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Abstract: Preferential attachment phenomenon is a key factor providing scale-free behavior in complex 

networks. In this study, we introduced various preferential attachment patterns applied in a growing Barabasi-

Albert network, denoted by a factor α. We first generated networks under constant preferential attachment levels 

from 0 to 2, where 1 stands for linear preferential attachment. Then we performed network simulations under 

uniformly distributed random α condition, within the interval [0,2]. Although mean α is 1 for this setup, 

generated networks displayed greater clustering together with lower modularity and separation values compared 

to the setup with α=1. We also performed similar network generation procedures with various distribution 

functions applied for α, each resulting random levels of preferential attachment. We achieved networks with 

power-law consistent degree distributions with γ coefficients between 2 and 3, together with improved 

clustering coefficients up to ~0.3. As a result, scale-free network topologies featuring greater clustering levels 

compared to pure Barabasi-Albert model are achieved.  
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Introduction 

 

Real networks diverge from random networks with their degree sequences and clustering property. Most real 

networks have power-law consistent degree distributions labeling them as scale-free (Albert & Barabási, 2002; 

Barabási & Albert, 1999). Scale-free networks promote generation of a small number of hubs together with 

numerous low-degree nodes, where the degree sequences of all nodes are consistent with a linear decaying 

character in a log-log scale of degree distribution (Clauset, Shalizi, & Newman, 2009; Newman, 2003). This 

distribution is mostly governed by the preferential attachment phenomenon, a key ingredient of most current 

network models that highly connected nodes increase their connectivity faster than their less connected peers 

(Jeong, Néda, & Barabási, 2003). In networks with preferential attachment, new nodes prefer connecting to 

more connected nodes instead of less connected ones. This generic mechanism has significant roles in real 

networks and have been subject of many studies of network analysis and modeling (Abbasi, Hossain, & 

Leydesdorff, 2012; Dereich & Mörters, 2009; Johnson, Faraj, & Kudaravalli, 2014; Milojević, 2010; Poncela, 

Gómez-Gardenes, Floría, Sánchez, & Moreno, 2008). 

 

Preferential attachment is said to be linear, if the connectivity of a node is linearly dependent to its degree. In 

some occasions, nodes in real networks display attachment levels with non-linear dependence to node degree. 

These behaviors are labeled as sub-linear or super-linear preferential attachment. The critical level of this 

attachment level is abstracted with an α parameter that is equal to 1 for linear preferential attachment, less than 1 

for sub-linear and greater than 1 for super-linear attachment levels (Barabási, 2016). Networks with sub-linear 

preferential attachment levels display stretched exponential degree distribution, meaning fewer and smaller hubs 

compared to a scale-free network, and a concave degree distribution in a log-log scale. On the other hand, 

networks with super-linear attachment display convex log-log degree distributions, which lead to a hub-and-

spoke topology as a result of “a winner-takes-all” dynamics (Barabási, 2016; Dereich & Mörters, 2011).  
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Clustering is another key ingredient of real networks, captured with a coefficient indicating in what rate the 

neighbors of a given node are also neighbors of each other (Barabási, 2016; Newman, 2003). This coefficient is 

averaged over all nodes to present the level of average clustering of a network. Many modeling studies are 

conducted to capture both preferential attachment and clustering properties of real networks. These studies 

employ several mechanisms like triad-formation (Alstott, Klymko, Pyzza, & Radcliffe, 2016; Holme & Kim, 

2002; Kim & Diesner, 2017), improving clustering of networks with arbitrary degree distributions (Bansal, 

Khandelwal, & Meyers, 2009; Colomer-de-Simon & Boguná, 2012; Herrero, 2015) and promoting connections 

between spatially close nodes (Manna & Sen, 2002; Türker, 2018; Xie, Ouyang, & Li, 2016; Xulvi-Brunet & 

Sokolov, 2002). 

 

In this study, we aimed to achieve clustered scale-free network topologies by applying various preferential 

attachment levels including α parameters of constant values below and above 1, uniform distributed random α 

values, α values generated from some mathematical expressions like sinusoidal or sigmoid functions etc. The 

results of the corresponding models are presented in the next section. Although no strategy is employed for 

tuning clustering property, the results demonstrate that scale-free networks with improved clustering according 

to Barabasi-Albert network are achieved.  

