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Abstract: Dynamic systems in a broad sense may be considered as mathematical models of processes and 

phenomena, where any statistical events we may disregard. The dynamic systems theory investigates curves, 

defined by differential equations. The same time the laws of Nature are written using the language of differential 

equations, as the great French mathematician and encyclopedist of the nineteenth and twentieth centuries J.H. 

Poincare has taught. Thus, these laws are written using dynamic systems. A study of a given family of dynamic 

systems depending on several parameters means splitting of a phase space belonging to the dynamic system 

under consideration into trajectories and investigation of the limit behavior of them with the aim to reveal and 

describe their positions of equilibrium, and to find the so-called sinks and sources. Also, very important are the 

question of the stability of equilibrium states and their types, as well as the question of a roughness of a system. 

Rough dynamic systems can preserve their qualitative character of motion under some considerably small 

changes in parameters of the system. The paper is devoted to the original investigation of a broad family of 

polynomial dynamic systems, depending on multiple parameters. 
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Introduction 
 

The unique “scientific position” of a dynamic system is to serve as a mathematical model of some process, 

where any statistical events (fluctuations, for example) could be omitted and put out of investigator’s 

consideration. Any dynamic system has the two main features, the two main characteristics of it. Namely those 

characteristics are: 1) the initial state of a dynamic system, and 2) a law of this system’s transformation into 

some different state. A totality including all admissible states of a given dynamic system is called a phase space 

of it. There can be separated the two main categories of dynamic systems: one of them includes all dynamic 

systems with the discrete time (the so-called cascades), while the other category includes dynamic systems with 

the continuous time (the flows). For cascades their behavior is described with a sequence of different states. For 

flows their state is defined on an imaginary or on a real axis per each time moment. Flows and cascades 

represent the key fields of investigations in such branches of science as the topological dynamics and the 

symbolic dynamics.  

 

But the same time the both abovementioned principally different types of dynamic systems usually can be 

described using a certain autonomous system of differential equations, which is defined in some domain and 

satisfies in this domain the conditions of the Cauchy theorem. The Cauchy theorem of existence and uniqueness 

of solutions of differential equations is the one of main theorems in the theory of differential equations. Under 

such an approach the singular points of differential equations will be matched to dynamic systems’ equilibrium 

positions, while periodical solutions of differential equations will match to dynamic systems’ closed phase 

curves. 

 

The actual key problem of the dynamic systems’ theory is an investigation of curves, which are defined with 

differential equations.  
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A process of such a study involves the following several stages: 

1) we need to split a phase space of a taken dynamic system into trajectories and then  

2) investigate their limit behavior.  

That means:  

2.1) find out and identify classification types of equilibrium positions,  

2.2) reveal and investigate possible attracting and repulsive manifolds of a dynamic system under 

consideration. 

 

The additional key (greatly important) notions introduced in the dynamic systems theory are the following 

notions: 

1) a notion of a stability of equilibrium states of the system. Here we mean the following property of the 

dynamic system: its ability to remain near some equilibrium state - or on an indicated manifold - for a voluntary 

prolongated time period provided that small enough changes of initial data take place, as well as  

2) a notion of a dynamic system’s roughness (this property means an ability of saving of its characteristics in 

the face of small changing of the whole model itself). A rough dynamic system shows such a type of its 

behavior, that it preserves the (qualitative) character of motion in the face of a (satisfactory) small changes in the 

very system’s parameters. 

 

Modern specialists in the field of the theory of dynamic systems honor Jules Henri Poincare, the great French 

mathematician and encyclopedist (1854 – 1912), as the founder of the qualitative theory of differential 

equations. J. H. Poincare was one of the last encyclopedists – being able to keep in his mind almost all 

contemporary to him branches - not only of the pure mathematics, but also of physics, celestial mechanics, 

astronomy etc. For example, J.H. Poincare has laid the very foundation of the relativity theory.  

 

J.H. Poincare has revealed, that each normal second-order autonomous differential system having polynomials 

in its right parts principally allows the total exhaustive qualitative investigation of it on an (extended) real plane 

 [1].  

 

Several special different types of such polynomial dynamic systems were satisfactory studied since the J.H. 

