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Abstract: Nature-inspired Algorithms are getting more and more popular in the past few decades owing to 

their amazing successes in solving a number of real-world optimization problems in different spheres of human 

endeavour ranging from the financial, medical and industrial to educational applications etc. Nature-inspired 

Algorithms (NAs) simulate the harmonious cooperation and competition in nature resulting in amazing 

solutions to seemingly impossible human problems. This paper examines ten nature-inspired techniques and 

their applications to different fields of human endeavour and concludes that the Nature-inspired Algorithms has 

enormous promise in the quest for greater human development through the harnessing of NAs’ potentials for 

speeding-up of industrial processes, minimization of time, financial and computer resources required to obtain 

solutions to complex optimization problems etc. However, the study points out certain areas of concern in the 

development of the NAs, namely, the apparent lack of clear mathematical cum theoretical proofs of convergence 

of these algorithms, manual tuning of parameters and the recurring issue of experimenting with small-scale 

problems vi-a-vis the large and complex real-life problems.  

 

Keywords:Nature-inspired algorithms, Metaheuristics, Trajectory-based, Population-based, Deterministic 

algorithms 

 

 

Introduction 

 

There has been an upsurge in the number of research studies in Artificial Intelligence and specifically in Nature-

inspired Algorithms (NAs) in the past few decades. Such extensive studies have led to the design and 

development of several optimization algorithms such as the Great Deluge (Dueck, 1993), Hill Climbing (Selman 

& Gomes, 2006), Simulated Annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), Particle Swarm Optimization 

(Kunna, Kadir, Jaber, & Odili, 2015), Artificial Bee Colony (Karaboga & Aslan, 2015), Bee Colony 

Optimization (Teodorović & Dell’Orco, 2005), Firefly Optimization (X.-S. Yang, 2009a). Before the birth of 

NAs, the deterministic algorithms such as the finite difference (Forsythe & Wasow, 1960), Raphson-Newton 

(Pletcher, Minkowycz, Sparrow, & Schneider, 1988), Nelder–Mead Simplex (Lagarias, Reeds, Wright, & 

Wright, 1998), Hook-Jeeves optimization methods (Aghamohammadi & Pourgholi, 2008) etc. were the 

dominant optimization algorithms for scientific investigations. The application areas of the NAs range from 

logistics (Vassiliadis & Dounias, 2009), image processing (Cuevas & Sossa, 2013), signature verification 

(Selman & Gomes, 2006), engineering designs (X.-S. Yang, 2005), financial applications (Brabazon, 2008), 

protein folding problems (Burke, Bykov, & Hirst, 2007) to business optimization  (X.-S. Yang, Deb, & Fong, 

2011) etc. The successful applications of NAs to these non-lineal and complex optimization problems far above 

the performance of the deterministic models in terms of computational time used to achieve results and their 
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capacity to obtain optimal or near-optimal solutions to complex optimization problems is a motivation for 

further research and this study in particular.  

 

The success of NAs over the deterministic algorithms is as a result of the methodology applied by NAs in search 

for solutions to complex multimodal problems (X.-S. Yang, 2009b). Generally, NAs apply randomization 

mechanism which enable them construct solutions iteratively over a number of construction steps. Moreover, 

they are relatively simple algorithms in terms of their fitness updates and implementation strategies. For these 

reasons, the NAs are user-friendly. This recommends them to wide applicability by professionals in diverse 

research and application fields. Furthermore, NAs are general-purpose algorithms that can be applied to solve 

different kinds of problems. To achieve this, the primary requirement is the proper tuning of parameters to suit a 

particular problem at hand. This cannot be said of deterministic algorithms that are rather specialized, though 

capable of obtaining the optimal solutions. 

 

The rest of this paper is organised thus: section two attempts a classification of NAs, highlighting the working 

of some of these algorithms and their areas of successful applications, strengths and weaknesses; section three 

discusses the findings of this review; section four draws conclusion on the study and section five acknowledges 

support for the study. 

 

 

Classification of Nature-Inspired Metaheurıstic Algorithms 
 

A broad way to classify optimization algorithms is to identify them as either Stochastic or Deterministic, in 

terms of their solution dynamics (Venter, 2010). The deterministic algorithms were designed in such a way that 

they are able to obtain the optimal solution but their stochastic counterparts cannot guarantee the optimal results 

but could solve larger and more complex problems within a relatively short time.  A popular general-purpose 

deterministic algorithm, for instance, is the DIRECT algorithm which makes use of Lipschitzian technique to 

identify promising sub-regions in the search space. (Olafsson, 2006). For the purpose of this paper, however, 

our interest is the stochastic optimization techniques which are usually nature-inspired. Nature inspired 

Algorithms (NAs) simulate nature’s way of solving its own problems and this has opened a new vista in 

computer science. 

 

Furthermore, NAs can be classified as Bio-inspired, Environment-based or Physics/Chemistry-based (Binitha & 

Sathya, 2012). As their name implies, Bio-inspired algorithms (BAs) are inspired by the biological processes of 

nature such as the behavior of plants and animals, evolutionary trends in nature and ecology. The Evolutionary 

algorithms arm of BAs, on the one hand, is broadly inspired by the Darwin theory of Evolution (Crawford & 

Krebs, 2013). Examples of the algorithms in this category are the Genetic Algorithm (Whitley, 1994), 

Evolutionary Strategies (Tyrrell, Hollingworth, & Smith, 2001), Genetic Programming (Banzhaf, Nordin, 

Keller, & Francone, 1998) etc. Another sub class of BAs is the Swarm-based algorithms which are inspired by 

the cooperative or competitive behavior of animals in our environment. Examples of the Swarm-based 

algorithms are the Particle Swarm Optimization (Kennedy, 2010), Ant Colony Optimization (Dorigo, Birattari, 

& Stützle, 2006) etc. The last subclass of BAs is the Ecology-based algorithms which are inspired by the natural 

ecosystem. Examples are the Biogeography-based Optimization (Simon, 2008), Invasive Weed Optimization 