 

 

Method 
 

We generated growing network models, based on Barabasi-Albert (BA) scale-free model (Albert & Barabási, 

2002). The computational fashion followed to realize a BA network is illustrated in Fig. 1. For a new node just 

joining the network, connecting probability to an old node is directly proportional with the number of 

occurrences of the node ID in the edges array. This provides realization of linear preferential attachment 

phenomenon in a numerical fashion.  

 

 
Figure 1. The computational method followed to achieve a BA network is illustrated. The new node (9) just 

joining the network chooses a node to connect from the flattened edges array (edges-F), with an index randomly 

generated from a uniform distribution. By the way, nodes have attachment probabilities proportional with their 

current degrees 

 

 

Tuning Preferential Attachment 

 

In the above-mentioned setup, the likelihood to connect to a node depends on that node’s degree k. The 

functional form of preferential attachment can be approximated with Eq. 1. 

 

 ( )    (1) 

 

For networks with linear preferential attachment    , corresponding to linear dependence of П with k. For 

any    , new nodes tend to make connections to more connected nodes over less connected ones. For     

(sub-linear preferential attachment) this bias is weak and insufficient to provide a pure scale-free degree 

distribution, rather resulting a stretched exponential distribution. On the other hand, for    , connecting to 

more connected nodes is promoted, resulting a structure that rich get richer than in a network with linear 

preferential attachment (Barabási, 2016). This behavior, labeled as super-linear attachment, exhibits a hub-and-

spoke topology and a convex degree distribution in log-log scale. 
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We tuned the generated network models with this α parameter such that, the occurrence count of the ID of a 

node with degree k in the edges-F array is equal to   . For linear attachment, the ID of a node with degree 2 is 

repeated      times in this array, corresponding to linear attachment as illustrated in Fig. 1. For α values 

resulting non-integer repeat counts, the result is rounded to the nearest integer. For instance, if       and the 

degree of a node is 2, this count will be          , therefore the node ID will be repeated 3 times in the edges-F 

array.  

 

 

Results and Discussion 
 

We first generated networks by setting constant α parameters within the interval [0-2] by incrementing 0.2 for 

each network setup. This procedure is applied to two sets of networks where the first is constructed with 1 links 

assigned for each new node and the second is constructed with 5 links assigned for each new node. This count 

of edges corresponds to the parameter m described in BA model in Ref. (Albert & Barabási, 2002). 

 

We present the basic network parameters in Table 1 and 2 as follows. As seen from the tables, average path 

length displays monotone decaying trend for both setup. Modularity measure remains almost constant for α 

values up to 1.4, showing a steep decay for greater α values. This indicates that super-linear preferential 

attachment, resulting a hub-and-spoke topology avoids nodes to organize into modules. For the similar α 

interval, average clustering coefficient increases dramatically. As a result, networks emerge to get more 

clustered but less modular for super-linear attachment region. 

 

Table 1. Results for networks generated with m=1 links per step and different preferential attachment levels (α). 

The last column corresponds to random α applied at each step of the growing network, from a uniform 

distribution between 0 and 2. Clustering coefficient results 0 for m=1 setup. 

α 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 Rnd 

Avg. Clustering 

C. 

- - - - - - - - - - - - 

Avg. Path 

Length 

10,7

6 

10,5

6 

9,36 8,52 8,13 7,21 5,66 3,05 2,22 2,03 2,02 6,35 

Modularity 0,93

4 

0,93

4 

0,93

4 

0,93

3 

0,92

9 

0,92

5 

0,90

4 

0,53

4 

0,15

5 

0,03

1 

0,02

4 

0,89

2 

  

Table 2. Results for networks generated with m=5 links per step and different preferential attachment levels (α). 

The last column corresponds to random α applied at each step of the growing network, from a uniform 

distribution between 0 and 2. 

α  0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 Rnd 

Avg. Clustering 

C. 

0,01

5 

0,01

7 

0,01

8 

0,01

9 

0,02

6 

0,04

3 

0,08

5 

0,21

1 

0,60

3 

0,75

9 

0,72

4 

0,07

7 

Avg. Path 

Length 

3,24 3,19 3,19 3,15 3,08

7 

2,96

4 

2,77 2,5 2,01 2 1,99 2,88 

Modularity 0,28

2 

0,28

5 

0,29 0,28

8 

0,27

8 
0,28 0,26

3 

0,25 0,19

3 

0,15

2 

0,10

6 
0,27

2 

 

A noteworthy output of these simulations is that, selecting α parameter from a uniform random distribution 

between 0 and 2 (with a mean of 1) results networks with greater clustering (~2 times) compared to networks 

with linear preferential attachment (   ). Although they have the same expected α parameter, picking random 

α at each step emerges as a key factor for improving clustering in scale-free networks. These results also 

indicate that networks with improved clustering are observed for α values typically greater than 1.  

