝜑𝑖
∗, 𝑖 ∈ {1, … , 𝑛} will be designated as 𝜑𝑖. 

  

As is known, the automata 𝒜𝑖 used in Glushkov's product must be isomorphic in states to the original automaton. 

Two finite automata are called isomorphic in states if there is a one-to-one correspondence between their sets of 

states that preserves the structure of transitions and sets of accepted states. 

 

Formally, two automata 𝒜1 = (𝑋1, Q1, 𝛿1)  and 𝒜2 = (𝑋2, Q2, 𝛿2)  are considered isomorphic in states if there 

exist bijections σ𝜎1: Q1 → Q2, 𝜎2: 𝑋1 →  𝑋2 such that 𝜎1: (𝛿2(𝑞, 𝑥)) = 𝛿(𝜎1(𝑞), 𝜎2(𝑥)) , where 𝑞 ∈ 𝑄2, 𝑥 ∈ 𝑋2. 

In the case when 𝑋2 = 𝑋1 and 𝜎2(𝑥) = 𝑥, we can say that 𝒜2 is an isomorphic automaton 𝒜1 (Tao, 20. 

 

 

Encryption Algorithm Glushkov Product of Automata 

 

The paper presents a description of algorithm of the light version of the cryptosystem based on Glushkov Product 

of automata which was presented in work (Domosi et.al., 2019). This cryptosystem served as a basis for 

subsequent research in the field of automaton cryptography. The cryptosystem developed by Harvard and Dömösi 

is of considerable interest to specialists studying the use of alternative mathematical models in cryptography. In 

this cryptosystem, the key automaton is a sequentially functioning Glushkov product with the following 

properties: 

 

• The Glushkov product is formed from permutation finite automata that are isomorphic in state. 

• The sets of state sets of the automata are identical. 

• The automata have identical sets of states and input symbols, which are sets of all strings of fixed length in a 

given alphabet. 

 

 

Algorithm: 

 

Let 𝒜1 = (𝑋1, Q1, 𝛿1)  be a permutation automaton, where 𝑋1 =  Q1 = {0, 1, 2, … , 255}. 

 

At the first stage, the key automaton is constructed in the following way: 

 

Step 1: n and k positive integers are selected. The number n affects the number of automata in the Glushkov 

product. The number k determines the number of rounds. 

 

Step 2: the initialization vector 𝑟1 … 𝑟𝑛 ∈ 𝑋𝑛 is generated, which is truly random. It should be taken into account 

that the alphabet of pseudo-random numbers X is also the alphabet of the open and encrypted text. 

 

Step 3: digraph 𝐷 = (𝑉, 𝐸) with 𝑉 = {1, … , 𝑛}, 𝐸 = {(𝑛, 1), (1,2), … , (n-1,n)}, which defines a D-product: 𝒜𝐷 =

𝒜1 × … × 𝒜𝑛(𝑋𝑛, (𝜑1, … , 𝜑𝑛)) of permutation automata 𝒜2,…, 𝒜𝑛 isomorphic in states to 𝒜1, for each 

(𝑎1 … , 𝑎𝑛),  (𝑥1 … , 𝑥𝑛) ∈ 𝑋𝑛, 𝑖 ∈ {1, … , 𝑛} is defined. 

 

Step 4: construct n-1 automata isomorphic to 𝒜1. For this, generate bijective mappings 𝜓1 … 𝜓𝑛−1. In order to 

construct a transition table for isomorphic automata 𝒜2,…, 𝒜𝑛, the formula for states is used: 

 

𝒜2 : 𝜓1(𝛿1(𝑞1, 𝑥)) = 𝛿2(𝜓1(𝑞1), 𝑥) … 

… 

𝒜𝑛 : 𝜓𝑛−1(𝛿1(𝑞1, 𝑥)) = 𝛿𝑛(𝜓𝑛−1(𝑞1), 𝑥) … 

 

In this way, transition tables are constructed for all 𝒜2,…, 𝒜𝑛 automata. 

