

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2021

Volume 15, Pages 10-20

ICBAST 2021: International Conference on Basic Science and Technology

Quantum Chemical Calculations of 2-Methoxy-4-[(3-*p*-Methylbenzyl-4,5-Dihydro-1*H*-1,2,4-Triazol-5-One-4-YL)Azomethine] Phenyl-2-Methylbenzoate Molecule

Gul KOTAN Kafkas University

Haydar YUKSEK Kafkas University

Abstract: 2-Methoxy-4-[(3-*p*-methylbenzyl-4,5-dihydro-1*H*-1,2,4-triazol-5-one-4-yl) azomethine] phenyl-2methylbenzoate was optimized by using Density Functional Theory (DFT/B3LYP, B3PW91) methods (Frisch et al., 2009; Wolinski et. al., 1990). ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by the method of GIAO using the program package Gaussian G09 (Wolinski et al., 1990). Theoretical and experimental values were inserted into the grafic according to equatation of $\delta \exp_{=}a+b$. δ calc. Experimental data obtained from the literature (Yüksek et al., 2018). The standard error values were found via SigmaPlot program with regression coefficient of a and b constants. Furthermore, the veda4f program was used in defining of IR data theoretically (Jamróz, 2004). Theoretically calculated IR data are multiplied with appropriate adjustment factors (Merrick et al., 2007) and the data obtained according to DFT(B3LYP, B3PW91) method are formed using theoretical infrared spectrum. Also, dipole moments, the HOMO-LUMO energy, ΔEg , total energy of the molecule, bond lengths and Mulliken charges, the molecular surfaces such as molecular electrostatic potential (MEP) and MEP contour maps, the total density, the electron density and the electrostatic potential were calculated with same method and functions.

Keywords: 1,2,4-Triazol-5-one, DFT, Gaussian G09, HOMO-LUMO.

Introduction

Schiff bases are formed by the condensation of activated carbonyl and amino groups. These compounds contain an imine group (Puchtler, 1981). Organic compounds derived from 1H-1,2,4-Triazol-5-one have great importance in the synthesis of organic substances, pharmaceutical chemistry, medicine, food industry, antibacterial, antioxidant, and anti-inflammatory materials (Fan, et al., 2018; Chu, et al., 2019; Samuel, et al., 2017; Yüksek, et al., 2011; Yüksek, et al., 2020; Murtaza, et al., 2017). Besides, many heterocyclic compounds with 1,2,4 triazole derivatives; It has many biological activities such as antioxidant, antifungal, antimalarial, anti-analgesic, anticancer, anti convulsant, anti-viral (Zhang, et al., 2017; Ikizler, et al., 1998; Hashem, et al., 2007; Pandey, et al., 2012; Uddin, et al., 2020; Nilkanth, et. al., 2020; Jarrahpour, et al., 2015; Kotan, et al; 2020). Recently, the properties such as electronic, geometric, spectroscopic, conductivity and thermodynamics of Schiff bases and many organic compounds containing 1,2,4-triazole have been investigated theoretically and have taken their place in the literature (Kotan, et al., 2021; Beytur, et al., 2021; Ulaş, et al., 2021). In article in the literature, the molecular structure analysis, other all theoretical properties have been studied effectively with the Density Function Theory (DFT) method. In this study, all theoretical calculations were performed with the DFT (B3LYP and B3PW91) method and the 6-311G(d,p) basis set of Gaussian 09W program (Frisch, et al.,

© 2021 Published by ISRES Publishing: <u>www.isres.org</u>

⁻ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁻ Selection and peer-review under responsibility of the Organizing Committee of the Conference

2009) and the obtained results were evaluated. The scaled values (Merrick, et al., 2007) of infrared vibration frequencies were reached by using the Veda 4f program (Jamróz, 2004).

