

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2018

Volume 2, Pages 288-289

ICRES 2018: International Conference on Research in Education and Science

Central Automorphism Groups for Semidirect Product of p-Groups

Ozge OZTEKIN Gaziantep University

Zeynep GURBUZ Gaziantep University

Abstract: Let $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ be the semi-direct product of \mathbb{Z}_{p^2} and \mathbb{Z}_p with respect to ϕ , (ϕ is homomorphism from \mathbb{Z}_p) to automorphisms group of \mathbb{Z}_{p^2}). In this work, the group $\operatorname{Aut}_{C}(\mathbb{Z}_{3^2}\rtimes_{\phi}\mathbb{Z}_{3})$ of all central automorphisms of $\mathbb{Z}_{3^2}\rtimes_{\phi}\mathbb{Z}_{3}$ is studied and we determine the form of central automorphisms of $\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3$.

Keywords: P-group, Semi-direct product, Central aoutomorphism

Introduction

Let G be a group. By C(G), AutG and Inn(G) we denote the center, the group of all automorphisms and the group of all inner automorphisms of G, respectively. An automorphism θ of G is called central automorphisms if θ commutes with every inner automorphism, or equivalently, if $g^{-1} \theta(g)$ lies in the center of G for all g in G. The central automorphisms form a normal subgroup of Aut(G) and we denote this group with $Aut_{C}(G)$. Also $Aut_{C}(G)$ is the subgroup of Inn(G).

A p-group is a group in which every element has finite order, and the order of every element is a power of prime number p. The term p-group is typically used for a finite p-group, which is equivalent to a group of prime power order.

In literature, there are important studies about central automorphisms of p-groups [1], [2]. In [1] Adney and Yen has shown that if G is a finite purely non <u>abelian</u> group then $|\operatorname{Aut}_C(G)| = |\operatorname{Hom}(G/G'), Z(G)|$. The automorphisms of direct and semidirect product of p-groups was given by Stahl in [3].

In this work our goal is to determine the central automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ where p=3 and ϕ is homomorphism from \mathbb{Z}_p to automorphisms group of \mathbb{Z}_{p^2} .

Preliminaries

Definition. Let H and K be non-trivial finite groups and $\phi: K \rightarrow Aut(H)$ be a homomorphism. We define the operation \rtimes_{ϕ} as the following: Let $H \rtimes_{\phi} K$ be the set {(h,k):h \in H, k \in K} on which it acts an operation * as $(h_1,]$

$$k_1$$
 * (h_2 , k_2) = ($h_1 \cdot \phi(k_1)(h_2)$, ($k_1 \cdot k_2$

We define $G \triangleq H \rtimes_{\phi} K$ as the semi-direct product of H and K with respect to ϕ .

Definition. An automorphism θ of G is called central automorphism if θ commutes with every inner automorphism, or equivalently, if $g^{-1} \theta(g)$ lies in the C(G). The central automorphisms form a normal subgroup of Aut(G).

⁻ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁻ Selection and peer-review under responsibility of the Organizing Committee of the Conference

Main Results

Theorem. Let φ be an automorphism of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ (p is odd number) where $\phi: \mathbb{Z}_p \to \operatorname{Aut}(\mathbb{Z}_{p^2})$ and $\phi(a)=1+pa$ then φ is defined by $\varphi(a,b)=(a^ib^j,a^{pm}b)$

where $i \in \mathbb{Z}_{p^2}$, $j,m \in \mathbb{Z}_p$ and $i \not\cong 0 \pmod{p}$

Proof. REF.[3]

Theorem. $|Aut(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)|=p^3(p-1).$

Proof. REF.[3]

For determining the central automorphisms of $\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3$, first we find the $C(\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3)$.

Lemma. $C(\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3) = \{(0,0), (3,0), (6,0)\}.$

Proof. If $(a,b) \in C(\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3)$ then for every $(c,d) \in (\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3,$ (a,b)*(c,d)=(c,d)*(a,b)

from this we get

(a+(1+3b)c,b+d)=(c+(1+3d)a,d+b).

a must be 0,3 or 6 and b must be 0 for the last equation to be provided for every $(c,d)\in (\mathbb{Z}_{3^2}\rtimes_{\phi}\mathbb{Z}_3)$. Therefore $C(\mathbb{Z}_{3^2}\rtimes_{\phi}\mathbb{Z}_3)=\{(a,0)|a=0,3,6\}$

Corollary. C($\mathbb{Z}_{3^2} \Join_{\phi} \mathbb{Z}_3$)=<(3,0)> and the order of C($\mathbb{Z}_{3^2} \Join_{\phi} \mathbb{Z}_3$) is 3.

Theorem.Let θ be an automorphism of $\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_{3}$..If θ is central then it has the form $\theta(a,b)=(a \rightarrow a^{3k+1}, a^{3m}b)$

where $k,m\in\mathbb{Z}_3$.

Proof. Let θ be an automorphism of $\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3$. Then it has the form $\theta(a,b) = (a^i b^j, a^{pm} b)$ (1) where $i \in \mathbb{Z}_{3^2}$, $j,m \in \mathbb{Z}_3$ and $i \not\cong 0 \pmod{3}$ If $\theta \in Aut_C(\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3)$ then for all $g=(a,b) \in \mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3$, θ satisfy $g^{-1} * \theta(g) \in C(\mathbb{Z}_{3^2} \rtimes_{\phi} \mathbb{Z}_3)$ By using the operation * rule we get

$$^{-1}*\theta(g) = (i(a+3ab)+j(b+3b^2)-a,0).$$

For $(i(a+3ab)+j(b+3b^2)-a,0) \in C(\mathbb{Z}_{3^3} \rtimes_{\phi} \mathbb{Z}_3)$ $(i(a+3ab)+j(b+3b^2)-a,0)=0,3,6$ Therefore the conditions (i=1,j=0), (i=4,j=0) and (i=7,j=0) satisfy this equation for all g. We put this conditions at (1) we get the general form of central automorphisms as: $\theta(a,b)=(a \rightarrow a^{3k+1},a^{3m}b)$.

References

- J. E. AdneyT.Yen, Automorphisms of p-groups, Illinois J. Math. 9(1965), 137-143.
- A. R. Jamali and H. Mousavi, On the central automorphism group of finite p-groups, Algebra Coolog. 9(1) (2002), 7-14.
- G. Saeden Stahl, J. Laine, G. Behm, On p-groups of low power order, Master Thesis, KTH, (2010).

Author Information	
Ozge Oztekin	Zeynep Gurbuz
Department of Mathematics, Gaziantep University	Department of Mathematics, Gaziantep University
Contact e-mail: ozgedzozr@gmail.com	