 

The second stage describes the process of encryption of the plaintext using the Glushkov product automaton. The 

plaintext is read block by block, passing the first block of the plaintext through the key automaton, the first block 

of the ciphertext is obtained, then the second, third and so on are generated. The blocks of the plaintext are 

encrypted as follows: 
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Step 1: the plaintext is split into plaintext blocks 𝑎1 … 𝑎𝑛  ∈  𝑋𝑛. The number of symbols in each plaintext block 

depends on the number of isomorphic automata. 

 

Step 2: a word 𝓌1, … , 𝓌𝑘 ∈ 𝑋𝑛 of pseudorandom sequences is generated, where 𝓌1 … , 𝓌𝑘 ∈ Σ𝑛, which are then 

used in the encryption process as a key at each round. Each vector 𝓌𝑗 = (𝑥1 … 𝑥𝑛), 𝑗 = 1 … 𝑘 has length n. 

 

Step 3: an invertible function 𝜑𝑖 is selected such that 

 

𝜑𝑖: 𝒜1 × … ×  𝒜𝑛 × 𝑋 → 𝑋𝑖 for all 𝑖 = 1 … 𝑛 

 

𝒜1 = (𝑋1, Q1, 𝛿1),  𝒜2 = (𝑋2, Q2, 𝛿2) , ..., 𝒜𝑛 = (𝑋𝑛, Q𝑛 , 𝛿𝑛) 

 

𝑋1 = 𝑋2 = ⋯ =  𝑋𝑛 =  Q1 =  Q2 = ⋯ = Q𝑛 = (0, 255)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
 

𝜑1( 𝑎1 … 𝑎𝑛, (𝑥1, … , 𝑥𝑛)) =  𝑎𝑛 ⊕  𝑥𝑛 

 

𝜑𝑖( 𝑎1 … 𝑎𝑛 , (𝑥1, … , 𝑥𝑛)) =  𝑎𝑖−1 ⊕  𝑥𝑖−1 

 

where ⊕ - bitwise addition modulo 2, and 𝑖 = 2 … 𝑛 

 

4 шаг: key automata 𝔅 = (𝑋𝑛, X𝑛 , 𝛿𝔅) is Production Glushkov of automata 𝒜𝐷, where for any 

(𝑎1 … 𝑎𝑛), (𝑥1 … 𝑥𝑛) ∈ X𝑛 has transaction function 𝛿𝔅((𝑎1 … 𝑎𝑛), (𝑥1 … 𝑥𝑛)) = (𝑏1 … 𝑏𝑛). Thus: 

 

𝑏1 = 𝛿𝒜1
(𝑎1, 𝜑1( 𝑎1, … , 𝑎𝑛 , (𝑥1, … , 𝑥𝑛)), where 𝜑1( 𝑎1, … , 𝑎𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝑎𝑛 ⊕  𝑥𝑛 

 

𝑏2 = 𝛿𝒜2
(𝑎2, 𝜑2( 𝑏1, 𝑎2, … , 𝑎𝑛, (𝑥1, … , 𝑥𝑛)), where 𝜑2( 𝑏1, 𝑎2, … , 𝑎𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝑏1 ⊕  𝑥1 

… 

𝑏𝑛 = 𝛿𝒜𝑛
(𝑎𝑛 , 𝜑𝑛( 𝑏1, 𝑏2, … , 𝑎𝑛 , (𝑥1, … , 𝑥𝑛)), where 𝜑𝑛( 𝑏1, 𝑏2, … , 𝑎𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝑏𝑛−1 ⊕  𝑥𝑛−1 

 

Шаг 5: (𝑑1 … , 𝑑𝑛) and (𝑒1 … , 𝑒𝑛) vectors are defined.  

 

If k=1, these vectors are defined as follows: 

 

(𝑑1, … , 𝑑𝑛) = (𝑎1 … , 𝑎𝑛) – bloc of plaintext. 