Table 1. ¹ H/ ¹³ C-NMR(DMSO) isotropic chemical shifts (δ /ppm)									
							Differ		
		B3LY				B3PW	B3PW9	B3PW	Differ
		P/	Differ/	B3LY	Differ	91/	1/	91	B3PW
		Vacuu	Vacuu	P /	B3LY	Vacuu	Vacuu	/DMS	91/DM
No	Exp.	m	m	DMSO	Р	m	m	0	SO
C1	146.33	152.25	-5.92	153.18	-6.85	146.53	-0.20	147.39	-1.06
C2	151.24	152.64	-1.4	153.62	-2.38	147.61	3.63	148.51	2.73
C3	153.53	152.08	1.45	152.79	0.74	147.96	5.57	148.63	4.90
C4	128.66	133.11	-4.45	132.51	-3.85	128.00	0.66	127.34	1.32
C5	112.99	125.99	-13	126.08	-13.09	122.02	-9.03	122.03	-9.04
C6	121.25	126.2	-4.95	126.67	-5.42	122.18	-0.93	122.72	-1.47
C7	152.42	160.9	-8.48	161.53	-9.11	155.48	-3.06	156.16	-3.74
C8	139.7	145.8	-6.1	145.82	-6.12	140.36	-0.66	140.42	-0.72
C9	128.66	133.66	-5	133.98	-5.32	129.61	-0.95	129.90	-1.24
C10	30.74	34.58	-3.84	34.37	-3.63	30.43	0.31	30.18	0.56
C11	130.7	138.42	-7.72	138.39	-7.69	133.18	-2.48	133.20	-2.50
C12	128.09	133.04	-4.95	133.18	-5.09	128.94	-0.85	129.80	-1.71
C13	128.9	132.43	-3.53	132.86	-3.96	128.55	0.35	128.99	-0.09
C14	135.66	142.08	-6.42	143.37	-7.71	136.94	-1.28	138.35	-2.69
C15	128.9	132.83	-3.93	133.06	-4.16	128.88	0.02	129.12	-0.22
C16	127.99	131.87	-3.88	131.65	-3.66	127.90	0.09	127.68	0.31
C17	20.53	21.53	-1	21.14	-0.61	18.35	2.18	17.94	2.59
C18	56.22	59.09	-2.87	59.81	-3.59	55.08	1.14	55.74	0.48
C19	164.69	170.39	-5.7	171.45	-6.76	165.11	-0.42	166.11	-1.42
C20	126.43	130.84	-4.41	130.34	-3.91	125.79	0.64	125.26	1.17
C21	132.72	136.63	-3.91	136.92	-4.20	132.42	0.30	132.75	-0.03
C22	126.26	129.21	-2.95	129.89	-3.63	125 29	0.97	126.00	0.26
C23	133.02	137 41	-4 39	138.89	-5.87	133 38	-0.36	134 91	-1.89
C24	131.86	135.72	-3.86	136.19	-4 33	131.85	0.01	132.33	-0.47
C25	139 77	151 45	-11 68	151 44	-11 67	146 15	-6 38	146 16	-6 39
C26	21.06	25 21	-4 15	24 77	-371	21.87	-0.81	21.00	0.06
H27	11.92	7.61	4 31	8 14	3 78	7 71	4 21	8 25	3.67
H28	9.65	10 71	-1.06	10.68	-1.03	10.93	-1.28	10.89	-1 24
H29	7 73	8 83	-1.1	8 91	-1.18	9.01	-1.28	9 10	-1.37
H30	73	7.86	-0.56	8.08	-0.78	8.02	-0.72	8.18	-0.88
H31	7.3	7.68	-0.24	7.86	-0.42	7.86	-0.42	8.04	-0.60
H32	4.05	1.00 4.46	-0.24	4 53	-0.42	7.80 4 59	-0.42	4.67	-0.62
H32	4.05	4.40 1.58	-0.53	4.55	-0.67	4.35	-0.70	4.07	-0.85
H3/	7.19	+.50 8.12	-0.93	4.72 8 31	-0.07	4.75 8.78	-0.70	4.70 8.48	-0.05
H35	7.17	7.03	0.95	8 10	1.03	8.07	1.00	8.76	1 10
H36	7.07	7.95	-0.88	8 10	-1.03	8.10	-1.00	8.26	-1.19
H30 H37	7.07	8 10	-0.00	8 20	1.05	8 36	1.05	8 38	1 10
H38	2.21	3.17	-1	3.16	-1.01	3.30	-1.17	3.26	1.15
1130 1130	2.21	2.60	-0.95	2.70	-0.95	2.25	-1.02	2.01	-1.05
1139 1140	2.21	2.09	-0.48	2.79	-0.38	2.00	-0.39	2.91	-0.70
П40 Ц41	2.21	2.91 4.15	-0.7	2.99	-0.78	5.01	-0.60	5.10	-0.89
П41 Ц4Э	3.01 2.07	4.15	-0.20	4.19	-0.52	4.40	-0.01	4.00	-0.79
1142 U/2	3.01 2.97	J 1/1	-1.13	J.00 1 59	-1.21	J.07 4 21	-1.20	J.1J 1 25	-1.20
П4Э Ц44	J.0/ 8.00	4.41	-0.34	4.30	-0.71	4.21 0.49	-0.54	4.23	-0.30
П44 1145	0.09 7.69	9.31	-1.22	9.30	-1.2/	9.48 9.24	-1.39	9.54	-1.45
П4Э ЦАС	1.08 7.71	0.07	-0.39	0.20	-0.58	0.24 0.27	-0.30	0.43	-0.75
H40	1.11	ð.2 8.06	-0.49	8.45 8.25	-0.72	8.3/ 8.22	-0.00	ð.01 9.42	-0.90
H4/	/.40	8.06	-0.6	8.25	-0.79	8.22	-0./6	8.42 2.56	-0.96
H48	2.01	2.7	-0.09	5.44	-0.85	3.01	-1.00	3.30	-0.95
H49	2.61	3.19	-1.18	2.89	-0.28	3.92	-1.51	5.77	-1.16
H30	2.61	3.49	-0.88	3.63	-1.02	2.83	-0.22	3.03	-0.42