(Mehrabian & Lucas, 2006), Symbiosis algorithms (Binitha & Sathya, 2012) etc.  At this juncture, let us attempt 

taxonomy of the Nature-inspired algorithms. This effort is by no means exhaustive but will give a clearer picture 

of these optimization techniques (Please see Figure 1).  
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Figure 1. Taxonomy of algorithms 

 

CWN=Computing with Nature    ACS= Ant Colony System 

FINT-DIFF =Finite Difference    HJ= Hooke-Jeeves pattern 

GA= Genetic Algorithm     NM= Nelder-Mead simplex 

N.R = Newton-Raphson method     ES= Evolution Strategies   

CLS= Classifier Systems     BBO= Biogeography-Based Optimization  

GP= Genetic Programming    FA= Firefly Algorithm 

LCA= League Championship Algorithm   PFA= Paddy Field Algorithm 

DSA= Differential Search Algorithm   BCO= Bee Colony Optimization 

ICA= Imperialist Competitive Algorithm   AWC= Artificial Weed Colony 

GE= Grammatical Evolution     BFA=Bacteria Foraging Algorithm 

GS= Gravitational Search     IWD= Intelligent Water Drop 

BH= Black Hole      AIS=   Artificial Immune System 

SO= Spiral Optimization      ACO= Ant Colony Optimization 

SA=   Simulated Annealing    PSO= Particle Swarm Optimization 

HS= Harmony Search     ABC= Artificial Bee Colony 

ABO= African Buffalo Optimization   PS20= 2-Level PSO 

SEO= Search Engine Optimization       

  

Another way to classify Nature-inspired stochastic algorithms could be to categorize them as either population-

based or trajectory-based (X.-S. Yang, 2009b). Population-based optimization techniques solve problems using 

a number of search agents which also result in obtaining a number of solutions in a particular iteration. Such 

population-based search algorithms are usually designed in such a way as to permit elitism which enables the 

algorithms to select the best solution amongst the several generated solutions. This way, these algorithms build 

solutions incrementally (Dorigo, Caro, & Gambardella, 1999). Population-based algorithms are sometimes, 

called exploration-based methods since they are exceptionally good in the diversification of the search space. 

An example of this is the GA which uses a set of strings (Whitley, 1994). So also is Particle Swarm 

Optimization that uses a number of agents or particles (Kennedy, 2010). On the other hand, Simulated 

Annealing, Great Deluge and Hill Climbing, Tabu Search etc. are trajectory-based and use a single agent that 

moves through the search space in a zigzag fashion as the iterations continue (Kennedy, 2010; Mirjalili, 

Mirjalili, & Lewis, 2014). In trajectory-based methods, the initial solution is, usually, obtained randomly and 

then improved upon iteratively. The difference between the Population-based and the Trajectory-based 

metaheuristics is primarily in the number of temporal solutions applied in an iteration of the search. While the 
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population-based methods use a number of agents and therefore, solutions, the Trajectory-based methods use a 

single search agent and, as such, generate a single solution per iteration.  

  

  

Trajectory-based Algorithms 

 

Trajectory-based algorithms start with a single solution and as the particular algorithm progresses; such a single 

solution is improved upon and replaced by the current solution. Some experts call them exploitation-based 

algorithms since they usually emphasize intensification of the search space (Manjarres et al., 2013).  The search 

agent simply moves through the search space tracing the path to the optimal solution.  This random movement 

through the solution space within the neighborhood of the current solution to another continues until the 

stopping criterion is reached which could be a maximum number of iteration or the satisfaction of some 

predefined stoppage criteria. The basic trajectory pseudocode has this format as in Fig.2: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Trajectory-based algorithms pseudocode 

 

To help improve the efficiency in terms of time and quality of solutions of the Trajectory-based methods, 

experts introduced parallelism. The three popular parallel models in literature are the parallel multi-start, the 

parallel evaluation and parallel moves models (Alba, Talbi, Luque, & Melab, 2005) 

 

• Parallel multi-start model: The parallel multi-start models, simply involve launching a number of trajectory-

based searches with the aim of achieving robust solutions. These multi-start searches could work cooperatively 

or independently. Also, they could start from a particular point or from different points. They could use a similar 

or totally different parameters for their search (Mezmaz, Melab, & Talbi, 2006). A good example is the Kriging 

optimization method (Peri & Tinti, 2012) 

 

• Parallel moves model:  This uses a master-slave architecture that complies with the particular heuristic 

technique conducting the search. At the initial stage of the search, the master distributes the nodes among the 

slaves and at the expiration of the search; the slaves return their results to the master. This model basically 

speeds up the search as it is an imitation of population-based search, but this time under the harmonization of a 

master (Halambi et al., 2008). An example is the Panmictic Simulated Annealing (PSA) (Domínguez & Alba, 

2011). 

 

• Parallel Move acceleration model:  This model evaluates each parallel move in a centralized place before 

subsequent moves are allowed. Some versions of this model permit such evaluation to be parallelized. 

Generally, parallelism has the disadvantage of low speed owing to much use of computer resources (Alba et al., 

2005). Ethane Algorithm employs this technique. A major disadvantage of employing parallelism is the issue of 

huge computational cost that arises with such usage. Moreover, the application of parallelism is not a guarantee 

that the optimal solution will be achieved. (Domínguez & Alba, 2011)     

It is pertinent to note that a number of trajectory-based search algorithms are available in literature. Some of the 

popular ones are the Simulated Annealing, Hill Climbing, Great Deluge algorithms. 

 

 

Hill Climbing Algorithm 

 

Hill Climbing (HC) searches for solution to problems in an iterative manner by first selecting an arbitrary 

solution and then tries to obtain better results/solutions by altering a single solution element (Hoffmann, 2010). 