 

(𝑒1, … , 𝑒𝑛) = 𝛿𝔅((𝑑1 … , 𝑑𝑛), 𝓌1). 

 

𝑒1 = 𝛿𝒜1
(𝑑1, 𝜑1( 𝑑1, … , 𝑑𝑛, (𝑥1, … , 𝑥𝑛)) =  𝛿𝒜1

(𝑑1, 𝑑𝑛 ⊕  𝑥𝑛), 

 

𝑒2 = 𝛿𝒜2
(𝑑2, 𝜑2( 𝑒1, 𝑑2, … , 𝑑𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝛿𝒜2

(𝑑2, 𝑒1 ⊕  𝑥1), 

… 

𝑒𝑛 = 𝛿𝒜𝑛
(𝑑𝑛, 𝜑𝑛( 𝑒1, 𝑒2, … , 𝑑𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝛿𝒜𝑛

(𝑑𝑛 , 𝑒𝑛−1 ⊕  𝑥𝑛−1) . 

 
If k>1, encryption is performed in the following way: 

 

(𝑒1 … , 𝑒𝑛) = 𝛿𝔅((𝑑1 … , 𝑑𝑛), 𝓌1 … 𝓌𝑖) 

 

After k rounds, states (𝑒1 … , 𝑒𝑛)𝑘 will be obtained. The ciphertext 𝑐1 … 𝑐𝑛 is the concatenation of the calculated 

state blocks (𝑒1, … , 𝑒𝑛) at each round. 

 

The third stage describes the decryption process. The key machine reads the encrypted data in blocks sequentially 

and, having processed the first block of the ciphertext 𝑐1, … , 𝑐𝑛  ∈  𝑋𝑛, calculates the corresponding blocks of the 

plaintext in the order reverse to their original sequence. This process occurs according to the steps described 

below: 

 

Step 1: the ciphertext is divided into ciphertext blocks 𝑐1, … , 𝑐𝑛 ∈  𝑋𝑛. The number of symbols in each ciphertext 

block depends on the number of isomorphic automata. 
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Step 2: a word 𝓌1, … , 𝓌𝑘 ∈ 𝑋𝑛 of pseudorandom sequences is generated, where 𝓌1, … , 𝓌𝑘 ∈ 𝑋𝑛, which were 

used as a key during encryption in each round. Each vector 𝓌𝑗 = (𝑥1 … 𝑥𝑛), 𝑗 = 1 … 𝑘 has length n. 

 

Step 3: an invertible function 𝜑𝑖 is selected similar to that described in step 3 of the encryption stage. 

 

Step 4: during decryption, the inverse automaton 𝔅−1 = (𝑋𝑛, X𝑛 , 𝛿𝔅−1), is used to the key automaton 

𝔅 = (𝑋𝑛, X𝑛 , 𝛿𝔅), which was used during encryption. Thus, the vector (𝑑1 … , 𝑑𝑛) is restored as follows: 

 

If k=1, the vectors are defined as follows: 

 

(𝑒1, … , 𝑒𝑛) = (𝑐1 … , 𝑐𝑛) – ciphertext block 

 

(𝑑1 … , 𝑑𝑛) = 𝛿𝔅((𝑒1 … , 𝑒𝑛), 𝓌1). 

 

𝑑𝑛 = 𝛿𝒜𝑛
−1(𝑒𝑛, 𝜑𝑛( 𝑒1, … 𝑒𝑛−1, 𝑒𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝛿𝒜𝑛

−1(𝑒𝑛 , 𝑒𝑛−1 ⊕  𝑥𝑛−1) , 

 

𝑑𝑛−1 = 𝛿𝒜𝑛−1
−1 (𝑒𝑛−1, 𝜑𝑛−1( 𝑒1, … 𝑒𝑛−1, 𝑑𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝛿𝒜𝑛−1

−1 (𝑒𝑛−1, 𝑒𝑛−2 ⊕  𝑥𝑛−2) , 

 

𝑑1 =  𝛿𝒜1
−1(𝑒1, 𝜑1( 𝑒1, … 𝑑𝑛−1, 𝑑𝑛 , (𝑥1, … , 𝑥𝑛)) = 𝛿𝒜𝑛

−1(𝑒1, 𝑑𝑛 ⊕  𝑥𝑛). 