Poincare times. Modern mathematicians have exhaustively investigated some categories of such systems, i.e. the 

quadratic polynomial dynamic systems [2], dynamic systems involving nonzero linear terms in their right parts, 

cubic homogeneous polynomial systems, and also polynomial dynamic systems including nonlinear 

homogeneous terms of some odd degrees (such as 3, 5, 7) [3], dynamic systems, which have a center or a focus 

in a singular point O (0,0) [4], and several additional different system’s types.     

 

In the present paper let us discuss some special broad family of dynamic systems on an arithmetical (real) plane 

of their phase variables x, y  

= X(x, y),      = Y (x, y),                                                                      (1) 

where X (x, y), Y (x, y) be the reciprocal polynomial forms of x and y, X be a cubic, while Y be a square 

polynomial form, X (0,1) > 0, Y (0, 1) > 0.  

 

The first of our established goals is to reveal and construct in a Poincare disk all possible types of phase 

portraits, which are appear to be admissible for the Eq. (1) – dynamic systems.  

 

The second of our established goals is to determine and describe the (close to the coefficient ones) criteria of 

every such a phase portrait existence. The J.H. Poincare’s sequential mapping method helps us to achieve our 

goal on this way: at first it is necessary to proceed the central mapping of an augmented with a line at infinity 

phase real plane  (from the center (0, 0, 1) of the Poincare sphere ∑) onto the sphere ∑ :  

where the diametrically opposite points are considered to be identified, and after this step, at the second, we 

proceed the orthogonal mapping of the enclosed lower semi sphere of a Poincare sphere ∑ to the Poincare disk 

: , where we consider to be identified the points of its boundary Г which are diametrically 

opposite one to another.  

 

As it was already mentioned above in the context, the disk and the sphere ∑ are further called correspondingly 

the Poincare disk and the Poincare sphere .  
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Some Important Notations and Definitions  
 

a fixed point := a motion (a solution) of  

an Eq.(1) – system with initial data  

Lp : Imax , - a trajectory of a motion  

:= +(-)- a semi trajectory of a trajectory Lp. 

 

O-curve of a system := the system’s semi trajectory L
s
p (p ≠ O, s  ), which is adjoining to a point O with 

the condition  

 

- curve of a system := this system’s O-curve  

-curve of a system := this system’s O-curve, which is adjoining to a point O from a domain x > 0    (x 

< 0). 

 

TO-curve of a system := this system’s O-curve, which, being supplemented by a point O, touches some ray in 

the point O. 

 

A nodal bundle of NO-curves of a system := an open continuous family of this system’s TO-curves L
s
p, where  

s  is a fixed index, p  ᴧ, ᴧ - is a simple open arc, L
s
p  

 

A saddle bundle of SO-curves of a system, a separatrix of the point O:= is a fixed TO -curve, which is not 

included into any bundle of NO-curves of a system. 

 

E, H, P : an elliptical, a hyperbolic, a parabolic O-sectors of a system. 

 

A topological type (T-type) of a finite singular point O of a system := a word AO including letters N, S (a word 

BO including letters E, H, P), which is used to describe a circular order of nodal and saddle bundles N, S of this 

system’s O-curves (of this system’s elliptical, hyperbolic, parabolic O-sectors E, H, P ) while traversing the 

finite singular point O counterclockwise = in the «+»-direction, starting from some of them. 

, 

. 

Note A. For each Eq.(1) - system:  

 

1) The T-type of a finite singular point O in its form BO is easy to construct using the Т-type of this 

singular point in the form AO , and backwords (we ought to know the both forms, see the Corollary 1 below); 

 2) the real roots of a polynomial P(u) (polynomial Q(u)) appear to be in fact the angular coefficients of the 

isoclines of infinity (the isoclines of a zero);  

3) writing out the real roots of the system’s special polynomials P(u), Q(u), separately or all together, we 

agree always to number the roots of each one of those polynomials in an ascending order. 

 

 

A Singular Point O (0, 0) and Its Topological Type 
 

Now we need to:  

1) reveal and enlist all the existing for these dynamic systems of Eq. (1) O-curves, and  

2) to split the whole their totality into the nodal and saddle bundles N, S. 