If by this alteration, the new solution is better than then the previous, another alteration is made to another 

element of the newly-found solution until no improvement is possible on the solution. If, however, any 

alteration results in a poorer solution, then another alteration is made in the HC’s efforts to obtain optimal 

1. Generate initial solution (s(0))  

2. t := 0  

3. While not Termination  (s(t)), do 

4. Explore neighborhood s'(t) := SelectMove(s(t));  

5. If  Move(s'(t)) accepted,  then 

6. s(t) := ApplyMove(s'(t)) 

7. End if 

8. t := t+1 

9. End While 
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solution.  The HC is different from similar algorithms like the Gradient Descent in that the Gradient Descent 

adjusts all the values of the present solution but the HC adjusts just one value/element of the present solution in 

the next iteration (Perkins, Lacker, & Theiler, 2003). The Hill Climbing pseudocode is presented in Figure 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Hill climbing pseudocode 

 

In practical terms, HC is a kind of Depth-First search. However, unlike the Depth-First search method which 

outrightly rejects or accepts a solution, the HC uses a feedback mechanism which approximates the closeness or 

otherwise of the newly-found solution to determine the next direction of the search. Hill Climbing has been 

successfully applied to configure application servers (Xi, Liu, Raghavachari, Xia, & Zhang, 2004), Travelling 

Salesman’s Problem (Selman & Gomes, 2006), signature verification (Galbally, Fierrez, & Ortega-Garcia, 

2007) etc. 

 

The HC has advantage over some other algorithms in that it uses very little computer resources in its search 

since it stores only the present solution. Moreover, HC is capable of returning fairly better results than other 

algorithms in a situation of unexpected interruption to the algorithms execution. Nevertheless, in addition to the 

problem of low speed in instances involving ridges, alleys or plateau, HC is prone to falling into local minima in 

non-convex functions. 

 

 

Simulated Annealing 

 

Simulated Annealing (SA) which models the heating and cooling processes of materials in metallurgical 

engineering was developed by Kirkpatrick, Gelatt and Vecchi (Kirkpatrick et al., 1983). The temperature is 

lowered gradually to ensure that the cooling process minimizes the system energy thereby making the metals 

very strong. In the cooling process, the algorithm starts with a random search at high temperature which 

becomes greedy descent until the temperature reaches zero. Randomness attribute helps Simulated Annealing 

escape local optima since greedy descent is prone to falling into local minima. Better results are usually 

obtained in lower temperatures than in higher ones.  

 

In its search for solutions, SA assigns random values to random variables, at each move, then, it evaluates the 

acceptance probability to ascertain whether it is an improvement on the objective function (and that it does not 

increase the conflict); which is for a minimization problem, a lower objective value. However, sometimes the 

SA, with certain probability, accepts points that raise the objective function and in this way avoids being trapped 

in local minima, thus, ensuring global exploration. The acceptance probability ap is calculated using: 

 

     [ 
  

   
]
          (1) 

Here,     represents the change energy,     is the Boltzmann's constant, and   is the Temperature. Similarly, 

the change in the objective function    is directly related to the change in the Energy     : 

 

                                            (2) 

1. PresentNode = startNode; 

2. While (not termination) do 

3.         For j = Neighbors of PresentNode) 

4.        NextEval = -INF 

5.        NextNode = NULL 

6.             For all k in j  

7.             If (EVAL(x) > nextEval) 

8.            NextNode = k 

9.            End if 

10.           End for 

11.      End for 

12.     NextEval = EVAL (k) 

13.     If nextEval <= EVAL (PresentNode) 

14.    End if 

15. End While 

16. //Return present node if no better neighbors exist 

17. Return PresentNode 

18. PresentNode = nextNode; 
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Here γ is a positive real constant. For effectiveness, an Annealing schedule which is sometimes linear and at 

other times geometric is chosen to systematically reduce the temperature as the algorithm progresses. The 

decrease of the temperature enables the SA to minimize the search scope and ensure early convergence.  

SA has been applied to several problems, such as the Quadratic Assignment Problem, Job Shop Scheduling, 

Travelling Salesman’s Problems, N-Queens problem, Artificial Neural Networks Training  etc. (Ledesma, 

Aviña, & Sanchez, 2008). The pseudocode pf the SA is presented in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SA pseudocode 

 

One of the biggest strengths of SA is her ability to escape being trapped in local minima with her tacit 

manipulation of the cooling temperature. However, SA is not very effective in a smooth energy landscape or in 

instances with few local minima. Moreover, SA has the problem of delay in arriving at quality solutions 

(Kumbharana & Pandey, 2013). This may be due to engaging in several evaluations of the cost function in each 

iteration. 

 

 

The Great Deluge 

 

The Great Deluge (GD) which was developed by G. Dueck is inspired by the activities of a person moving in 

different directions upwards a hill in times of a deluge in an attempt to avoid his/her feet being wet as the water 

level rises (Dueck, 1993). GD begins by assigning an initial value which is the same as the initial objective 

function to the parameter ‘Level’ and as the search progresses, this value is iteratively reduced. The algorithm 

accepts solutions that has lower (or at least, equivalent) values of the objective function than the present 

‘Level’(Mcmullan, 2007). A later version of GD accepts all downhill moves, thus, hybridizing GD with Hill 

Climbing to ensure greater efficiency. In implementing the GD, usually, an approximate solution J of the 

optimum solution is selected. Next a random value of badness K is chosen and used to evaluate the desirability 

or otherwise of the approximate solution. 

  

The GD pseudocode is presented in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Let x = x0 

2. For y = 0 to ymax :  

3.     T ← temperature(ky∕ ymax) 

4.     Select a neighbor randomly, xnew ← neighbor(x) 

5.     If P(E(s), E(xnew), T) ≥ random(0, 1), move to the new state 

6.    End if 

7. End for 

8. x ← xnew 

9. Output: the final state x 
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Figure 5. Great deluge pseudocode 

 

Please note that the higher the value of badness evaluation, the more undesirable solution J is. Another 

parameter tolerance is used to evaluate a number of factors leading to the choice of a new approximate solution 

J’ that is a neighbor of J. The badness of J’ is then calculated and the result is compared with parameter 

tolerance. If the output is better than tolerance, the GD is restarted recursively: 

 

                        (3) 

 

However, if the output of J’ is worse than tolerance, another neighbor J’’ is selected for J and the process is 

then repeated until all the neighbors of J produce better results than tolerance, then the GD is terminated and J is 

then output as the solution. 