 

If 𝑘 > 1, decryption is done in the following way: 

 

(𝑑1 … , 𝑑𝑛) = 𝛿𝔅((𝑒1 … , 𝑒𝑛), 𝓌1 … 𝓌𝑖) 

 

Thus, we can obtain a block of plaintext after k rounds of inverse transformation. 

 

 

Results and Discussion 
 

In this section of the article will discuss a demonstration example that will clearly demonstrate the use of the 

Glushkov product of automata as encryption and decryption of plaintext.  

 

We will further illustrate an example on how to apply product Glushkov of automata on encryption and decryption 

process. Take 𝒜1 = (𝑋1, Q1, 𝛿1)  be a permutation automaton, where 𝑋1 =  Q1 = {0, 1, 2, 3}. The transition table 

2: 

 

Table 2. Transition functions of 𝒜1 

 𝟎 𝟏 2 3 

0 1 2 3 0 

1 0 3 2 1 

2 2 1 3 0 

3 0 1 3 2 

 

We will choose n=3, it is mean that will be constructed two isomorphic automata  𝒜2 and 𝒜3. For that we generate 

bijective mappings 𝜓1 and 𝜓2. 

 

𝜓1: 𝜓1(0) = 3, 𝜓1(1) = 1, 𝜓1(2) = 0, 𝜓1(3) = 2 

 

𝜓2: 𝜓2(0) = 2, 𝜓2(1) = 0, 𝜓2(2) = 3, 𝜓2(3) = 1 

 

According bijective mapping construct transition function for 𝒜2 and 𝒜3 (table 3 and table 4). 

 

Table 3. Transition functions of 𝒜2  

 𝟎 𝟏 2 3 

0 0 1 3 2 

1 3 2 0 1 

2 3 1 2 0 

3 1 0 2 3 
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Table 4. Transition functions of 𝒜3  

 𝟎 𝟏 2 3 

0 2 1 3 0 

1 2 0 1 3 

2 0 3 1 2 

3 3 0 1 2 

 

Thus, key automata are Glushkov product of automata 𝒜𝐷 = 𝒜1 × 𝒜2 × 𝒜3(𝑋3, (𝜑1, 𝜑2, 𝜑3)) 

 

Let, plaintext is 103, for encrypting this text we generate key 𝑤 = (𝑥1, 𝑥2, 𝑥3) = (3, 0,1), k = 1. 

 

Define vector (𝑑1, 𝑑2, 𝑑3) = (1, 0, 3). 

 

Encryption is done as follows: 

 

𝑒1 = 𝛿𝒜1
(𝑑1, 𝜑1( 𝑑1, 𝑑2, 𝑑3, (𝑥1, 𝑥2, 𝑥3)) =  𝛿𝒜1

(𝑑1, 𝑑3 ⊕  𝑥3) =  𝛿𝒜1
(1, 3 ⊕  1) = 𝛿𝒜1

(1, 2) = 1 

 

𝑒2 = 𝛿𝒜2
(𝑑2, 𝜑2( 𝑒1, 𝑑2, 𝑑3 , (𝑥1, 𝑥2, 𝑥3)) = 𝛿𝒜2

(𝑑2, 𝑒1 ⊕  𝑥1) = 𝛿𝒜2
(0, 1 ⊕  3) = 𝛿𝒜2

(0, 2) = 3 

 

𝑒3 = 𝛿𝒜3
(𝑑3, 𝜑3( 𝑒1, 𝑒2 , 𝑑3, (𝑥1, 𝑥2, 𝑥3)) = 𝛿𝒜3

(𝑑3, 𝑒2 ⊕  𝑥2) = 𝛿𝒜3
(3, 3 ⊕  0) = 𝛿𝒜3

(3, 3) = 2 

 

So, cyphertext  (𝑐1, 𝑐2, 𝑐3) = (1, 3, 2) 

 

For decrypting cyphertext we need generate inverse of key automata (table 5, 6, 7).  