In addition, ¹³C NMR and ¹H NMR chemical shift values were determined by DFT (B3LYP/B3PW91) method and 6-311G(d,p) base set according to GIAO method (Wolinski, et. al., 1990). The results of these spectral calculations and the experimental results from the literature (Yüksek, et al., 2018) were compared. Also, all theoretical calculations of the molecule have been done.

Method

In this study, the Gaussian 09W package program, which is a very comprehensive program, was used. First of all, with the B3LYP/6-311G(d,p) basis set of DFT, the most stable low-energy optimized structure of atoms and molecules has been established. Each atom of molecule was then given a number. From this optimized structure, spectroscopic, thermodynamic, geometric, electronic properties of the molecule were calculated (Frisch et al., 2009). IR vibration frequency values were calculated with the Veda 4f program (Jamróz., 2004). The ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by the GIAO method using the Gaussian G09 package program (Wolinski et al., 1990). These values were compared with the experimental values (Yüksek, et al., 2018) and the difference values were found, and these values were $\delta \exp=a+b$. δ calc. plotted according to the equation. The regression coefficient was found using the Sigmaplot program. The HOMO-LUMO energy, total energy, bond angle, bond length, Mulliken atomic charges, dipole moment of the target molecule was calculated. In addition, MEP surface maps were visualized.

Results and Discussion

Computational Details

Figure 1. The Gaussview structure of the molecule.

The Relation between R Values of the Compound

There is such a relationship between R²-values of the compound. B3LYP(DMSO): ¹H: 0.8702, ¹³C: 0.9951; B3PW91(DMSO)6-311G(d,p) ¹H: 0.8674, ¹³C: 0.9955; B3LYP(vacuum): ¹H: 0.8433, ¹³C: 0.9948; B3PW91(vacuum)6-311G(d,p) ¹H: 0.8403, ¹³C: 0.9953. These values for compound were seen in the Table 2. Theoretical and experimental carbon/proton chemical shifts ratios between according to R² lineer a correlation were observed (Figure 2).

Table 2. The correlation data for chemical shifts							
	13 C-NMR/ R ²	1 H-NMR /R 2					
B3LYP(DMSO)	0.9951	0.8702					
B3PW91(DMSO)	0.9955	0.8674					
B3LYP	0.9948	0.8433					
B3PW91	0.9953	0.8403					

methods chemical shifts

The Vibration Frequency of the Compound

Theoretically IR values were calculation Veda 4f program and scala values were obtain. The calculated harmonic vibrational frequency values were scaled with 0.9671 for B3LYP 3-21 G level, 0.9688 for 6-311G(d,p) level (Merrich et al., 2007). The positive frequency in the data was found. IR spectrums were drawn with obtained values according to DFT method. Theoretically IR values were compare with experimentally IR values and found corresponding with each other of values.

		Table 3. Significat	nt vibrati	onal freque	ncies (cm	1)	
Experimer	ntal IR	Scaled B3	BLYP	Scal B3P	ed W91	Experim	ental IR
ν (NH)		3169		3514	4	3565	
v (C=O)		1739.17	00	1708	8.1664	1737.1	750
v (C=N)		1589		1577	7	1613	
v (COO)		1231		1248	3	1259	
Transmittance [%] 88 90 92 94 96 98 100 1 1 1 1 1 1 10	ł			~~~~~			
		3119.65 3062.15 2976.09 2842.12 2843.12 2843.12 2843.12 2840.07		1735.01	1700.78 1658.79 1658.79 1512.60 1512.60 1512.60 1516.28 1316.28	1274.04 1247.05 1222.28 1121.57 1019.64 900.80 900.80 900.80 877.45 1019.64	
	3500	3000	2500 Wavenu	2000 mber cm-1	1500	1000	500

Figure 3. Experimental and theoretical IR spectrums simulated with DFT/(B3LYP, B3PW91)

Molecular Geometry

The bond angle and length are geometric parameters of the structure. To calculate these two parameters, 6-311 G(d,p) basis set and B3LYP and B3W91 functions are used. According to this calculations result, the highest bond length is between C(1)-C(10) atoms that this values are 1.49/1.48 Å for B3LYP/ B3PW91 6-311G(d,p). Besides, respectively, the bond lengths in the triazole ring N51-N52, N51-C1, C2-O55, C2-N52, N53-C1 are calculated 1.37/1.36; 1.29/1.29; 1.21/1.21; 1.36/1.36, 1.38/ 1.38 Å for B3LYP 3-21G(d,p)/ 6-311G(d,p) basis sets (table 4). In the literature, the N-N, N=C, C=O bond lengths are measured as 1.40, 1.28, 1.21 Å (Sudha et al. 2018). The calculated bond length values are consistent with literature values.