 

We also present the degree distributions for these networks in Fig. 2 to consult the power-law consistencies. 

These plots indicate that, degree exponent decreases with increasing α parameter, since the super-linear 

preferential attachment results convex degree distributions. Visual inspection says that power-law fitting is not a 

suitable choice for α values greater than 1.4. On the other hand, degree distributions for both α=1 and α= rand(0-

2) scenarios result in power-law consistent distributions with exponents close to 2.7, whereas the network with 

randomized α setup with mean 1 exhibits approximately twice clustering coefficient compared to fixed α=1. 

This result emerges as a phenomenon that random levels of preferential attachment plays a key role in 

improving clustering.  
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(a: 0) 

 
(b: 0.2) 

 
(c: 0.4) 

,  

(d: 0.6) 

 
(e: 0.8) 

 
(f: 1.0) 

 
(g: 1.2) 

 
(h: 1.4) 

 
(i: 1.6) 

 
(j: 1.8) 

 
(k: 2.0) 

 
(l: rand[0-2]) 

 

Figure 2. Log binned degree distributions for the networks generated with m=5 links per step and different 

preferential attachment levels (α), gradually increased from 0 (a), to 2 (k) with increment 0.2 at each plot. The 

last plot (l) corresponds to random α applied at each step of the growing network, from a uniform distribution 

between 0 and 2. Both axes are logarithmically scaled. Power-law fits with degree exponents are presented for 

each plot, after least-squared (LS) fitting performed. 

 

To further investigate the advantage of random α on clustering mentioned above, we applied four different 

patterns of random α generation procedures, as given in Table 3. As seen from the function plots, the first 3 

functions are expected to generate α parameters with mean values greater than 1 (which will result in improved 

clustering). The last function is expected to produce symmetric α values around 1, but also promote α values 

rather closer to 0 and 2. All network generation procedures are performed with m=5 links per step, and 1000 

steps of simulation. 
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Table 3. Functions applied for random α generation procedures. Uniform random numbers are generated within 

the interval given in the rightmost column, and the corresponding y values are used as random α at each step of 

a growing network. 

Graph Function Applied Interval 

 

        [0,3] 

 

        ( ) [0,π] 

 

              ( ) [0,π] 

 

  
 

     
 [-4,4] 

 

Applying random level of preferential attachment at each step of growing network, we generated four network 

topologies. Generating uniform random numbers within the given intervals for each function, the generated y 

values are constituted for α at each step of edge generation. We present the results of network analysis for each 

setup in Table 4, together with the resulting degree distributions.  

 

Table 4. Network parameters for the four different patterns of random preferential attachment. Corresponding 

degree distributions are also presented at the end of each column. 

 
        

 

        ( ) 
 

           
 

  
 

     
 

 

Avg. 

Clust. C. 
0,1638 0,1856 0,3039 0,12 

Avg. 

Path 

Length 

2,5885 2,6250 2,3189 2,8 

Degree 

Dist. 

    
 

As seen in Table 4, the first 3 functions promoting α values greater than 1, result in greater clustering and low 

separation, while the last function (a type of sigmoid function) generating symmetric α values around 1 yields 

less clustering but better consistency with power-law behavior. Although the first 3 distribution plots show 
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convex tendencies, they seem to be acceptable to be labeled as scale-free. The most deviated one from pure 

power-law consistency is the third one, which dominantly produces greater α values from 1.25. The last model 

with symmetric α distribution around 1 deviates from the uniformly generated α model in Table 2, by promoting 

α values rather close to 0 and 2. As a result, both networks have similar average path length values, while 

power-law consistencies and degree coefficients also seem to be identical. Additionally, the latter one seems to 

be more successful in improving clustering property (0.077 vs. 0.12). This result indicates that, beyond 

generating random α parameters symmetric around 1, promoting the values close to 0 and 2 also has a 

significant impact on improving clustering.  