 

So far, the application areas of the GD include examination, sports and course timetabling, patient admission 

problems (Kifah & Abdullah, 2015), protein structure prediction (Burke et al., 2007), facility layout problems 

(Nahas, Kadi, & El Fath, 2010) etc. 

 

A close look at GD reveals that it is different from Hill-Climbing and Simulated Annealing because it accepts a 

candidate solution from the neighborhood. The GD permits the definition of the characteristics, for instance, 

processing time and processing region of the expected solution, of a search process in advance. These help to 

make GD much more efficient than some other algorithms such as Hill Climbing and Simulated Annealing 

(Burke, Bykov, Newall, & Petrovic, 2003) . Nonetheless, GD has the disadvantage of falling into a local minima 

and this has led to the development of some variants of the algorithm (Mcmullan, 2007).  

  

 

Population-based Metaheuristics 

 

Generally, population-based methods utilize a set of decision vectors which is usually denoted by: 

                                             (4) 

1. SolutGD ←Sol  

2. SolutOptimalGD ←Sol  

3. f (SolutGD) ←f(Sol)  

4. f (SolutOptimalGD)←f(Sol)  

5. Determine best rate of final solution, BestRate  

6. Determine number of iterations, NumOfIterGD  

7. Determine initial level: level ←f (SolutGD) 

8. Determine decreasing rate ∆B = ((f (SolutGD)–BestRate)/ (NumOfIterGD) 

9. Determine iteration ←0  

10. Determine not_improving_counter ←0, not_improving_ length_GDA  

11.        Do while (iteration < NumOfIterGD)  

12.       Apply neighborhood structure Ni where i ∈ {1... K} on SolutGD, TempSolutGDi  

13.       Evaluate cost function f (TempSolGDi)  

14.       Seek the best solution among TempSolutGDi where i ∈ {1... K} call new solution SolutGD*  

15.       If (f (SolutGD*) < f (SolOptimalGD)) SolutGD ←SolutGD*  

16.            SolutOptimalGD ←SolutGD*  

17.       End if 

18.       If not_improving_counter ←0  

19.            Level = level - B  

20.            Else if (f (SolutGD*) ≤Level) SolutGD ←SolutGD*  

21.       End if 

22.       If not_improving_counter ←0 

23.       Else not_improving_counter++  

24.      End if 

25.      If (not_improving_counter == not_improving_length_GDA)  

26.      Level= level + random (0, 3)  

27.     Increase iteration by 1  

28. End if 

29. End do  

30. Return SolutOptimalGD  



International Conference on Research in Education and Science (ICRES) April 28-May1, 2018, Marmaris/Turkey 

383 

 

where 

                                                         (5) 

 

  represents the size of the population and  , the number of design variables in each decision vector (i.e. 

individuals in a population). Basically, population-based metaheuristics share a common structure made up of 

four main parts, namely, the main algorithm; an extension to deal with the constrained optimization problems; 

another extension to retain promising solutions and a part to halt the algorithm (stopping criteria). In most cases, 

the main algorithm has component tracks information among the population (crossover), another component 

that pushes the population forward for further exploration (sometimes called mutation in some methods) and the 

part that computes the best solution in each iteration (selection) (Chau, Kwong, Diu, & Fahrner, 1997). Based 

on the foregoing discussion, most population-based metaheuristics have a format similar to Figure 6: 

 

 

 

 

 

 

 

 

 

 

Figure 6. Population-based algorithms pseudocode 

 

Most population-based techniques exploit some previous knowledge of the solution space and use this in the 

initialization phase to move the search agents towards the feasible region. In situations where this information is 

absent, the decision vectors are distributed uniformly within the search space. Examples of the population-based 

algorithms are the Genetic Algorithm, Firefly Algorithm, the African Buffalo Optimization algorithm etc.  

 

 

Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO), which was developed by Kennedy and Eberhart is a simulation of the 

flocking of birds and schooling of fishes in search of food. PSO is a population-based, stochastic, global 

optimization technique specifically designed to be an easy-to-implement yet effective search optimization 

method (Kefi, Rokbani, Krömer, & Alimi, 2015). Since its development in 1995, PSO has been a very 

successful algorithm which has been applied to a wide range of application areas. The PSO models the velocity 

and positions of particles in their search for food. The position of each particles in PSO represents a solution to 

the problem. The algorithm makes use of five major parameters: the particles’ velocity, their present position, 

the global best particles’ position, the individual particle’s knowledge of its previous best position achieved and 

the best position found by its neighbor. As the algorithm progresses, the particles update their position and 

velocity with each iteration until it reaches termination condition. Similarly, the PSO maintains an information 

repository that keeps track of the best achieved objective function values for each particle involved in the search 

process (Kefi et al., 2015) 

 

PSO models the behavior of, for example, a swarm of birds searching for a food source. The entire particles 

converge on the best solution through the use of the information gathered by each particle, the neighboring 

particle as well as that obtained from the entire flock. The algorithm starts by initializing the particles in the 

search space, followed by updating the position and velocity of each particle in each iteration. Basically, the 

action steps in PSO algorithm are as follows:  

 

1.  

2. Initialize population 

3. Evaluate the objective function 

4. Repeat 

5. Evaluate the population quality 

6. Apply the variation operator 

7. Evaluate the objective function 

8. Until termination condition 
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Figure 7. PSO pseudocode 

 

So far, PSO has been used successfully to address several  problems ranging from complex nonlinear function 

optimization, communications and control applications, task assignment (Shi & Eberhart, 1999), antenna design, 

combinatorial optimization problems, biomedical and pharmaceutical applications, fault diagnosis etc. (Poli, 

2007).  

 

A critical assessment of the PSO algorithm, however, reveals that there are about 30 different variants of PSO 

presently (Langeveld & Engelbrecht, 2011). These great number of variants were developed in response to the 

observed weaknesses of the algorithm. Of this number, the classical PSO algorithm is relatively simple to 

implement and uses relatively fewer parameters than in some algorithms like the ACO (Pereira, 2011). 

