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Abstract: The work is devoted to the results of a fundamental study on the arithmetical plane of a broad 

special family of differential dynamic systems having polynomial right parts. Let those polynomials be a cubic 

and a square reciprocal forms. A task of a whole investigation was to find out all topologically different phase 

portraits in a Poincare circle and indicate close to coefficient criteria of them. To achieve this goal a Poincare 

method of the central and the orthogonal consecutive displays (or mappings) has been used. As a rezult more 

than 250 topologically different phase portraits in a total have been constructed. Every portrait we depict with a 

special table called a descriptive phase portrait. Each line of such a special table corresponds to one invariant 

cell of the phase portrait and describes its boundary, a source of its phase flow and a sink of it. All finite and 

infinitely remote singularities of dynamic systems under consideration were fully investigated. Namely 

infinitely remote singularities are discussed in the present article. 
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Introduction 
 

A dynamic system works as a mathematical model of a phenomenon or a process, for which fluctuations and 

other statistical events we don’t consider. A dynamic system can be characterized with its initial state and a law 

transforming it into a different state. A phase space of a dynamic system is a totality of all admissible states of 

it. Its naturally to distinguish dynamic systems with the discrete and with the continuous time. For dynamic 

systems with the discrete time (the cascades) a system’s behavior is described with a sequence states. For 

dynamic systems with continuous time (the flows) a state of a system is defined for each moment of time on a 

real or an imaginary axis. Cascades and flows are the main subject of study in a symbolic and topological 

dynamics.  

 

Dynamic systems of the both kinds can be usually described with an autonomous system of differential 

equations, defined in a certain domain and satisfying in it the conditions of the Cauchy theorem of existence and 

uniqueness of solutions of the differential equations.Singular points of differential equations correspond to 

equilibrium positions of dynamic systems, and periodical solutions of differential equations correspond to 

closed phase curves of dynamic systems. 

 

The mostly important problem of the theory of dynamic systems is a study of curves, defined by differential 

equations. This process includes splitting of a phase space into trajectories and study of a limit behavior of 

those: finding out and classification of equilibrium positions, revealing of attracting and repulsive manifolds.  

 

The important notions of a theory of dynamic systems are a notion of a stability of equilibrium states, i.e. an 

ability of a system to remain near an equilibrium state (or on a given manifold) for an arbitrary long period of 

time under considerably small changes of initial data, as well as a notion of a roughness of a system (i.e. saving 

of system`s properties under small changes of a model itself). A rough dynamic system is a system which 

preserve its qualitative character of motion under a satisfactory small change of parameters.   

 

Jules H. Poincare has shown, that any normal autonomous second-order differential system with polynomial 

right parts in principle allows its full qualitative investigation on an extended arithmetical plane  [1]. Further 
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investigators have successfully studied some of such systems, for example quadratic dynamic systems [2], 

systems containing nonzero linear terms, homogeneous cubic systems, as well as systems with nonlinear 

homogeneous terms of the odd degrees (3, 5, 7) [3], which have a center or a focus in a singular point O (0,0) 

[4], and some other particular kinds.     

 

Here we consider a special family of dynamic systems on a real plane x, y  

 

= X(x, y),      = Y (x, y),                                                                      (1) 

 

such as X (x, y), Y (x, y) are reciprocal forms of x and y, X be a cubic, and Y be a square form, and X (0,1) > 0, Y 

(0, 1) > 0. Our task is to depict in a Poincare circle all kinds of possible for the Eq.(1) - systems phase portraits, 

and indicate close to coefficient criteria of each portrait appearance. We use a Poincare method of consecutive 

mappings: firstly the central mapping of a plane x, y (from a center (0, 0, 1) of a sphere ∑), augmented with a 

line at infinity (i.e.  plane) on a sphere ∑ :  with identified diametrically opposite points, 

and secondly the orthogonal mapping of a lower enclosed semi sphere of a sphere ∑ to a circle 

: with identified diametrically opposite points of its boundary Г.  

