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Abstract: The paper considers walking in-pipe robots, which represent a novel class of in-pipe robots, with 

better agility but also a more complicated control compared with other, more prevalent in-pipe robot types. The 

focus of the paper is on the inverse kinematics (IK) of these robots. IK for walking in-pipe robots is a difficult 

problem due to a combination of factors, such as joint limits, multiple possible kinematic singularities, as well as 

a significant number of joints that these robots have. All this requires the use of an algorithm that could take into 

account multiple objectives and constraints when solving the problem, and provide a solution in real time using 

on-board computers. Existing approaches can achieve this with local linearization of both the objective function 

and the constraints; alternatively they do it by taking the constraints into account. In this work, the IK is 

transformed into a quadratic program. Instead of linearizing the objective function, here the orientations of the 

robot’s links are approximated by convex combinations of rotation matrices. This allows relaxing the constraints 

associated with the special orthogonal group, placed on the matrices describing the links’ orientation. The paper 

shows the form of the resulting quadratic program, discusses the practical aspects of using this approach and 

lists its limitations. 
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Introduction 

 

In-pipe robots are an important research direction in the modern robotics. Their tight connection to other types 

of robots, such as snake-like and caterpillar-like robots, wheeled and tracked robots, as well as walking robots, 

makes the in-pipe robotics an especially interesting field from both the theoretical and practical perspectives. 

 

Most popular types of in-pipe robots include wheeled and tracked robots with parallel structures, which allow 

the robot to adapt to the changing geometry of the pipeline (Brown et al., 2018). Some examples of these robots 

can be found in (Roh et al., 2009; Jun et al., 2004). However, the ability of these robots to adapt to the varied 

and changing geometries of the pipelines is limited, due to their locomotion type. In particular, the pipes with 

significant changes in diameter and with sharp bends could present difficulties for a number of prototypes of 

tracked and wheeled in-pipe robots. Thus, the use of these robots is limited by the pipe types they can navigate. 

 

In order to solve tasks that require navigating more challenging pipelines, walking in-pipe robots are proposed. 

Some of the original designs for in-pipe walking robots can be found in (Zagler & Pfeiffer, 2003; Pfeiffer, 2007; 

Gálvez et al., 2001). Those designs feature 8 legs with point-like contact pads. In (Savin & Vorochaeva, 2017a, 

2017b, 2017c) in-pipe robots with 6 and 4 legs are studied, including a design with the robot’s body split into 

two sections. The papers provided a computationally efficient approach to generating step sequences for these 

robots, taking into account the geometry of the pipeline. These methods require pipeline maps in order to work. 
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Papers (Thielemann et al., 2008; Savin, 2017; Tsubouchi et al., 2000) provide some tools for generating and 

working with pipeline maps, however this task remains open for further research. 

 

The control of walking robots, including in-pipe robots, is based on the separation of control tasks. It is typical 

to separate out inverse kinematics, state estimation and feedback control. Some approaches to feedback control 

for walking robots can be found in (Mason et al., 2014; Savin et al., 2017b). State estimation for in-pipe walking 

robots was studied in (Savin et al., 2018) and for on-ground walking robots in (Bloesch et al., 2013). Analytic 

approaches to the inverse kinematics for some types of in-pipe walkers were proposed in (Savin et al., 2017a). 

However, the analytic solutions for the inverse kinematics are limited and do not allow to include inequality 

constraints associated with joint limits and mechanism self-intersections without reworking the original solution. 

This motivates the use of numeric inverse kinematics methods. 

 

 

Numeric Inverse Kinematics, State of the Art 

 

There are a number of numeric inverse kinematics algorithms proposed for mobile robots. These include a 

variety of so-called Jacobian methods (Buss, 2004). Walking robots can be viewed as systems with redundancy, 

hence the inverse kinematics methods developed for such systems are applicable for them as well (Chang, 

1987). One of the popular approaches for redundant inverse kinematics tasks had been the division of tasks into 

a hierarchy and assigning the tasks different priorities (Sentis & Khatib, 2005). It can be effectively used with 

walking robots, as shown in (Jatsun et al., 2016). This can be achieved by a null space projection. Alternative 

approaches include learning methods (D'Souza, 2001). 

 

There had been some efforts to formulate inverse kinematics as an optimization problem. In (Dai et al., 2017) 

inverse kinematics had been formulated as a mixed integer convex program, which can be solved with a branch 

and bound algorithm. It is also possible to formulate the inverse kinematics as a quadratic program, which can 

be directly solved by an interior point algorithm. This can be done with a local linearization of the inverse 

kinematics task. 

 

This paper focuses on an alternative approach. Instead of linearizing the task, we propose to linearize the 

rotations (the rotation matrices in particular) that are included in the robot kinematics. This is similar to what is 

done in (Dai et al., 2017), where sine functions are replaced by piece-wise linear functions, suited for use in a 

mixed integer convex program. However, our approach is based on local linear approximation which does not 

require integer variables. Additionally, our approach does not require working with individual harmonic 

functions and allows to work directly with rotation operators. 

