Central Automorphism Groups for Semidirect Product of p-Groups

Ozge OZTEKIN
Gaziantep University

Zeynep GURBUZ

Gaziantep University

Abstract

Let $\mathbb{Z}_{\mathrm{p}^{2}} \rtimes_{\phi} \mathbb{Z}_{\mathrm{p}}$ be the semi-direct product of $\mathbb{Z}_{\mathrm{p}^{2}}$ and \mathbb{Z}_{p} with respect to $\phi,\left(\phi\right.$ is homomorphism from \mathbb{Z}_{p} to automorphisms group of $\left.\mathbb{Z}_{p^{2}}\right)$. In this work, the group Aut $\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$ of all central automorphisms of $\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}$ is studied and we determine the form of central automorphisms of $\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}$.

Keywords: P-group, Semi-direct product, Central aoutomorphism

Introduction

Let G be a group. By $C(G), A u t G$ and $\operatorname{Inn}(G)$ we denote the center, the group of all automorphisms and the group of all inner automorphisms of G, respectively. An automorphism θ of G is called central automorphisms if θ commutes with every inner automorphism, or equivalently, if $\mathrm{g}^{-1} \theta(\mathrm{~g})$ lies in the center of G for all g in G . The central automorphisms form a normal subgroup of $\operatorname{Aut}(\mathrm{G})$ and we denote this group with $\operatorname{Aut}_{C}(\mathrm{G})$. Also $\operatorname{Aut}_{C}(\mathrm{G})$ is the subgroup of $\operatorname{Inn}(G)$.

A p-group is a group in which every element has finite order, and the orderof every element is a power of prime number p. The term p-group is typically used for a finite p -group, which is equivalent to a group of prime power order.

In literature, there are important studies about central automorphisms of p-groups [1], [2]. In [1] Adney and Yen has shown that if G is a finite purely non abelian group then $\left|\operatorname{Aut}_{C}(\mathrm{G})\right|=\left|\operatorname{Hom}\left(\mathrm{G} / \mathrm{G}^{\prime}\right), \mathrm{Z}(\mathrm{G})\right|$. The automorphisms of direct and semidirect product of p-groups was given by Stahl in [3].

In this work our goal is to determine the central automorphisms of $\mathbb{Z}_{p^{2}} \rtimes_{\phi} \mathbb{Z}_{p}$ where $p=3$ and ϕ is homomorphism from \mathbb{Z}_{p} to automorphisms group of $\mathbb{Z}_{p^{2}}$.

Preliminaries

Definition. Let H and K be non-trivial finite groups and $\phi: \mathrm{K} \rightarrow \operatorname{Aut}(\mathrm{H})$ be a homomorphism. We define the operation \rtimes_{ϕ} as the following: Let $\mathrm{H} \rtimes_{\phi} \mathrm{K}$ be the set $\{(\mathrm{h}, \mathrm{k}): \mathrm{h} \in \mathrm{H}, \mathrm{k} \in \mathrm{K}\}$ on which it acts an operation $*$ as

$$
\left(\mathrm{h}_{1}, \mathrm{k}_{1}\right) *\left(\mathrm{~h}_{2}, \mathrm{k}_{2}\right)=\left(\mathrm{h}_{1} \cdot \phi\left(\mathrm{k}_{1}\right)\left(\mathrm{h}_{2}\right),\left(\mathrm{k}_{1} \cdot \mathrm{k}_{2}\right)\right.
$$

We define $\mathrm{G} \triangleq H \rtimes_{\phi} \mathrm{K}$ as the semi-direct product of H and K with respect to ϕ.
Definition. An automorphism θ of G is called central automorphism if θ commutes with every inner automorphism, or equivalently, if $\mathrm{g}^{-1} \theta(\mathrm{~g})$ lies in the $\mathrm{C}(\mathrm{G})$. The central automorhisms form a normal subgroup of $\operatorname{Aut}(\mathrm{G})$.