 

The circle and the sphere ∑ are called the Poincare circle and the Poincare sphere correspondingly .  

 

 

Basic Definitions and Notation  
 

a fixed point := a solution (a motion) of an Eq.(1) – system with initial data  

Lp : Imax , - a trajectory of a motion  

:= +(-)- a semi trajectory of a trajectory Lp. 

 

O-curve of a system := its semi trajectory L
s
p (p ≠ O, s  ), adjoining to a point O under a condition 

that  

 

- curve of a system := its O-curve  

-curve of a system := its O-curve, adjoining to a point O from a domain x > 0    (x < 0). 

 

TO-curve of a system := its O-curve, which, being supplemented by a point O, touches some ray in it. 

 

A nodal bundle of NO-curves of a system := an open continuous family of its TO-curves L
s
p, where  s  

is a fixed index, p  ᴧ, ᴧ - a simple open arc, L
s
p  

 

A saddle bundle of SO-curves of a system, a separatrix of the point O:= a fixed TO -curve, which is not included 

into some bundle of NO-curves of a system. 

 

E, H, P - O-sectors of a system: an elliptical, a hyperbolic, a parabolic ones. 

 

A topological type (T-type) of a singular point O of a system := a word AO consisting of letters N,S (a word BO 

consisting of letters  E,H,P), which describes a circular order of bundles N, S of its O-curves (of its O-sectors E, 

H, P ) when traversing the point O in the «+»-direction, i. e. counterclockwise, starting with some of them. 

 

, 

. 

 

Note 1. For every Eq.(1) - system:  

 

1) T-type of a singular point O in its form BO is easy to construct using its Т-type in the form AO , and 

backwords (we need to know the both forms, see below the Corollary 1); 

 2) real roots of a polynomial P(u) (polynomial Q(u)) are in fact angular coefficients of isoclines of infinity 

(isoclines of a zero);  
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3) when we write out the real roots of the system`s polynomials P(u), Q(u), separately or all together, we 

always number the roots of each one of them in an ascending order. 

 

 

Topological Type (T – type) of a Singular Point O (0, 0) 
 

In order to find all O-curves and to split their totality into the bundles N, S, let us use the method of exceptional 

directions of a system in the point O [1]. According to this source, the equation of exceptional directions for the 

point O of the Eq.(1) - system has the form 

 

 
 

For it the follows cases are possible:  

 

1) when  this equation defines simle straight lines   and 

  

2) when   this equation defines the straight line  and the double straight line 

    

3) when  only a straight line  

 

The follows Theorem 1 takes place for them [5] . 

 

Theorem 1. Words AO and BO which define a topological type (T-type) of a singular point O(0, 0) of the Eq.(1) - 

system:  

 

1) in the case of  depending on signs of values   

2) in the case of   depending on signs of values and -   

3)  in the case of  : AO = S0S
0
 , BO = HH: 

 

Table 1. Т-type of a singular point in the case of d > 0 (r = ) 

r P (q1) P (q2)   

1, 4 + + 
 

PH
2
 

2 _ _  PH
2
 

3, 6 _ +  PEPH
3
 

5 + _ 
 

H
3
PEP 

 

Table 2. T-type of the singular point O(0, 0) in the case of d = 0 

q P (q) 
  

+ +  H
2
P 

_ _  PH
2
 

+ _  H
2
P 

_ +  PH
2
 

0 + 
 

H
2
P 

0 _ 
 

PH
2
 

 

Note 2. Let`s clarify the meaning of new symbols introduced in the Theorem 1. 

 

A symbol S0 (a symbol S
0
) means a bundle S, adjoining to the point O(0, 0) from the domain along a semi 

axis , when t (along a semi axis  when t ). 
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A lower sign index «+» or «-» of every bundle N or S, different from S0 and S
0
, indicates wheather the bundle 

consists of -curves or of -curves. Upper index 1 or 2 of every such a bundle indicates wheather its O-

curves adjoining to the point O along a straight line  or along a straight line  

In the Table 2, lines No. 5, 6, a bundle N doesn`t have a lower sign index, because it contains both  -curves 

and   -curves simultaneously. 