 

Furthermore, PSO is rather more efficient in its use of memory than the Evolutionary algorithms like the GA. In 

addition, PSO has the capacity for broad diversity in its search space since all the particles use the information 

obtained by the best particles either in the neighborhood or the overall best in each iteration to improve their 

positions and speed. This search mechanism of the PSO is different from that of GA, for example, because in 

the GA, worse solutions are discarded and the population only concentrates on the fittest individuals.  It should 

be emphasized, nonetheless, that the PSO shares some similarities with Evolutionary algorithms like the Genetic 

Programming (GP), Evolutionary Strategies (ES) Evolutionary Programming (EP) and Genetic Algorithm (GA) 

through the initialization of solutions and the update of generations. Even though the PSO does not use 

evolution operators like crossover, mutation, recombination, inversion and selection, the particles in PSO are 

simply attracted by the best in the neighborhood or the global best as the case may be. 

 

 In all, PSO can be said to be an efficient and effective algorithm in searching continuous functions and in 

multimodal search environments. It has been successfully applied to solve the Travelling Salesman’s Problems, 

PID tuning of Automatic Voltage Regulators, global optimization problems, computer networking problems, 

robotic applications, scheduling, signal processing (Odili & Kahar, 2016) etc. However, PSO uses several 

parameters such as the constriction factor, inertia weight, random numbers, social factors, neighborhood best, 

personal best, global best etc. and this affects the algorithm’s speed and management of computer resources 

(Tanweer, Suresh, & Sundararajan, 2015). 

 

 

Ant Colony Optimization  

 

The Ant Colony Optimization (ACO) is one of the most popular metaheuristic algorithms in literature. The 

ACO algorithm designed by Marco Dorigo and Di Caro in 1999 as a modification of the Ant System by Marco 

Dorigo and Ant Colony System by Dorigo and Gambardella (Anwar, Salama, & Abdelbar, 2015). The ACO is a 

simulation of the random movements of ants in search of food. Once the ants discover a food source is, they 

pick particles of the food and on their way back to their nest, usually following a shorter route, deposits some 

amount of pheromones as a way of informing other ants of their discovery. As the neighboring ants receive the 

information by perceiving the scent of the pheromone, they will likely join the successful ant in the harvest of 

the food source. As these ants locate the food source, they, in turn, carry some fragments of the food and on 

their way back to the nest, drop pheromones as they further optimize the route of the initial ant. This process 

increases the pheromone concentration on the favorite ‘shortest’ route(s) and in that process attract other ants. 

1. Initialize particle 

2. Do  (Until termination) 

3.        For individual particle 

4.       Calculate fitness value 

5.        If  fitness value is better than its overall best fitness value (pBest) since inception 

6.              Record the current value as its new pBest 

7.       End if 

8.      Select the particle that has the best fitness value in the swarm as the gBest 

9.      End for 

10.      For individual particle 

11.          Determine the individual particle’s velocity using velocity equation  

12.         Update the individual particle’s position using position equation until termination condition 

13.      End for 

14. End do 

15. Output the best result 
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This harvest cycle continues and within a short while, the entire colony of ants are on the optimized route 

harvesting the food source to the safety of their nests. With time, changes are that the food source is either 

partially or totally exhausted, the pheromone concentration diminishes as the discouraged ants will no more 

drop pheromones. This serves as negative reinforcement as the route loses its attraction due to pheromone 

evaporation. This situation leads the ants to explore other areas (Wu, Xin, & Zhang, 2015).  

The ACO basically is the modelling and simulation of ants’ foraging behavior, brood sorting, nest building and 

self-assembling. The Algorithm has three main subroutines: ConstructAntSolutions, Pheromone Update and 

DeamonActions.  

 

(i) ConstructAntSolutions: This subroutine constructs the solution by stimulating the movement of 

artificial ants through adjacent states of a problem according to a transition rule and, thus, builds a 

solution iteratively. 

(ii) Pheromone Update: This subroutine performs pheromone update trails either through pheromone 

reinforcement or evaporation. The is achieved in two ways depending on the variant of the ACO 

one is working with: the pheromone update subroutine could be done at the end of each iteration or 

when the ants individually completes a solution.  

(iii) DeamonActions: This subroutine is  optional depending on the problem being solved.  It involves 

increasing the pheromone levels to select promising edges.(Kumbharana & Pandey, 2013)  

 

In general,  the ACO algorithm uses the following steps (Liu, Zhu, Ma, Zhang, & Xu, 2015): 

1. Initialize pheromone values τ for all the edges in the graph. 

2. For a start, all the edges should have equal amount of pheromone unless there exist some 

heuristic information favoring some edges that may lead to speedier convergence. 

3.       Construct a solution for each ant, x= (1,2,...,N) 

4.      Update the pheromone values for each edge depending on the quality of solution. 

5.  End for 

6. Go to Step 2 until stopping criterion is reached. 

7. Output the best result 

Figure 8. ACO pseudocode 

 

So far, the ACO has proven to be effective in solving routing problems in computer and telecommunication 

networks, Sequential Ordering Problems, Travelling Salesman’s Problems (Odili, 2013), Resource Constraint 

Project Scheduling, Subset problems, Machine Learning Problems, Vehicle routing, Proportional, Integral and 

Derivative parameters-tuning of Automatic Voltage Regulators, Stochastic optimization problems  (Stützle, 

López‐Ibáñez, & Dorigo, 2011) etc. 

 

One of the strengths of the ACO is its flexibility in being hybridized with other heuristics or metaheuristics in a 

quest for greater efficiency. Moreover, it is robust in search situations where the graph is prone to dynamic 

changes. Also ACO performs well in distributed computing environments. However, it has the weakness of 

easily falling into premature convergence because its pheromone update is according to the present best path. 

Again, it uses several parameters that require proper tuning. Such parameters as pheromone quantity, 

pheromone update rule, evaporation rate, pheromone reinforcement rate etc and this affects the speed of the 

algorithm. (Gutjahr, 2003; Kumbharana & Pandey, 2013) . 