 

Table 5. Transition functions of 𝒜1
−1  

 𝟎 𝟏 2 3 

0 3 0 1 2 

1 0 3 2 1 

2 3 1 0 2 

3 0 1 3 2 

 

Table 6. Transition functions of 𝒜2
−1  

 𝟎 𝟏 2 3 

0 0 1 2 3 

1 2 3 1 0 

2 3 1 2 0 

3 1 0 2 3 

 

Table 7. Transition functions of 𝒜3
−1  

 𝟎 𝟏 2 3 

0 3 1 0 2 

1 1 2 0 3 

2 0 2 3 1 

3 1 2 3 0 

 

Key use same us encryption stage 𝑤 = (𝑥1, 𝑥2, 𝑥3) = (3, 0,1) 

 

The decryption process is similar to encryption, but in reverse. 

 

(𝑒1, 𝑒2, 𝑒3) = (1, 3, 2) 

 

𝑑3 = 𝛿𝒜3
−1(𝑒3, 𝜑3( 𝑒1, 𝑒2, 𝑒3 , (𝑥1, 𝑥2, 𝑥3)) = 𝛿𝒜3

−1(𝑒3, 𝑒2 ⊕  𝑥2) = 𝛿𝒜3
−1(2, 3 ⊕  0) = 𝛿𝒜3

−1(2, 3) = 3 

 

𝑑2 = 𝛿𝒜2
−1(𝑒2, 𝜑2( 𝑒1, 𝑒2, 𝑑3 , (𝑥1, 𝑥2, 𝑥3)) = 𝛿𝒜2

−1(𝑒2, 𝑒1 ⊕  𝑥1) = 𝛿𝒜2
−1(3,1 ⊕  3) = 𝛿𝒜2

−1(3, 2) = 0 

 

𝑑1 =  𝛿𝒜1
−1(𝑒1, 𝜑1( 𝑒1, 𝑑2, 𝑑3 , (𝑥1, 𝑥2, 𝑥3)) = 𝛿𝒜1

−1(𝑒1, 𝑑3 ⊕  𝑥3) = 𝛿𝒜1
−1(1, 3 ⊕  1) = 𝛿𝒜1

−1(1, 2) = 1 
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So, we get decrypted text (𝑑1, 𝑑2, 𝑑3) = (1, 0, 3) 

 

The above example is given to illustrate the operation of encrypting and decrypting using Glushkov product of 

automata work. Obviously, in practice that cryptographic algorithm is much more complicated. For more 

information on how to build these types of automata, see the work (Domosi et.al., 2019). 

 

The software implementation of the considered cryptosystem was made by the Python programming language. 

To demonstrate the operation of the algorithm under consideration, a gray image Airplane.tiff with size 512x512 

pixels was taken (https://sipi.usc.edu/database). To encrypt this image, 16 finite automata were taken, and the 

number of rounds is 8. For images with size 512*512 pixels will be encrypted 16 384 blocks. The key of size 16 

is generated randomly, in our case, the same key is used in each round. Results of encrypting and decrypting are 

shown on figure 1. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) Original image, (b) encrypted image, (с) decrypted image. 

 

NIST Test Results 

 

The statistical tests developed by the National Institute of Standards and Technology (NIST) Information 

Technology Laboratory are a set of 15 methods designed to assess the degree of randomness of binary sequences. 