 

Corollary 1. From the Theorem 1 it follows, that Eq.(1) – systems do not have limit cycles on the R
2

x;y plane. 

 

Indeed, such a cycle could surround a singular point O (0,0) of a Eq.(1) - system, and then the Poincare index of 

this singular point must be equal to 1 [1]. But Bendixon`s formula for the index of an isolated singular point of a 

smooth dynamic system is the follows: 

 

  

 

where  is a number of elliptical (hyperbolic) O-sectors of the system. This formula and our Theorem 1 

give: for the singular point O (0, 0) of every Eq.(1) – system Poincare index I(O) = 0. 

 

Corollary 2. For the singular point O (0, 0) of the Eq.(1) - system 11 (eleven) different topological types (T-

types) are possible, and from the analysis of these 11 its T-types follows: 

 

For every Eq.(1) – system the singular point O(0, 0) has not more than four separatrices (actually 2, 3 or 4 ones).  

 

 

Infinitely Remote Singular Points (IR-points) 

 

Now it`s time to discuss a behavior of trajectories of the Eq.(1) – systems in a neighborhood of infinity. For the 

investigation of this question we use a method of the Poincare consecutive transformations, or mappings [1]. 

 

The first Poincare transformation 

                                          )       

                             

anambiguosly maps a phase plane R
2
x,y  of the Eq.(1) - system onto a Poincare sphere ∑ : 

(where ) with the diametrically opposite points identified, which is considered 

without it`s equator E, and an infinitely remote straight line of a plane the first Poincare transformation 

maps onto the equator E of the sphere ∑, which diametrically opposite points are also considered to be 

identified. 

 

The Eq.(1) - system this mapping transforms into a system, which in the Poincare coordinates after a time 

change   

 

     

 

where   Q  are reciprocal polynomials. This new system is determined on the 

whole sphere ∑, including its equator, and on the whole   

(1,0,0). We shall study it namely on a plane , and 

received results we`ll project onto a closed circle  sequentially mapping firstly a plane R
2
u,z onto the sphere ∑ 

from its center, and secondly its lower semi sphere  onto the Poincare circle    i. e. onto a closed unit circle 

of a plane R
2
x,y through the orthogonal mapping. 

 

For our new system the axis  is invariant (consists of this system`s trajectories). On this axis lie its singular 

points   are all real roots of the polynomial  and ; the same 

time may exist : = 0. Let`s call such points IR-points of the 1-st kind for the Eq.(1) – system. 
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The second Poincare transformation 

 
also anambiguosly maps a phase plane R

2
x,y onto a Poincare sphere ∑  with the diametrically opposite points 

identified, considered without it`s equator, and every Eq.(1) - system transforms into a system, which in the 

coordinates : 

 

.           

                     

This last system is determined on the whole sphere ∑, and on the whole  

 [1]. A set  is invariant for this last system. 

On this set lie its singular points  where  is any real root of the 

polynomial It would be naturally to call such points IR-points of the 2-st 

kind for the Eq.(1) – system, but each of these points, for which    obviously coincides with one of the 

IR-points of the 1-st kind, namely with the point  while a number   is not a root of the polynomial 

X(x, 1), because X(0, 1) = p3  0 for the Eq.(1) – system. Consequently, correct is the follows 

 

 

Corollary 3. The infinitely remote singular points of any Eq.(1) – system are only IR-points of the 1-st kind. 

 

With the orthogonal projection of a closed lower semi sphere  of a Poincare sphere ∑  onto a plane x, y its 

open part H one-to-one maps on an open Poincare circle  while its boundary E (an equator of the Poincare 

sphere ∑) maps on the bondary of the Poincare circle Γ ∂Ω.  

 

1) Own trajectories of any Eq.(1) - system (including its singular point O (0, 0)) are displayed into a circle 

Ω and fill it.  