The highest bond angle is between N(52)-C(2)-O(55) atoms, which is $129.86/129.84^{0}$ for B3LYP/B3PW91 6-311G(d,p) basis sets (table 5). The calculated Mulliken atomic charges (Mulliken, 1955) calculated by using the B3LYP, B3PW91 method with 6-311G(d,p) basis sets. The electronegative oxygen (O) and nitrogen (N) atoms have negative atomic charge values. The carbon atoms surrounded by electronegative atoms have negative atoms charge values. The C1 atom surrounded by two electronegative atoms (N51, N53) and C2 atom which is surrounded by three electronegative atoms (N52, N53, O55) have negative charges values. All hydrojen atoms of the compound (H27-50) have positive atomic charge values (table 6).

Bon	id Length	B3LYP	B3PW91	Bon	d Length	B3LYP	, B3PW91
1	C(1)-N(51)	1.297	1.296	35	C(20)-C(21)	1.404	1.401
2	C(1)-N(53)	1.387	1.383	36	C(23)-H(46)	1.084	1.085
3	C(1)-C(10)	1.492	1.487	37	C(23)-C(24)	1.390	1.388
4	N(51)-N(52)	1.379	1.369	38	C(24)-H(47)	1.084	1.085
5	N(52)-H(27)	1.005	1.005	39	C(24)-C(25)	1.398	1.396
6	N(52)-C(2)	1.369	1.365	40	C(25)-C(26)	1.508	1.502
7	C(2)-O(55)	1.216	1.214	41	C(26)-H(48)	1.091	1.092
8	C(2)-N(53)	1.419	1.414	42	C(26)-H(49)	1.091	1.091
9	N(53)-N(54)	1.371	1.363	43	C(26)-H(50)	1.091	1.092
10	N(54)-C(3)	1.285	1.284	44	C(8)-C(9)	1.389	1.387
11	C(3)-H(28)	1.086	1.088	45	C(9)-C(4)	1.396	1.394
12	C(3)-C(4)	1.461	1.457	46	C(10)-H(32)	1.093	1.094
13	C(4)-C(5)	1.405	1.402	47	C(10)-H(33)	1.091	1.092
14	C(4)-C(9)	1.396	1.394	48	C(10)-C(11)	1.522	1.517
15	C(5)-H(29)	1.082	1.083	49	C(11)-C(12)	1.394	1.392
16	C(5)-C(6)	1.379	1.377	50	C(12)-H(34)	1.085	1.085
17	C(6)-H(30)	1.083	1.084	51	C(12)-C(13)	1.393	1.391
18	C(6)-C(7)	1.405	1.402	52	C(13)-H(35)	1.085	1.086
19	C(7)-O(56)	1.357	1.351	53	C(13)-C(14)	1.396	1.394
20	O(56)-C(18)	1.433	1.425	54	C(14)-C(17)	1.509	1.504
21	C(18)-H(41)	1.089	1.090	55	C(17)-H(38)	1.095	1.095
22	C(18)-H(42)	1.090	1.091	56	C(17)-H(39)	1.092	1.092
23	C(18)-H(43)	1.093	1.093	57	C(17)-H(40)	1.093	1.093
27	C(7)-C(8)	1.401	1.399	58	C(14)-C(15)	1.399	1.397
28	C(8)-O(57)	1.396	1.390	59	C(15)-H(36)	1.085	1.086
29	O(57)-C(19)	1.380	1.373	60	C(15)-C(16)	1.390	1.388
30	C(19)-O(58)	1.203	1.201	61	C(16)-H(37)	1.085	1.086
31	C(19)-C(20)	1.487	1.483	62	C(16)-C(11)	1.398	1.395
32	C(21)-C(22)	1.387	1.385				
33	C(22)-H(45)	1.083	1.084				
34	C(22)-C(23)	1.392	1.390				

Table 4. The calculated bond lengths with B3LYP/B3PW91 6-311G(d,p)

Table 5	. The	calculated	bond	angles	with	B3L	YP/B	3PW91	6-31	1G(d,p))
						-					/