The method of exceptional directions of a dynamic system in the finite singular point O will be used in 

order to achieve this established goal [1]. The exceptional directions’ equation for the point O of the Eq.(1) – 

dynamic systems family will be written in the form 

 
So the several different cases which are listed below may be realized for this equation:  

1) - in this case the exceptional directions’ equation defines the simle straight lines  

described with the equations  and   

2)  - in this case the exceptional directions’ equation defines a straight line described by the equation 

 as well as a double straight line described with equations   

3)  under this condition the exceptional directions’ equation defines only one straight line  
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Theorem A. A topological type of a finite singular point O (0, 0) of a family of dynamic systems 

corresponding to the equations (1) is described with the so-called words AO and BO  

These words can obtain the following structures: 

1) if - depending on signs of values   

2) if  - depending on signs of values and - have   

3) if : AO = S0S
0
 , BO = HH:                                  [5]. 

 

Table 1. Тopological type of a finite singular point O(0, 0) in the case when d > 0 

r P (q1) P (q2)   

1, 4 + + 
 

PH
2
 

2 _ _ 
 

PH
2
 

3, 6 _ +  PEPH
3
 

5 + _  H
3
PEP 

 

Table 2. Topological type of a finite singular point O(0, 0) in the case when d = 0 

q P (q) 
  

+ +  H
2
P 

_ _ 
 

PH
2
 

+ _  H
2
P 

_ +  PH
2
 

0 +  H
2
P 

0 _  PH
2
 

 

Note B. Explanations and meanings of the new symbols, introduced in the Theorem A. 

 

The symbol S0 is used to indicate a saddle bundle S, which is adjoining to the finite singular point O(0, 0) from 

the domain along the semi axis , with the condition that t . 

 

Similarly, the symbol S
0
 is used to indicate a saddle bundle S, which is adjoining to the finite singular point O(0, 

0) from the domain  along the semi axis  with the condition that t . 

 

A lower sign index «+» or «-» of each nodal or saddle bundle N or S, different from S0 or S
0
, is used to indicate 

will the bundle under consideration consist of -curves or of -curves. An upper index 1 or 2 of each bundle 

means: will the O-curves of this bundle be adjoining to the finite singular point O along a straight line defined 

with the equation  or, oppositely, along a straight line defined by the equation  

 

In the Table 2 above, see lines with the numbers 5 and 6, the node bundle N has not any lower sign index, since 

it contains both  -curves and  -curves together. 

 

 

Corollary A. As we can conclude from the Theorem A above, all the dynamic systems belonging to the broad 

family described with the Equations (1) have no limit cycles on the arithmetical plane of their phase variables 

R
2
x;y . 

 

Really, such an important feature of the dynamic system as the limit cycle principally could exist and surround a 

finite singular point O (0,0) of the Eq.(1) - system, and in this situation the Poincare index of that singular point 

will necessarily be equal to 1 [1]. But let us take into consideration the very important formula for calculation of 

the index of an isolated singular point of a smooth dynamic system, the formula of Bendixon, which looks like 

the follows: 



International Conference on Technology, Engineering and Science (IConTES), October 26-29, 2019, Antalya/Turkey 

342 

  

where e is a number of elliptical O-sectors of the dynamic system, and h is a number of its hyperbolic O-sectors. 

The Bendixon’s formula together with the formulated above Theorem A mean, that for the finite isolated 

singular point O (0, 0) of any smooth dynamic system described with the Equations (1) the Poincare index I(O) 

= 0. So there are no limit cycles among the trajectories of these systems. 

 

 

Corollary B. There exist 11 (eleven) different topological types for the isolated finite singular point O (0, 0) of 

the Eq.(1) – systems family. After the detailed thorough analysis of these eleven topological types we can 

conclude, that for each Eq. (1) – dynamic system there may exist no more than 4 (four) separatrices of the 

isolated finite singular point O (0, 0). The actual amount of such separatrices may vary from 2 to 4 ones.  

 

 

Investigation of the İnfinitely Remote Singular Points 

 

Obviously a question of a great interest is the investigation of a behavior of trajectories of the dynamic systems 

under consideration in the neighborhood of infinity. Such a field of studies demands using of the sequential 

mappings method. The sequential mappings method is a powerful instrument in the qualitative theory of 

differential equations and dynamic systems. It was invented by Jules Henri Poincare and provides for the 

sequential implementation of the two Poincare transformations (famous enough among the researches in this 

field) [1]. 