[^0]
Main Results

Theorem. Let φ be an automorphism of $\mathbb{Z}_{p^{2}} \rtimes_{\phi} \mathbb{Z}_{p}\left(p\right.$ is odd number) where $\phi: \mathbb{Z}_{p} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p^{2}}\right)$ and $\phi(a)=1+\mathrm{pa}$ then φ is defined by

$$
\varphi(a, b)=\left(a^{i} b^{j}, a^{\mathrm{j} m} b\right)
$$

where $i \in \mathbb{Z}_{p^{2}}, j, m \in \mathbb{Z}_{p}$ and $\mathrm{i} \neq 0($ modp $)$

Proof. REF.[3]

Theorem. $\left|\operatorname{Aut}\left(\mathbb{Z}_{\mathrm{p}^{2}} \rtimes_{\phi} \mathbb{Z}_{\mathrm{p}}\right)\right|=\mathrm{p}^{3}(\mathrm{p}-1)$.

Proof. REF.[3]

For determining the central automorphisms of $\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}$, first we find the $C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$.
Lemma. $C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)=\{(0,0),(3,0),(6,0)\}$.
Proof. If $(a, b) \in C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$ then for every $(c, d) \in\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right.$,

$$
(\mathrm{a}, \mathrm{~b}) *(\mathrm{c}, \mathrm{~d})=(\mathrm{c}, \mathrm{~d}) *(\mathrm{a}, \mathrm{~b})
$$

from this we get

$$
(a+(1+3 b) c, b+d)=(c+(1+3 d) a, d+b)
$$

a must be 0,3 or 6 and b must be 0 for the last equation to be provided for every $(c, d) \in\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$. Therefore $C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)=\{(a, 0) \mid a=0,3,6\}$

Corollary. $C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)=\left\langle(3,0)>\right.$ and the order of $C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$ is 3 .
Theorem.Let θ be an automorphism of $\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}$..If θ is central then it has the form

$$
\theta(a, b)=\left(a \rightarrow a^{3 k+1}, a^{3 m} b\right)
$$

where $\mathrm{k}, \mathrm{m} \in \mathbb{Z}_{3}$.
Proof. Let θ be an automorphism of $\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}$. Then it has the form

$$
\begin{equation*}
\theta(\mathrm{a}, \mathrm{~b})=\left(\mathrm{a}^{\mathrm{i}} \mathrm{~b}^{\mathrm{j}}, \mathrm{a}^{\mathrm{pm}} \mathrm{~b}\right) \tag{1}
\end{equation*}
$$

where $\mathrm{i} \in \mathbb{Z}_{3^{2}}, \mathrm{j}, \mathrm{m} \in \mathbb{Z}_{3}$ and $\mathrm{i} \neq 0(\bmod 3)$
If $\theta \in \operatorname{Aut}_{C}\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$ then for all $g=(a, b) \in \mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}, \theta$ satisfy $g^{-1} * \theta(g) \in C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$
By using the operation $*$ rule we get

$$
\mathrm{g}^{-1} * \theta(\mathrm{~g})=\left(\mathrm{i}(\mathrm{a}+3 \mathrm{ab})+\mathrm{j}\left(\mathrm{~b}+3 \mathrm{~b}^{2}\right)-\mathrm{a}, 0\right) .
$$

For $\left(i(a+3 a b)+j\left(b+3 b^{2}\right)-a, 0\right) \in C\left(\mathbb{Z}_{3^{2}} \rtimes_{\phi} \mathbb{Z}_{3}\right)$
$\left(i(a+3 a b)+j\left(b+3 b^{2}\right)-a, 0\right)=0,3,6$
Therefore the conditions $(\mathrm{i}=1, \mathrm{j}=0),(\mathrm{i}=4, \mathrm{j}=0)$ and $(\mathrm{i}=7, \mathrm{j}=0)$ satisfy this equation for all g . We put this conditions at (1) we get the general form of central automorphisms as:
$\theta(a, b)=\left(a \rightarrow a^{3 k+1}, a^{3 m} b\right)$.

References

J. E. AdneyT.Yen, Automorphisms of p-groups, Illinois J. Math. 9(1965), 137-143.
A. R. Jamali and H. Mousavi, On the central automorphism group of finite p-groups, Algebra Coolog. 9(1) (2002), 7-14.
G. Saeden Stahl, J. Laine, G. Behm, On p-groups of low power order, Master Thesis, KTH, (2010).

Author Information

Ozge Oztekin
Department of Mathematics, Gaziantep University Contact e-mail: ozgedzozr@gmail.com

Zeynep Gurbuz

Department of Mathematics, Gaziantep University

[^0]: - This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 - Selection and peer-review under responsibility of the Organizing Committee of the Conference