Bond Angles	B3LYP	B3PW91	Bond Angles	B3LYP	B3PW91
N(51)-C(1)-N(53)	111.440	111.370	C(4)-C(5)-H(29)	119.157	119.118
N(51)-N(52)-C(2)	114.366	114.511	H(29)-C(5)-C(6)	120.495	120.560
N(51)-N(52)-H(27)	120.514	120.497	C(4)-C(5)-C(6)	120.348	120.321
H(27)-N(52)-C(2)	125.101	124.977	C(5)-C(6)-H(30)	121.362	121.367
N(52)-C(2)-O(55)	129.862	129.840	H(30)-C(6)-C(7)	117.095	117.063
O(55)-C(2)-N(53)	128.893	128.963	C(5)-C(6)-C(7)	121.542	121.569
N(52)-C(2)-N(53)	101.245	101.196	C(6)-C(7)-O(56)	115.798	115.862
N(51)-C(1)-C(10)	124.504	124.651	C(7)-O(56)-C(18)	120.475	120.156
C(1)-C(10)-H(32)	106.336	106.336	O(56)-C(18)-H(41)	105.398	105.525
C(1)-C(10)-H(33)	109.020	108.990	O(56)-C(18)-H(42)	111.480	111.480
C(1)-C(10)-C(11)	113.862	113.635	O(56)-C(18)-H(43)	110.935	111.599
C(10)-C(11)-C(12)	120.942	120.965	O(56)-C(7)-C(8)	126.160	126.112
C(11)-C(12)-H(34)	119.560	119.553	C(7)-C(8)-O(57)	120.043	119.978
H(34)-C(12)-C(13)	119.566	119.585	C(8)-O(57)-C(19)	118.791	118.560
C(12)-C(13)-H(35)	119.388	119.406	O(57)-C(19)-O(58)	122.003	122.124
H(35)-C(13)-C(14)	119.513	119.479	O(57)-C(19)-C(20)	126.651	126.631
C(13)-C(14)-C(17)	121.265	121.266	C(19)-C(20)-C(21)	119.444	119.395
C(13)-C(14)-C(15)	117.797	117.778	C(20)-C(21)-H(44)	118.798	118.774
C(14)-C(17)-H(38)	111.067	111.440	H(44)-C(21)-C(22)	120.094	120.132
C(14)-C(17)-H(39)	111.415	111.414	C(21)-C(22)-H(45)	120.098	120.120
C(14)-C(17)-H(40)	111.398	110.981	H(45)-C(22)-C(23)	120.629	120.643
C(14)-C(15)-H(36)	119.427	119.412	C(22)-C(23)-H(46)	120.281	120.280
H(36)-C(15)-C(16)	119.345	119.354	H(46)-C(23)-C(24)	119.753	119.747
C(15)-C(16)-H(37)	119.823	119.875	C(23)-C(24)-H(47)	119.358	119.413

H(37)-C(1	6)-C(11)	119.459	119.411	H(47)-C(24	-)-C(25)	118.530	118.468
N(53)-N(5	4)-C(3)	118.850	118.752	C(24)-C(25)-C(26)	118.555	118.614
N(54)-C(3)-H(28)	121.955	121.928	C(25)-C(26)-H(48)	111.773	111.759
H(28)-C(3)-C(4)	117.627	117.746	C(25)-C(26)-H(49)	111.494	111.435
C(3)-C(4)-	C(5)	123.074	123.061	C(25)-C(26)-H(50)	109.913	109.945
					· · · ·		
r	Table 6. The	calculated	mulliken cha	rges datas B3L	YP/B3PW9	1 6-311G(d,p)
Atom	DFT	B3	PW91	Atom	DF	Т	B3PW91
C1	0.354	0	.393	H29	0.10)8	0.121
C2	0.533	0	.576	H30	0.10)6	0.118
C3	0.129	C	.157	H31	0.10)2	0.115
C4	-0.175	-().217	H32	0.15	50	0.169
C5	0	C	.003	H33	0.13	36	0.155
C6	-0.102	-().119	H34	0.08	33	0.094
C7	0.208	0	.218	H35	0.08	32	0.092
C8	0.125	0	.114	H36	0.08	34	0.094
C9	0.084	C	.007	H37	0.09	98	0.112
C10	-0.157	-().195	H38	0.12	27	0.130
C11	-0.120	-().139	H39	0.10)9	0.123
C12	-0.060	-(0.070	H40	0.11	15	0.143
C13	-0.076	-(0.082	H41	0.12	24	0.135
C14	-0.098	-(0.110	H42	0.12	24	0.139
C15	-0.075	-(0.082	H43	0.11	17	0.133
C16	-0.036	-(0.033	H44	0.11	15	0.126
C17	-0.258	-().288	H45	0.1	0	0.110
C18	0.134	-().175	H46	0.10)1	0.111
C19	0.415	C	.435	H47	0.09	91	0.101
C20	-0.202	-().233	H48	0.09	94	0.145
C21	-0.012	-(0.014	H49	0.13	36	0.109
C22	-0.094	-(0.105	H50	0.12	27	0.155
C23	-0.067	-(0.073	N51	-0.2	28	-0.241
C24	-0.075	-(0.084	N52	-0.3	13	-0.332
C25	-0.070	-(0.078	N53	-0.3	82	-0.417
C26	-0.206	-().245	N54	-0.2	09	-0.231
H27	0.249	0	.258	O55	-0.3	90	-0.406
H28	0.140	0	.158	O56	-036	51	-0.363