The first Poincare transformation 

                                          )                                   

maps a phase arithmetical plane R
2

x,y of the dynamic systems described by the equations (1) anambiguosly onto 

the so-called Poincare sphere ∑: (where ).The diametrically opposite points on the 

Poincare sphere ∑ we consider to be identified. Firstly we consider the Poincare sphere ∑ without it`s equator E. 

But also the first Poincare transformation maps the infinitely remote straight line of a plane  onto the 

equator E of the Poincare sphere ∑. The diametrically opposite points on the equator E of the Poincare sphere ∑ 

we considered to be identified similarly. 

 

The described above first Poincare transformation (and mapping) translates the dynamic system described by 

the equations (1) into the system, which in the new coordinates of the first Poincare transformation (and 

after a time change) has the form  

     

where   Q  are reciprocal polynomials (this special term means that they 

would not have common roots and, consequently, would not have common multipliers in their decompositions 

into the forms of lower degrees).  

 

The obtained new dynamic system will be considered and determined on the whole Poincare sphere ∑, 

including the equator E of it. Also this new system will be determined on the whole  

 (1, 0, 0). We need to investigate the new system on the 

plane , and it will be necessary to project the results received in this study onto a closed Poincare disk (or a 

Poincare circle in the other varient of this term)  mapping firstly a plane R
2

u,z onto the Poincare sphere ∑ from 

the center of the sphere ∑, and secondly the lower semi sphere  of the Poincare sphere ∑ onto the Poincare 

disk  that means – (via the orthogonal mapping) onto a closed unit disk of a plane R
2
x,y. 

 

For the appeared as a result of the described above first Poincare mapping new dynamic system the axis  

will be the invariant axis (that mean it will consist of trajectories of this system). On this axis now will lie the 

singular points   are all existing real roots of the polynomial  and 

; the same time may exist : = 0. Further we are going to name such singular points the 

infinitely remote (IR) points of the 1st kind for the dynamic systems described by the equations (1). 

 

The second Poincare transformation 
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somehow similarly maps a phase real plane R
2
x,y anambiguosly onto a sphere ∑, where the diametrically 

opposite points are also considered to be identified. At first we again consider the Poincare sphere ∑ without it`s 

equator. The second Poincare transformation translates each Eq.(1) - system into a new dynamic system. This 

newly obtained dynamic system in the new coordinates of the second Poincare mapping : 

.                               

It is considered and determined on the whole Poincare sphere ∑, as well as on the whole  

 [1].  

A set described with the equation  is the invariant set for the new dynamic system. On this set will lie the 

singular points  where  is any real root of the polynomial We 

could name those singular points the infinitely remote points (IR-points) of the 2nd kind for the dynamic 

systems described by the equations (1), but every singular point of the 2nd kind, for which    naturally 

coincide to someone among the IR-points of the 1st kind, and precisely to the point   

 

while won’t be a root for the polynomial X(x, 1), since X(0, 1) = p3  0 for the dynamic system 

described by the equations (1). As a result, we can formulate the 

 

 

Corollary C. Any dynamic system belonging to the broad family described by the equations (1) has infinitely 

remote singular points only of the 1st kind. 

 

Using the orthogonal projection, further we proceed a mapping of a closed lower semi sphere  of a Poincare 

sphere ∑ onto a real plane x, y. As a result of this mapping the open part H of a lower semi sphere of a Poincare 

sphere ∑ maps one-to-one onto the open Poincare disk  and an equator of the Poincare sphere ∑ (its 

boundary) E maps onto a very circle, a bondary of the Poincare disk, Γ ∂Ω.  

1) All the own trajectories of any dynamic system described by the equations (1), including the isolated 

finite singular point O (0, 0), now displayed into the disk Ω, and they are filling the Poincare disk. They are 

called trajectories of the system under consideration (the Eq.(1) – system) in the Poincare disk Ω.  

2) The infinitely remote trajectories, including the infinitely remote singular points, are displayed now on a 

boundary Γ of a Poincare disk Ω, and they are filling this boundary. They are called trajectories of the system 

under consideration (the Eq.(1) – system) on the Poincare disk’s boundary – the circle Γ.  

Each infinitely remote singular point  of the Eq.(1) – system, now corresponds to 

the two diametrically opposite points situated on the Poincare disk’s boundary – the circle Γ . 