 

 

Conclusion  
 

We applied various levels of fixed preferential attachment levels, together with random number generation 

processes at each step of wiring in growing BA-like networks. We first outlined that clustering coefficient and 

modularity measures are inversely proportional with the preferential attachment level. Picking random levels of 

preferential attachment (α) at each wiring procedure emerges as a key factor for improving clustering, while it 

preserves average path length. Picking α from a uniform distribution between 0 and 2 results in approximately 

improving clustering twice, while this improvement is three times for a sigmoid function symmetric around 1. 

We conclude these results that fixed level of preferential attachment may emerge as an inhibiting factor on 

clustering, in growing networks. 

 

 

References 

 

Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment 

in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403-412.  

Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 

74(1), 47-97. doi: 10.1103/RevModPhys.74.47 

Alstott, J., Klymko, C., Pyzza, P. B., & Radcliffe, M. (2016). Local rewiring algorithms to increase clustering 

and grow a small world. arXiv preprint arXiv:1608.02883.  

Bansal, S., Khandelwal, S., & Meyers, L. A. (2009). Exploring biological network structure with clustered 

random networks. BMC bioinformatics, 10(1), 405.  

Barabási, A. L. (2016). Network Science. Cambridge: Cambridge University Press. 

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512. 

doi: 10.1126/science.286.5439.509 

Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. Siam 

Review, 51(4), 661-703. doi: 10.1137/070710111 

Colomer-de-Simon, P., & Boguná, M. (2012). Clustering of random scale-free networks. Physical Review E, 

86(2), 026120.  

Dereich, S., & Mörters, P. (2009). Random networks with sublinear preferential attachment: degree evolutions. 

Electronic Journal of Probability, 14, 1222-1267.  

Dereich, S., & Mörters, P. (2011). Random networks with concave preferential attachment rule. Jahresbericht 

der Deutschen Mathematiker-Vereinigung, 113(1), 21-40.  

Herrero, C. P. (2015). Ising model in clustered scale-free networks. Physical Review E, 91(5), 052812.  

Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical Review E, 65(2). 

doi: 10.1103/PhysRevE.65.026107 

Jeong, H., Néda, Z., & Barabási, A.-L. (2003). Measuring preferential attachment in evolving networks. EPL 

(Europhysics Letters), 61(4), 567.  

Johnson, S. L., Faraj, S., & Kudaravalli, S. (2014). Emergence of Power Laws in Online Communities: The 

Role of Social Mechanisms and Preferential Attachment. Mis Quarterly, 38(3), 795-808.  

Kim, J., & Diesner, J. (2017). Over-time measurement of triadic closure in coauthorship networks. Social 

Network Analysis and Mining, 7(1), 9. doi: 10.1007/s13278-017-0428-3 

Manna, S. S., & Sen, P. (2002). Modulated scale-free network in Euclidean space. Physical Review E, 66(6), 

066114.  

Milojević, S. (2010). Modes of collaboration in modern science: Beyond power laws and preferential 

attachment. Journal of the Association for Information Science and Technology, 61(7), 1410-1423.  

Newman, M. E. J. (2003). The structure and function of complex networks. Siam Review, 45(2), 167-256. doi: 

10.1137/s003614450342480 

Poncela, J., Gómez-Gardenes, J., Floría, L. M., Sánchez, A., & Moreno, Y. (2008). Complex cooperative 

networks from evolutionary preferential attachment. Plos One, 3(6), e2449.  



International Conference on Research in Education and Science (ICRES) April 28-May1, 2018, Marmaris/Turkey 

215 

 

Türker, İ. (2018). Generating clustered scale-free networks using Poisson based localization of edges. Physica 

A: Statistical Mechanics and its Applications, 497, 72-85. doi: 

https://doi.org/10.1016/j.physa.2018.01.009 

Xie, Z., Ouyang, Z., & Li, J. (2016). A geometric graph model for coauthorship networks. Journal of 

Informetrics, 10(1), 299-311.  

Xulvi-Brunet, R., & Sokolov, I. M. (2002). Evolving networks with disadvantaged long-range connections. 

Physical Review E, 66(2), 026118.  

 

 

Author Information 
Gokhan Kutluana 
Bartın University  

Health Services Vocational School 

 

Ilker Turker 
Karabük University  

Faculty of Engineering, Computer Engineering Dept. 

Contact e-mail: iturker@karabuk.edu.tr 

 

 