MEP Surface Analysis

By looking at the molecular electrostatic potential map, we can identify the electronegative and electropositive regions of the molecule. In the MEP map, the red regions were seen in the nucleophilic regions and the blue regions were seen in the electrophilic regions. In the MEP shape of this structure, the carbonyl group is around red, while the N-H acidic proton is blue around.

Figure 4. The calculated MEP and surface contour map of the molecule

Frontier Molecular Orbital Analysis

Frontier molecular orbitals (FMO) designated kinetic stability, the electronic transitions, electric and optical properties (Fukui, 1982). The HOMO-LUMO energy values was calculated as 4.17/4.20 eV for B3LYP and B3PW91 functionals in the 6-311G (d,p) basis set (figure 5). With the HOMO-LUMO energy gap electron affinity (A), global hardness (η), electronegativity (χ), chemical potential (μ), softness (S), ionization potential (I), chemical potential (Pi), electrophilic index(ω), Nucleophilic index (IP) for the compound was calculated and we are seen in table 7.

Figure 5. HOMO-LUMO energy of the molecule 6-311G(d,p)

	Table 7. The calculated electronic structure parameters of the molecule						
		B3LYP 3-21G((d,p)	B3LYP 6-311	G(d,p)		
		Hatree	ev	Hatree	ev		
	LUMO	-0.0599	-1.62992	-0.06774	-1.84325		
	НОМО	-0.2191	-5.96186	-0.2278	-6.1986		
А	elektron ilgisi	0.0599	1.62992	0.06774	1.84325		
Ι	İyonlaşma potansiyeli	0.2191	5.96186	0.2278	6.1986		
ΔΕ	energy gap	0.1592	4.33194	0.16006	4.35534		
χ	electronegativity	0.1395	3.79589	0.14777	4.02093		
Pi	chemical potential	-0.1395	-3.79589	-0.14777	-4.02093		
ω	electrophilic index	0.000774518	0.02108	0.000873766	0.02378		
IP	Nucleophilic index	-0.0111042	-0.30215	-0.01182603	-0.32179		
S	molecular softness	12.5628	341.843	12.4953	340.006		
η	molecular hardness	0.0796	2.16597	0.08003	2.17767		

able 7. The calculated electronic structure peremeters of the molecule

Table 8. The calculated upple moments datas of the molecule							
	$\mu_{\rm x}$	$\mu_{\rm v}$	μ_z	μ_{Toplam}			
B3LYP	-1.6296	1.5316	-0.6621	2.3323			
B3PW91	-2.5397	1.9737	-0.8065	3.3160			
	Table 9. The	Table 9. The calculated total energy datas of the molecule					
Energy(a.u.)		B3LYP	B3PW9	01			
		-1525.48470748	-1524.8	8006830			

Table 8 The calculated dipole moments datas of the molecule

Thermodynamics Properties

Thermodynamics parameters were calculated with the (B3LYP/ B3PW91) functionals of DFT method at 298.150 K and under 1 atm pressure and were summarized in the Table 10.

Table 10. The calculated thermodynam	ics parameters of the	molecule
Parameters	B3LYP	B3PW91
Rotational temperatures (Kelvin)		
А	0.01000	0.01002
В	0.00226	0.00227
С	0.00203	0.00204
Rotational constants (GHZ)		
А	0.20833	0.20877
В	0.04710	0.04727
С	0.04225	0.04257
Thermal Energies E(kcal/mol)		
Translational	0.889	0.889
Rotational	0.889	0.889
Vibrational	304.170	305.163
Total	305.948	306.940
Thermal Capacity CV(cal/mol-K)		
Translational	2.981	2.981
Rotational	2.981	2.981
Vibrational	110.899	110.650
Total	116.861	116.612
Entropy S(cal/mol-K)		
Translational	44.242	44.242
Rotational	37.892	37.879
Vibrational	129.652	128.917
Total	211.786	211.038
Zero-point correction (Hartree/Particle)	0.456549	0.458187
Thermal correction to Energy	0.487559	0.489140
Thermal correction to Enthalpy	0.488503	0.490085
Thermal correction to Gibbs Free Energy	0.387876	0.389814
Sum of electronic and zero-point Energies	-1525.028158	-1524.421882
Sum of electronic and thermal Energies	-1524.997149	-1524.390928
Sum of electronic and thermal Enthalpies	-1524.996205	-1524.389984
Sum of electronic and thermal Free Energies	-1525.096831	-1524.490254
Zero-point vibrational energy (Kcal/mol)	286.48894	287.51650