 

 

Artificial Bee Colony Algorithm 

 

The Artificial Bee Colony (ABC) which was inspired by the behavior of natural honey bee swarm was 

developed by Karaboga and Basturk in 2009 (Karaboga & Akay, 2009). The ABC categorizes bees into three, 

namely, scout bees, onlooker bees and employed bees. Scout bees are those that fly around the search place 

seeking solutions (food source). Similarly, onlooker bees wait in the nest expecting the report of the scout bees.  

On the other hand, employed bees refer to those bees that joins in the food source exploitation after watching the 

waggle dance of the scout bees. This classification is dynamic in that a scout bee could transform into an 

employed bee once it (the same scout bee) is involved in harvesting the food source and an onlooker bee at 

another stage. In this algorithm, the food source represents a solution to the optimization problem. The volume 

of nectar in a food source represents the quality (fitness) of the solution (Nozohour-leilabady & 

Fazelabdolabadi, 2015).Whenever the employed bees bring some nectar to the hive, they have three alternatives: 

return to get more nectar, accompany other dancing bee to a new site or simply stay back in the hive. The bees’ 

decision is informed by a number of factors ranging from the quality and quantity of the available nectar at the 

food source, the distance of the food source to the hive and the number of employed bees harvesting the nectar 
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at that food source. The global search mechanism of the ABC depends of the random search capacity of the 

scout bees while the exploitation capacity of the algorithm is based on the activities of the employed and 

onlooker bees. This bee behavior can be replicated in some real life problems, such as in transportation and 

business applications (Pham et al., 2011). 

 

In general, the pseudo code of the classical ABC (Nozohour-leilabady & Fazelabdolabadi, 2015) is: 

1. (Initialize population with random solutions. 

2. Evaluate fitness of the individual bees in the population. 

3. While (stopping criterion is not reached), form new population. 

4.            Choose site(s) for the next neighborhood search. 

5.             Select bees for chosen locations to be searched ensuring that more bees are allocated to the 

best   

           locations & evaluate fitness.               

6.           Choose the fittest bee from each patch for the next best harvesting site(s). 

7.          Assign remaining bees to search randomly and evaluate their fitness. 

8. End While. 

Figure 9. ABC pseudo-code 

 

The ABC has been successfully applied to solving a number of problems such as Travelling Salesman’s 

Problems, accident diagnosis, reactive power optimization problems, radial distribution (Akay & Karaboga, 

2015), training neural networks,  wireless sensor networks, signal, image and video processing (Karaboga, 

Gorkemli, Ozturk, & Karaboga, 2014) etc. 

 

Previous studies on the ABC has shown that it is very effective in feed-forward artificial neural networks 

training, in addition to the algorithm being very efficient in multidimensional search environments due to its 

capacity to get out of a local minimum with ease. However, studies on the Artificial Bee Colony are still not 

widespread (Karaboga, Akay, & Ozturk, 2007; Karaboga & Basturk, 2007; Karaboga & Ozturk, 2009) and there 

are several parameters to appropriately tune in order to get good results. Generally, the ABC is a slow 

algorithm. 

 

 

African Buffalo Optimization 

 

The African Buffalo Optimization algorithm was designed by Odili and Kahar in 2015 (Odili & Kahar, 2015a). 

It drew its inspiration from the random movement of the African buffalos deploying principally two distinct 

sounds (/waaa/ and /maaa/) to move around the diverse African landscape in search of grazing pastures (Odili & 

Kahar, 2015b). This algorithm harnesses the three main characteristics of the African buffalos that are 

responsible for their successful migration. These are their extensive memory represented by   
  and   

  in the 

algorithm; extensive communication represented by     –     and their personal intelligence, represented by 

         . The ABO algorithm is presented in Figure 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. ABO algorithm 

 

1. Begin 

2.  Initialize the buffalos randomly within the search space; 

3.      While (until termination), 

4.           For j=1: n (n denotes the population), 

5.              Ascertain the buffalos’ exploitation location: 

6.               mk′ = mk + lp1(bg – wk) + lp2(bpk  − wk ) 

7.           Here wk =exploration move; where mk = exploitation move; bg = best buffalo with 

the best fitness;                 lp1 and lp2 represents the learning parameters;  bpk , best 

location of buffalo k 

8.             Update the exploration fitness of buffalos: 

9.               wk′ =(wk+ mk) λ 

10.            Ascertain whether the bg is updating? Yes, go to 11. If No in 10 iterations, return 

to 2 

11.            End for 

12..    End while 

13. Post best solution. 

14. End 
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The algorithm has not enjoyed wide application since it was first published. Some of the application areas 

include Mobile Ad-hoc Network (Hassan & Muniyandi, 2017), asymmetric travelling salesman’s problem 

(Odili & Mohmad Kahar, 2016b), symmetric travelling salesman’s problem (Odili, Mohmad Kahar, & 

Noraziah, 2016), strategic management, collision avoidance in electric fish, tuning of PID parameters of 

Automatic Voltage Regulators (Odili & Mohmad Kahar, 2016a) etc. Because of the limited applications so far, 

it is not very easy to evaluate the algorithm. In any case, the ABO has performed well in the areas of its 

application. 

 

 

Firefly Algorithm 

 

This population-based algorithm which was inspired by the flashing attitude of fireflies was developed by Xin-

She Yang (Yeomans & Yang, 2014). In this algorithm, a number of fireflies work together to solve a problem 

through bioluminescent glowing that enables them to efficiently solve problems. The solutions to problems are 

modelled as a firefly whose flashes are proportional to the quality of solutions they represent. As a result, a 

brighter firefly attracts others colleagues and this aids further exploration of the search space. The four main 

characteristics of the algorithm include: 

 

(a) All fireflies are unisex, so they are attracted by a brighter colleague notwithstanding the sex 

(b)  The brightness of a firefly is a function of the distance between the fireflies: the nearer they are to one 

another, the more the effect of the brightness of the brighter firefly and vice-versa. 

(c) If there is no brighter firefly than a particular firefly, the firefly without a brighter colleague, moves 

randomly 

(d) The landscape of the objective function affects the brightness of the firefly. The brightness of the firefly is 

proportional to the objective function in a maximization problem. The pseudo-code of the Firefly Algorithm is 

presented in Fig. 11: 

Figure 10.FFA pseudo-code 

 

FFA has been successfully applied to Industrial Optimization, Image processing , Antenna design ,Business 

optimization,  Civil engineering,  Robotics, Semantic web, Chemistry, Meteorology, Wireless sensor networks 

(Fister, Yang, & Brest, 2013) etc.  