 

we now need to introduce the necessary and important notations. 

1)  curve be a semi trajectory of the Eq.(1) – system in the Poincare disk Ω, which is adjacent 

to a singular point  It starts in the some ordinary point p . 

2) Notations of nodal and saddle bandles N, S, which are adjacent to the singular point  from the 

Poincare disk Ω, will correspond to the notations introduced for the isolated singular point O (0, 0). 

3) We introduce the notations of the words ( containing letters N, S, which are fixing the order of 

bandles of -curves at a semi circumvention of the point  in the Poincare disk Ω. This semi 

circumvention is proceeded in the direction of increasing of u. 

We are going to describe the topological type of the singular point with a word (  while 

we describe the topological type of a singular point . 

For the topological types of the infinitely remote singular points  of the family of dynamic systems 

described by the equations (1) the following theorem is formulated and proved. 

 

 

Theorem B.  If we consider a number  as the root of a polynomial  of the Eq.(1) – system, having 

the multiplicity , then the words used to describe the topologycal types of the infinitely remote 

singular points  of the system, may only have the forms, written in the Table 3 below. The precise form 

will depend on the sign of a number apk and the value of k (here a and pk are the coefficients of the system) [5]. 
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Table 3. Topological types of infinitely remote singular points  

k 
   

0 0 N N 

0, 2 + (-) 
  

1, 3 + (-)   
 

Corollary D. Infinitely remote singular points of any dynamic system described by the equations (1) has no 

separatrices. 

 

 

Theorem C. If we consider a real number ui ( ) as the root of a polynomial  of the Eq.(1) – system, 

having the multiplicity ki , then the words as well as the value gi = P 
(ki)

(ui)Q(ui) 0, which 

describe and determine the topologycal types of the infinitely remote singular points  of the system 

under consideration, may have only forms written in the Table 4 below. The precise form will depend on the 

value of ki and signs of numbers ui and gi, [5].   

 

Table 4. Topological types of the infinitely remote points  

ui ki gi   
+(-) 1, 3 + 

  
+(-) 1, 3 _   
+(-) 2 + 

  
+(-) 2 _   

 

Corollary E. We can conclude using the Theorems B and C, that for the infinitely remote singular points of the 

family of dynamic systems described by the equations (1), only the finite number, and namely 13 (thirteen) 

separate topological types are existing. The thorough detailed study of those 13 topological types makes clear, 

that the infinitely remote singular points of every Eq.(1) - system may have only m separatrices: one separatrice 

for every singular point   

 

Note C. In the Tables 3, 4 the lower sign index «+» or «-» of every nodal or saddle bundle N or S, shows will 

the given bundle adjust to the singular point  from the side where or from the 

side where  of the isocline described with the equation .  

 

In the Table 3, see line 1, a nodal bundle N has no lower sign index at all, that means that it contains -curves 

( -curves) in each domain where > 0 [5-9]]. 

 

 

Conclusions  
 

The present paper is written as a result of the original study in the field of the qualitative theory of differential 

equations and dynamic systems.  

 

The main aim of the study is to investigate and construct all different in the topological and topo-dynamical 

sense phase portraits of a broad family of dynamic systems. The systems belonging to this family are clearly 

characterized with their reciprocal polynomial right parts. A total broad family has numerical subfamilies, 

interesting in the different applications.  

 

The whole family of dynamic systems under consideration was studied using the first and the second Poincare 

mappings on the Poincare sphere, in the Poincare disk and on its boundary - the Poincare circle. We have 

constructed all topologically different phase portraits which are possible for the systems of this family, about 

250 types of phase portraits. All those types were constructed basing on the theoretical precise proofs. [6, 7]. 

 

For this aim it was necessary to investigate all finite and infinitely remote singular points of systems under 

consideration. Purposes of such an investigation demanded developing of new powerful special and totally new 

research methods. [8-10]. 
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Recommendations 
 

Despite of the theoretical nature of the present investigation, due to obtained pioneer results and developed in 

this study new research methods [11-15], authors consider the work to be useful for different applied studies of 

dynamic systems having polynomial right parts [16, 17].. The paper will be interesting and addressed to 

students, postgraduates and scientific researchers.   
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