Conclusion

All quantum chemical calculations of 2-Methoxy-4-[(3-p-methylbenzyl-4,5-dihydro-1H-1,2,4-triazol-5-one-4yl) azomethine] phenyl-2-methylbenzoate compound with B3LYP, B3PW91/6-311G(d,p) sets were theoretically investigated. As a result of the comprehensive and comparative calculations based on the optimized structure. The R² values for the ¹³C-NMR data of the molecule are 0.9955 in the B3PW91 6-311G (d,p) basic set and in the DMSO solvent environment and the closest value to 1 when compared to the other sets. As can be seen from the graphs, a deviation was observed in the ¹H-NMR chemical shift results. The reason for this is the N-H acidic proton in the structure. IR vibration frequencies were calculated theoretically with two different methods and the values compared with the experimental values, and it was concluded that the values calculated with the comprehensive set B3PW91/6-311G(d,p) were more compatible with the experimental. No negative values were found in the theoretical IR data, which showed us that the molecule was stable. Among the energy values of the HOMO-LUMO orbitals of the molecule, the highest Δ Eg value is 4.20 eV obtained with B3PW91/6-311G((d,p) and this result tells us that the structure is stable. In addition, electron affinity using the HOMO-LUMO orbital energies, ionization potential, molecular hardness-softness, nucleophilic properties were calculated. The thermodynamic values of the molecule were found and, the geometric parameters were calculated and the bond lengths were compared with the values in the literature. The obtained data were found to be compatible with each other and with the experimental data. In addition, molecular surface maps were created and nucleophilic regions of the molecule were determined from the MEP map.

Scientific Ethics Declaration

The authors declare that the scientific ethical and legal responsibility of this article published in EPSTEM journal belongs to the authors.

References

- Beytur, M., & Avinca, I. (2021). Molecular, Electronic, Nonlinear Optical and Spectroscopic Analysis of Heterocyclic 3-Substituted-4-(3-methyl-2-thienylmethyleneamino)-4, 5-dihydro-1H-1, 2, 4-triazol-5ones: Experiment and DFT Calculations. *Heterocyclic Communications*, 27(1), 1-16.
- Chu, X. M., Wang, C., Wang, W. L., Liang, L. L., Liu, W., Gong, K. K., & Sun, K. L. (2019). Triazole derivatives and their antiplasmodial and antimalarial activities. *European Journal of Medicinal Chemistry*, 166, 206-223.
- Fan, Y. L., Cheng, X. W., Wu, J. B., Liu, M., Zhang, F. Z., Xu, Z., & Feng, L. S. (2018). Antiplasmodial and antimalarial activities of quinolone derivatives: an overview. *European Journal of Medicinal Chemistry*, 146, 1-14.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M.; Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr.Vreven, T., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin; L.R., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S.; Daniels A.D., Farkas, O.; Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. (2009). *Gaussian Inc.* Wallingford.
- Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science, 218(4574), 747-754.
- Hashem, A. I., Youssef, A. S., Kandeel, K. A., & Abou-Elmagd, W. S. (2007). Conversion of some 2 (3H)furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity. *European Journal of Medicinal Chemistry*, 42(7), 934-939.
- Ikizler, A. A., Ikizler, A., Yüksek, H., & Serdar, M. (1998). Antitumor activities of some 4, 5-dihydro-1H-1, 2, 4-triazol-5-ones. *Model. Measur. Control, Ser. C, 1*, 25-33.
- Jamróz, M. H. (2004). Vibrational Energy Distribution Analysis. VEDA 4 Program.
- Jarrahpour, A., Shirvani, P., Sharghi, H., Aberi, M., Sinou, V., Latour, C., & Brunel, J. M. (2015). Synthesis of novel mono-and bis-Schiff bases of morpholine derivatives and the investigation of their antimalarial and antiproliferative activities. *Medicinal Chemistry Research*, 24(12), 4105-4112.
- Kotan, G., & Kardaş, F. Structural and theoretical study based on DFT calculations of 3-Methyl-4-[3-ethoxy-(2p-metilbenzenesulfonyloxy)-benzylidenamino]-4, 5-dihydro-1H-1, 2, 4-triazol-5-one. *International Journal of Chemistry and Technology*, 5(1), 42-51.
- Kotan, G., Gökce, H., Akyıldırım, O., Yüksek, H., Beytur, M., Manap, S., & Medetalibeyoğlu, H. (2020). Synthesis, Spectroscopic and Computational Analysis of 2-[(2-Sulfanyl-1 H-benzo [d] imidazol-5-yl) iminomethyl] phenyl Naphthalene-2-sulfonate. *Russian Journal of Organic Chemistry*, 56(11), 1982-1994.
- Merrick, J. P., Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. *Journal of Physical Chemistry*, 111(45), 11683-11700.