 

The FFA is believed to have least error percentage compared to many other metaheuristic algorithms such as the 

GA and the PSO. Moreover, it is relatively simple to implement and has proven to perform well in multi-modal 

search environments. It is quite close to the PSO except that it does not employ search velocities in its quest for 

solutions (X.-S. Yang, 2012). However, it has complicated fitness function and hugely depends on correct 

parameter setting to arrive at good solutions. Even though it obtains good results, the FFA is a slow algorithm. 

This may be due to the number of parameters that the algorithm uses in search of solutions. 

 

 

 

 

 

1. Randomly place the  bee to an empty solution  

2. For each bee, execute the forward pass phase 

3.        Set k=1; k is a counter for constructive moves in the forward pass;  

4.        Determine all possible constructive moves;  

5.        End for 

6. Select the next move using the roulette wheel;  

7.         k= k + 1; If      (NC= maximum number of counters),  

8.        Let the bees start the backward pass phase;  

9.       Sort the bees;  

10.       Let each bee decide, randomly, whether to continue its own exploration and  

      become a recruiter, or to become a follower of bees with higher objective function value;  

11. End roulette wheel 

12. For every follower bee, choose (until termination)a new solution from recruiter bees using the 

roulette wheel  

13. Repeat steps 7-11 

14. Output the best result.  
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Biogeography- Based Optimization  

 

The BBO which was designed by D. Simon was inspired by the immigration and emigration between habitats 

by different species in nature (Simon, 2008). Using the values of the Habitat Suitability Index as the objective 

function, the BBO emphasizes communication between candidate solutions (habitats): the Low Habitat 

Suitability Index (LHSI) and the High Habitat Suitability Index (HHSI) which are features of each solution. 

Basically Habitat Suitability Index (HSI) of a solution is a measure of its fitness and this is dependent on the 

characteristic environmental features in that habitat. This algorithm obtains good solutions through regular 

interaction/communication and feature-sharing between the LHSI and the HHSI. Another very important 

parameter to the working of the BBO is the mutation parameter which, like the Genetic Algorithm, enables the 

algorithm to generate diversity and thus greater exploration (Simon, 2008). The BBO algorithm is presented in 

Figure 12. 

 

1.    Initialization: Initialize the population candidate solutions   

2.    While (not termination), do 

3.           For each candidate solution, create emigration probability fitness of each  

4.           candidate solution, with probability of (0, 1) 

5.                  For each candidate solution, create immigration probability  

6.                       For each individual specie, set independent variable index 

 7.                      Using the set probabilistically criterion, determine whether to immigrate; 

 8.                      If yes, then 

 9.                            Using the created probabilistically choose the emigrating individual  

10.                     End if; 

11.                    End for 

12.              End for 

13.        End for 

13.      End while. 

14.    Consider the next independent variable index; 

15.   Probabilistically mutate to create another individual; 

16.   Consider the next individual;     

17.   Next generation 

18.  Repeat steps 2 and 3 until stopping criteria 

19. Output best solution 

Figure 12. BBO pseudocode 

 

The BBO has been successfully applied to solve numerical problems, population distribution problems, 

Combined Heat and Power Economic Dispatch Problem etc. (Qu & Mo, 2011; Simon, Ergezer, & Du, 2009)  

The BBO is an exploration-based algorithm and even though it adopts the mutation parameter of GA, it does not 

discard the previous population after a new Generation; rather, the BBO modifies the original population 

through migration. Similarly, the BBO depends on the evaluation of newly generated solution fitness to 

determine whether the species’ rate of emigration or migration. However, BBO has been discovered to be rather 

weak in the migration and mutation stages, as such its overall performance is suspect (Alroomi, Albasri, & 

Talaq, 2013). BBO’s ineffectiveness may possibly due to the use of several parameters that require proper 

tuning in order to get good results. Finally, the speed of the algorithm is suspect as a result of its use of several 

parameters. 

 

 

Bee Colony Optimization 

 

In this algorithm, a population of artificial bees conducts a search for the optimal solution(s). Each bee generates 

one solution to the problem (Karaboga & Basturk, 2007). The Bee Colony Optimization algorithm makes use of 

two alternating phases, namely, forward-pass phase and backward-pass phase. In the forward-pass phase, the 

bees explore the search space through a number of moves that construct or improve a solution and thereby 

creating a new solution. After arriving at this partial solution, the bees return to the nest to initiate the backward-

pass phase where they communicate information about their newly-found solutions. They communicate the 

distance as well as the quality of the food source (solution) to the nest through a waggle dance.  Based on the 

information collected at this phase, the bees (including the dancer) decide, with a certain probability, to abandon 

the newly-found solution and remain in the nest or to follow the dancing bee to the food source. This leads to 

the second forward-pass where the bees improve on the previously found solutions and after which they return 

to another backward-pass phase. These phases are performed repeatedly until a stopping criterion is reached. 
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The stopping criterion could be the maximum number of forward-/backward-pass phases, the maximum number 

of forward-/backward-phases without tangible improvement of the objective function or the arrival at the 

optimal solution. Basically, the pseudo-code of the Bee Colony Optimization algorithm is as in Fig. 13.  