2) Such a system`s infinitely remote trajectories (including IR-points) are displayed on a boundary Γ of a 

circle Ω, filling it.  

Following Poincare, we call the first of them trajectories of the Eq.(1) - system in Ω , and the second we 

call trajectories of the Eq.(1) - system on Γ.  

 

As it follows from the abovementioned conclusions, to each IR-point , of the Eq.(1) – system, 

correspond two diametrically opposite points situated on the Γ circle 

 

  

we shall introduce the follows notation. 

 

1) Let a curve be a semi trajectory of the Eq.(1) – system in Ω, starting in an ordinary point p 

 and adjacent to a point   

2) A notation of bandles N, S, adjacent to a point  from the circle Ω, let be similar to notation 

introduced for the point O (0, 0). 

3) A notation of a word ( consisting of letters N,S, which is fixing an order of bandles of -

curves at a semi circumvention of the point  in the circle Ω in the direction of increasing of u. 

 

We shall describe a T-type of a point with a word (  and a T-type of a point 

. 

T-types of IR-points  of Eq.(1) – systems are described with the follows theorem. 

 

Theorem 2. Let a number  be a multiplicity  root of a polynomial  of the Eq.(1) - 

system. Then words which determine topologycal types (T-types) of IR-points  of this system, 

depending on the value of k and a sign of a number apk (where a and pk are coefficients of the system), have the 

forms indicated in the Table 3 [5]. 
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Table 3. T-types of IR-points  

k    
0 0 N N 

0, 2 + (-) 
  

1, 3 + (-)   
 

Corollary 4. IR-points of any do not have separatrices. 

       

 T-types of IR-points   of Eq.(1) – systems are described with the following 

theorem. 

 

Theorem 3. Let a real number ui ( ) be a multiplicity ki  root of a polynomial  of the Eq.(1) - 

system. Then for this system a value gi = P 
(ki)

(ui)Q(ui) 0 and words which determine topologycal types 

(T-types) of IR-points  of this system, depending on the value of ki and signs of numbers ui and gi, 

have forms indicated in the Table 4 [5].   

 

Table 4. T-types of IR-points  

ui ki gi   
+(-) 1, 3 + 

  
+(-) 1, 3 _   
+(-) 2 + 

  
+(-) 2 _   

 

Corollary 5. As it can be seen from the Theorems 2 and 3, for the IR-points of the Eq.(1) – systems only finite 

number (13) of different T-types are possible. And the investigation of these T-types shows, that IR-points of 

each Eq.(1) - system have only m separatrices: one separatrice for every singular point      

 

Note 3. In the tables 3 and 4 a lower sign index «+» or «-» of every bundle N or S, indicates wheather the bundle 

adjusts to the point  from the side  or from the side   of the isocline 

.  

 

In the Table 3, line No. 1, a bundle N doesn`t have a lower sign index, because the detailed study of this case 

shows: it contains -curves  ( -curves) in every domain > 0 [5]. 

 

 

Conclusions  
 

This article is devoted to the original study. The main task was to construct all different in the topological sense 

phase portraits in a Poincare circle, possible for the dynamic differential systems belonging to a special family 

of the Eq. (1) – systems, and to its numerical subfamilies.  We have constructed all those portraits two ways - in 

a descriptive as well as in a graphical form. Each table of a descriptive form contains from 5 to 6 lines. Every 

line describes one invariant cell of the phase portrait in detail – its boundary, a source and a sink of its phase 

flow. Such a table is called a descriptive phase portrait [6, 7]. 

 

During this investigation we have fully studied finite and infinitely remote singular points of systems under 

consideration.Also the task of this work was to develop, outline and successfully apply some new effective 

methods of investigation [8-10]. 

         

 

Recommendations 
 

Nevertheless this is a theoretical work, due to abovementioned new methods it may be useful for applied studies 

of dynamic systems of the second order with polynomial right parts. The work may be interesting for students, 

postgraduates and scientific researchers as well.   
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