- Mulliken, R. S. (1955). Electronic population analysis on LCAO–MO molecular wave functions. I. *The Journal* of Chemical Physics, 23(10), 1833-1840.
- Murtaza, S., Akhtar, M. S., Kanwal, F., Abbas, A., Ashiq, S., & Shamim, S. (2017). Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. *Journal of Saudi Chemical Society*, *21*, 359-S372.
- Nilkanth, P. R., Ghorai, S. K., Sathiyanarayanan, A., Dhawale, K., Ahamad, T., Gawande, M. B., & Shelke, S. N. (2020). Synthesis and Evaluation of Anticonvulsant Activity of Some Schiff Bases of 7- Amino- 1, 3- dihydro- 2H- 1, 4- benzodiazepin- 2- one. *Chemistry & Biodiversity*, 17(9), 2000342.
- Pandey, A., Rajavel, R., Chandraker, S., & Dash, D. (2012). Synthesis of Schiff bases of 2-amino-5-aryl-1, 3, 4thiadiazole and its analgesic, anti-inflammatory and anti-bacterial activity. *E-Journal of Chemistry*, 9(4), 2524-2531.
- Puchtler, H., & Meloan, S. N. (1981). On Schiff's bases and aldehyde-Fuchsin: A review from H. Schiff to RD Lillie. *Histochemistry*, 72(3), 321-332.
- Sudha, N., Abinaya, B., Arun Kumar, R., & Mathammal, R. (2018). Synthesis, Structural, Spectral, Optical and Mechanical Study of Benzimidazolium Phthalate crystals for NLO Applications. *Journal of Lasers Optics & Photonics*, 5(2), 1-6.
- Uddin, N., Rashid, F., Ali, S., Tirmizi, S. A., Ahmad, I., Zaib, S., ... & Haider, A. (2020). Synthesis, characterization, and anticancer activity of Schiff bases. *Journal of Biomolecular Structure and Dynamics*, 38(11), 3246-3259.
- Ulaş, Y. (2021). Synthesis, Spectroscopic Characterization (FT-IR, NMR, UV), NPA, NBO, NLO, Thermochemical Analysis and Molecular Docking Studies of 2-((4-hydroxyphenyl)(piperidin-1-yl) methyl) phenol. *Journal of Computational Biophysics and Chemistry*, 20(3), 323-335.
- Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. *Journal of the American Chemical Society*, 112(23), 8251-8260.
- Yüksek, H., Gürsoy-Kol, O., Kemer, G., Ocak, Z., & Anil, B. (2011). Synthesis and in-vitro antioxidant evaluation of some novel 4-(4-substituted) benzylidenamino-4, 5-dihydro-1H-1, 2, 4-triazol-5-ones.
- Yüksek, H., Kutanis, O., Özdemir, G., Beytur, M., Kara, S., Gürsoy Kol, Ö., Alkan, M. (2018). Synthesis, In Vitro Antioxidant and Antimicrobial Activities of Some Novel 2-Methoxy-4-[(3-substitue-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)azomethine]phenyl 2-methylbenzoate Derivatives. *Res J Pharm Biol Chem* Sci, 9(4), 501-512.
- Yüksek, H., Özdemir, G., Manap, S., Yılmaz, Y., Kotan, G., Gürsoy-Kol, Ö., & Alkan, M. (2020). Synthesis and Investigations of Antimicrobial, Antioxidant Activities of Novel Di-[2-(3-alkyl/aryl-4, 5-dihydro-1H-1, 2, 4-triazol-5-one-4-yl)-azomethinephenyl] Isophtalates and Mannich Base Derivatives. ACTA Pharmaceutica Sciencia, 58(1).
- Zhang, S., Xu, Z., Gao, C., Ren, Q.C., Chang, L., Lv, Z.S., Feng, L.S., 2017. Triazole derivatives and their antitubercular activity. *European Journal of Medicinal Chemistry*, 138, 501-513.

Author Information					
Gul KOTAN	Haydar YUKSEK				
Kafkas University,	Kafkas University				
Kars, Turkey	Kars, Turkey				
Contact e-mail: gulkemer@hotmail.com					

To cite this article:

Kotan, G. & Yuksek, H. (2021). Quantum chemical calculations of 2-methoxy-4-[(3-p-methylbenzyl-4,5-dihydro-1h-1,2,4-triazol-5-one-4-yl)azomethine] phenyl-2-methylbenzoate molecule. *The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 15*, 10-20.