These tests are based on the analysis of various statistical characteristics inherent in random sequences. Successful 

completion of these tests is interpreted as evidence of high cryptographic strength of the data under study (Pareschi 

et.al., 2012). Thus, the NIST test set is an effective tool for analyzing the randomness of encrypted information, 

which in turn indicates the reliability of the cryptographic methods used.Table 8 contains the results of NIST 

statistical tests on the experimental image. 

 

Table 8. NIST results 

Test Name P-Value Conclusuion 

01. Frequency Test: 0.6114533432130285 True 

02. Block Frequency Test: 0.9512055879042081 True 

03. Run Test: 0.04314964466418219 True 

04. Run Test (Longest Run of Ones):  0.37066285180866043 True 

05. Binary Matrix Rank Test: 0.7262509735848526 True 

06. Discrete Fourier Transform (Spectral) Test: 0.9487819898568091 True 

07. Non-overlapping Template Matching Test: 0.8067096223594483 True 

08. Overlappong Template Matching Test:  0.5373254259563948 True 

09. Universal Statistical Test: 0.9470101746108605 True 

10. Linear Complexity Test: 0.8350400376461669 True 

11. Serial Test: 0.9804137326823029 True 

  0.815036343351716 True 

12. Approximate Entropy Test: 0.8733927390000743 True 

13. Cumulative Sums (Forward): 0.37820269368211135 True 

13. Cumulative Sums (Backward): 0.37820269368211135 True 

14. Random Excursion Test: 

STATE xObs P-Value Conclusion 

-4 0.3757434402332362 0.9959714520151304 True 

-3 1.997984 0.8494239179678532 True 

-2 4.9027160493827155 0.4278679719139393 True 
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-1 2.0 0.8491450360846096 True 

1 8.6 0.12612244119041105 True 

2 8.359012345679012 0.13752824367716304 True 

3 5.431520000000001 0.3655134039059185 True 

4 4.419958350687214 0.4906636246748899 True 

15. Random Excursion Variant Test: 

STATE   COUNTS   P-Value   Conclusion 

-9.0 61 0.503594688207976 True 

-8.0 71 0.5964828214814786 True 

-7.0 80 0.6948866023724733 True 

-6.0 74 0.5793585907298551 True 

-5.0 70 0.4795001221869535 True 

-4.0 89 0.7687675574059754 True 

-3.0 93 0.8248125741940059 True 

-2.0 94 0.8064959405073401 True 

-1.0 99 0.9436280222029834 True 

+1.0 109 0.5245182802130763 True 

+2.0 125 0.30743416592739536 True 

+3.0 128 0.3759205825480747 True 

+4.0 111 0.7687675574059754 True 

+5.0 111 0.7954250063905932 True 

+6.0 110 0.8311704095417624 True 

+7.0 107 0.8908084551935809 True 

+8.0 128 0.6092056132701683 True 

+9.0 150 0.3911725228101395 True 

 

Passing all NIST tests comprehensively demonstrates that the encrypted image meets international standards for 

cryptographic data strength. 

 

 

Conclusion  
 

In this research, finite automata without outputs were studied as a basis for constructing encryption algorithms. A 

cryptographic scheme based on the Glushkov product of automata was implemented in software, allowing for the 

encryption and decryption of data using a formal automaton-based model. The developed program demonstrates 

the operation of the encryption process through the sequential composition of isomorphic automata, ensuring high 

variability and structural complexity of the key automaton. 

 

The considered algorithm has several advantages. It features a clear mathematical structure, flexibility in 

configuring encryption parameters (such as the number of automata and rounds), and a modular architecture that 

facilitates software and potentially hardware implementation. The use of isomorphic permutation automata 

increases resistance to cryptanalytic attacks by introducing combinatorial complexity. Furthermore, the ability to 

generate pseudorandom transformations on each encryption round contributes to high diffusion and confusion 

properties, essential for secure encryption. The compositional structure of the Glushkov product contributes to 

enhancing data protection by increasing the cryptographic strength of the encryption process. The results of NIST 

statistical tests confirmed the high level of randomness and reliability of the proposed method.  
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