 

 

Rotation Linearization 

 

In order to linearize rotations, we use the following representation of the rigid body orientation: 

 

0dT T T      (1) 

 

where T  is a matrix defining the orientation of a rigid body, 0T  is a matrix, that defines the initial position of 

the rigid body (or equivalently, an initial guess for the rigid body orientation), and dT  is a rotation matrix that 

defines the change in the body’s orientation. The idea behind this representation is to allow us to tune the matrix 

dT , which would be close enough to an identity matrix, instead of tuning matrix T , which is an arbitrary 

element of the SO(3) group. 

 

The matrix dT  is an element of the SO(3) group, and its elements are constrained to lie on a three dimentional 

surface in the ambient 9-dimensional space 
3 3

. However, because dT  is close to an identity matrix, we can 

approximate it as a convex combination of rotation matrices, each of which is close enough to an identity: 
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where x

T , y

T , z

T  are rotation matrices around axes x , y  and z  axes by angle  , I  is an identity matrix and 

i  are positive scalar coeffitients. The transposed matrices serve as inverses of the rotation matrices x

T , y

T , 

z

T , allowing dT  to represent all possible rotations, rather than only the ones in the clock-wise direction. 

 

The downside of the proposed linearization is that it relies on the fact that dT  is close enough to I , so that   

can be chosen to be small. The larger the   is, the further the convex combination (2) can drift from the set of 

special orthogonal matrices. This motivates the use of this linearization in iterative algorithms, where on each 

iteration only a slight change in the orientation needs to be calculated. 

 

 

Inverse Kinematics as a Quadratic Program 

 

Let G  be a point that needs to be moved to its desired position *

Gr  (expressed in the world frame). Its actual 

position in the body frame is 0

Gr . The error e  of the inverse kinematics task can then be defined as follows: 

 
0 *

0 0d G G  e T T r r r     (3) 

 

where 0r  is the position of the origin of the body frame, expressed in the world frame. 

 

Using expressions (2) and (3) it is possible to formulate inverse kinematics as a quadratic program. The 

condition (2) is further relaxed by the introduction of a slack variable S : 

 
7

2 2 2 2 2 2

1 2 0 3 4 5 62 2 2
1

0 *

0 0

1 2 3 4 5 6 7

7

1

minimize:

subject to:

( ) ( ) ( )

1

0

d d i

i

d G G

x y z x y z

i

i

i

w w w w w w

     



      







  



     

   


      





 





T S r T S e

e T T r r r

S I T T T T T T

,  (4) 

 

where 
2
  is a Frobenius matrix norm, and   is a Euclidean vector norm. In this optimization problem, 

variables S , dT , i , 0r  and e  serve as decision variables (optimization parameters), and the rest are constants. 

It is possible to add any linear constraints (equalities or inequalities), which can be expressed as linear functions 

of these variables. 

 

We can observe that the problem (4) includes 31 decision variables. If the inverse kinematics is solved for a 

robot with n links connected via rotary joints, then the number of decision variables is 25 6n . This number 

does not depend on the degrees of freedom of the joints; they will however affect the form of the additional 

constraints imposed on the problem. The proposed algorithm includes a forward kinematics expression (3). In 

order to generalize the algorithm to work for multilink mechanisms, this expression needs to be changed 

accordingly. 

 

Additionally, the resulting matrix dT  might require orthogonalization, in order to avoid having the matrices T  

and 0T  drift from the set of orthogonal matrices. This can be accomplished by the Gram-Schmidt procedure.  
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Simulation Results 

 

Let us consider the case when the robot stands on two legs on the supporting surface. The typical structures of 

walking in-pipe robots include four and more legs, and the structure presented in this section can be viewed as a 

simplified model. 

 

Figure 1 shows the robot’s pose generated by the proposed algorithm. The inverse kinematic task in this case 

includes contact elements 1G  and 2G , as well as the robot’s center of mass. In the picture, the red stars show the 

desired position of the points in the inverse kinematics task, while green dots show their position, corresponding 

to the found solution. 

 

 
Figure 1. The robot pose, found by solving inverse kinematics 

 

In the previous section, it was discussed that the chosen value of   in the linear approximation of the rotation 

matrices, can influence the quality of the resulting approximation, and hence influence the drift of the 

approximation away from the set of orthogonal matrices. In order to measure this drift, we introduce the 

following cost function: 
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where ,d iT  are the matrices, obtained by solving equations (4). The motivation for this choice of the cost 

function is that the determinant of the orthogonal matrices in the SO(3) group must be equal to 1. Figure 2 shows 

how g  depends on the choice of the parameter  . 

 

 
Figure 2. The dependence of g  on the choice of  ; the horizontal axis is logarithmic 

 

Figure 2 demonstrates that in this case the drift, as characterized by the cost function (5), stays the same, 

regardless of the choice of  . This can be viewed as robustness of the algorithm. 
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Conclusion  
 

In this work, it was shown that a linearization of the rotation matrix can be used to represent the inverse 

kinematics as a quadratic program, which allows the use of effective numeric methods to solve it. The proposed 

solution relied on approximating small angle rotations as convex combination of seven base matrices. This 

relaxes the constraints associated with the special orthogonal group, but makes it possible for the solution (and 

in particular, for the resulting linear transformation representing the orientation of the body) to drift, violating 

the orthogonality constraints.  

 

The paper showed that the violation of the orthogonality constraints does not strongly depend on the chosen 

approximation parameter. Whether or not different parametrizations of the linear approximation could allow to 

better control this drift requires further study. 
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