1. Randomly initialize the bees within the search space 

2. For each bee, perform the forward-pass:  

3.      Set k=1; k is a counter for constructive moves in the forward pass;  

4.      Determine all possible constructive moves;  

5.      Select one move using the roulette wheel;  

6.      k= k + 1; If k≤NC (NC= maximum number of counters),  

7.      Return to step 2 

8. End for 

9. Let the bees start the backward-pass phase;  

10. Based on the objective function value of each bee, sort the bees;  

11. Let each bee decide, randomly, whether to continue its own exploration and become a recruiter, 

or to become a follower of bees with higher objective function value;  

12. For every follower bee,  

13.       Choose a new solution from recruiter bees using a roulette wheel;  

14.        If the stopping criterion is not reached, 

15.              Return to step 2 

16.        End if  

17. End for 

18. Output the best result.  

Figure 13. BCO pseudo-code 

 

Bee colony Optimization has been successfully applied to solving the Job Shop Problem, MANET- Routing 

Protocol, Generalized Assignment Problem, Engineering Optimization, Travelling Salesman’s Problem, 

Numerical Assignment Problems etc. (Nagpure & Raja)    

 

The mechanism that informs the decision of a bee to follow a particular dancer is not well established but it is 

rather vaguely considered that the decision to follow a particular bee is a function of the food source (Camazine 

& Sneyd, 1991).  However, the abandonment phenomenon is of great benefit to the algorithm. That is to say that 

when the employed bees could not find the optimized solutions after some repetitions, they transform to the 

scout bees again and move in random paths to start searching for optimized solutions. This way, the solutions 

which are not optimized are abandoned and further searches are made for the global optimized points. This 

procedure helps the algorithm not to fall into a local optima or minima in a multi-dimensional search 

environment. As a result, it could be safe to say that the artificial bees use a combination of local and global 

searching methods to arrive at solutions. 

 

 It should, however, be observed that that the BCO has complicated fitness function. As such, obtaining good 

results is a function of proper setting of parameters such as minimum overshoot, rise time, steady state error and 

settling time in the state response.  Moreover, it has been observed that Bee Colony algorithm is not as adaptive 

as ACO. Finally, BCO algorithm shows poor performance and remains inefficient in exploring search space 

because its search equation  is significantly influenced by a random quantity which helps in exploration at the 

cost of exploitation of the search space (Babaeizadeh & Ahmad, 2014)  

 

 

Findings  
 

The development of several optimization algorithms, some of which have been described in this study, no 

doubt, has been of immense benefits to the scientific community in general and computer scientists, in particular 

(Di Caro, Ducatelle, Gambardella, & Dorigo, 2005; Giannakouris, Vassiliadis, & Dounias, 2010; Ridge a't, 

Kudcnko, & Kazakov'i, 2005; Wedde & Farooq, 2005; X.-S. Yang, 2009a). These algorithms have sped up 

industrial processes, minimized waste of time, money and computer resources. However, a critical look at these 

NAs indicates that there are no clear theoretical proofs of their workings. It is rather worrisome that in cases 

where there are results of convergence analysis as in the GA (Rudolph, 1994), these results are rather limited. 

Moreover, there are no clear mathematical proofs in most of these algorithms (Farmer, Guttman, & Thayer, 

1993). As a result, there is need for deliberate research on the mathematical, theoretical and convergence 

evaluation of NAs. The research community will benefit maximally from NAs when the convergence conditions 

of NAs are clearer to the extent that the non- experts can easily understand.  
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Moreover, this study observes that that most application of NAs were concerned with relatively simple to 

medium-scale experimental cases involving scores of variables. It is not well established if these NAs can do as 

well in practical real-life situations that may involve hundreds or even thousands of variables. This should also 

be an area of further research investigation. 

 

Furthermore, the application areas of the NAs are, to say the least, largely theoretical. Except in few situations 

like the practical Proportional, Integral and Derivative parameters-tuning of AVR and DC motors (Al Gizi, 

Mustafa, Al Zaidi, & Al-Zaidi, 2015; Meshram & Kanojiya, 2012) etc, most of the studies available in literature 

are more or less theoretical. The danger with such simulated studies is that it may not work appropriately in a 

real-life situation. 

 

Finally, it is observed that most of the NAs still use manual setting of parameters. It will be better if the NAs 

employ dynamic setting of parameters in course of the algorithm execution. There have been a few studies 

employing dynamic parameter setting (Lobo, Lima, & Michalewicz, 2007; Schraudolph & Belew, 1992; B. 

YANG & ZHANG, 2004; Zielinski & Laur, 2007) but, we dare say, these studies are quite few and are basically 

at their infancy. The scientific community stands to benefit a lot more from NAs when the NAs employ 

dynamic parameter tuning. 

 

 

Conclusion 
 

This paper did a critical review of ten Nature-inspired optimization (NAs) techniques, picking three trajectory-

based algorithms and seven population-based. The trajectory-based algorithms examined are the Simulated 

Annealing, the Great Deluge and the Hill Climbing. Similarly, the six population-based algorithms investigated 

in this study are the PSO, ACO, ABC, BCO, BBO ABO and the FFA. At the end of the critical analysis of these 

ten algorithms, it was observed that the NAs have made immense contributions to different aspects of human 

development: scientific, engineering, medical, business etc. Nevertheless, the study revealed that there is a 

general lack of clear mathematical and theoretical proof of convergence in most NAs. Moreover, the algorithms 

pay so much attention to problems with relatively less number of variables than that are common in practical 

day-to-day real-life industrial problems that has several hundreds, thousands and even millions of variables. 

There is, therefore, little or no guarantee that the same methodology used to obtain results in the small problems 

will produce same results in larger real-life environments. Furthermore, the studies are largely simulated with 

the possibility of not being as effective in real-life situations. It is, therefore, recommended that future research 

studies in NAs should place greater emphasis on experimentation with real-life situations, unravelling the 

mathematical and theoretical convergence analysis of the NAs, in addition to, focusing on problems with very 

large number of variables. 

 

Finally, in terms of the algorithm design, it was observed that many of the NAs make use of several parameters 

leads to extensive use of computer resources and slow speed. The faster algorithms, according to this review, are 

usually those that deploy fewer parameters. This is in consonance with the recent drive for lean metaheuristic 

design deliberately avoiding the Frankenstein phenomena. Frankenstein phenomena refers to a situation where 

an optimization algorithm deploys several parameters in its search for solution to the extent that the individual 

contribution of each parameter is difficult to pinpoint (Sörensen, 2015; Sörensen & Glover, 2013). It is, 

therefore, recommended that algorithm designers should deploy only the number of parameters needed to obtain 

good solutions. This will enhance algorithm efficiency without compromising effectiveness. 
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