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Abstract: Television uses electromagnetic waves that carry audio and video.  The unused frequencies or 

channels in broadcasting services are referred to as television white spaces.  The unused spectrum can be 

managed to provide internet access in coordination with surrounding TV channels to avoid interference.  

Different ways of dynamically managing spectrum management have been conceived, and geolocation 

databases are considered the better option.  Geolocation databases, when updated and complete, are helpful 

when frequencies are dynamically shared.  In real life, the spectrum availability for a secondary user lacks 

numerous information; hence, it is sparse.  This paper forecasts wireless channel availability given a sparse 

geolocation spectrum database.  A dynamic sparse forecasting model is proposed through logistic penalized 

regression.  Results show that forecasting accuracy is mostly above 90% on average when sparsity penalty terms 

are incorporated into the model.  Forecasting accuracy is improved when penalty terms are integrated into the 

logistic regression models to account for sparsity.  
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Introduction 

 

Television (TV) uses electromagnetic (EM) waves that carry modulated audio and video to broadcast.  The TV 

EM waves have long wavelengths and travel far distances.  The spectrum is divided into channels, which may 

be occupied or not.  An unused portion of the spectrum is called white space. 

 

 
Figure 1.  Concept of white space. 

  

TV White Space (TVWS) communications involves using the white spaces in the TV spectrum for other non-

broadcasting purposes such as point-to-point connectivity, Internet services, emergency communications, and 

the like.  Studies have explored using these white space bands with an increased demand for network usage and 

remote areas needing communication access.  Some applications on TVWS include environment monitoring, 
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emergency tracking, and communication that can reach far-flung and remote areas, which are hard to reach 

using traditional communication technologies, such as the Internet.  TVWS communication is a growing 

technology allowing dynamic frequency spectrum usage, which can benefit rural and underserved areas of 

developing countries like the Philippines.  According to Inquirer, a map of digital poverty in the Philippines 

discovered that rural areas have no access to sufficient Internet speeds.  This outcome means that rural areas are 

left behind in terms of connectivity (Sy, 2021).  TVWS can be used for a super-high-speed Wi-Fi, called Wi-Fi 

2.0, that can provide access to underserved areas.  This Wi-Fi can reach gigabits per second speeds (Sarkar et 

al., 2016).  TVWS has been tried in different countries, such as Japan, India, Singapore, and even the 

Philippines (Mody, 2017). 

 

There is a drawback to TVWS, at least when using existing technologies.  TVWS uses dynamic sharing of 

frequencies across space and time.  In addition, TVWS has no protection from interference, especially from 

primary incumbents like TV stations.  So, there must be a way to coordinate the white space devices (WSD).  

Spectrum sensing was one way of coordinating WSDs where the device senses the unoccupied frequencies.  

However, design and performance were challenging, as tested by the Federal Communications Committee 

(FCC) (Gurney et al., 2008).  Geolocation databases are better options because they contain information such as 

occupied frequencies at a given location and time.  A WSD can query the geolocation database, and the 

geolocation database responds with the information needed by the WSD, such as frequency availability.  

However, geolocation databases are sparse, and no study has attempted to forecast using sparse TVWS 

geolocation databases, giving this research the aim to address this problem. 

 

 

Literature Review 

 

Previous studies explored methods of spectrum management so that dynamic sharing of the spectrum between 

primary and secondary devices without interference with primary users is achieved.  Martin et al. (2016) 

developed the General Enhanced Detection Algorithm (GEDA) to enhance the detection of primary users (PU) 

and optimize the secondary user's Quality-of-Service (QoS).  Bourdena et al. (2012) developed a real-time 

secondary spectrum market (RTSSM) through a spectrum broker.  Zhao et al. (2015) used game theory in 

dynamic spectrum management.  

 

Some studies dealt with the TVWS geolocation database.  Deep learning methods were applied to make 

predictions using a geolocation database in the study of Shawel et al. (2019).  However, there are no studies yet 

involving sparse geolocation data. 

 

Hurley & Rickard (2009) compared numerous sparsity measures.  Benarabi et al. (2021) used density, which is 

the ratio of the number of non-zero elements to the total number of elements in a vector, as a basis for its 

sparsity measure.  Goswami et al. (2018) measured the sparsity of a network graph using measures based on the 

Gini index.  The integration of sparsity in predictive analytics has not yet been explored.  

 

Some studies investigated forecasting using time series models.  Wu et al. (2012) derived the Adversarial Sparse 

Transformer (AST) from Generative Adversarial Networks (GANs).  Ardia et al. (2019) employed time series 

aggregation using computed textual sentiment to forecast high-dimensional data.  Flaxman et al. (2019) propose 

a generic spatio-temporal forecasting method for a challenge in predicting crimes in real time.  Spatio-temporal 

forecasting was also performed on sparse data to predict urban traffic flow (Zheng et al., 2020).  The space and 

time complexity of models increase if data are sparse.  Model algorithms might behave in extraordinary results 

if sparsity is present.  No studies have considered the sparsity factor in forecasting models, especially spectrum 

forecasting.  Geolocation prediction capabilities have been developed primarily using deep learning models.  

However, no studies have explored using sparse forecasting capabilities for geolocation databases.  This area is 

a potential novel contribution of this study. 

 

 

Sparsity 
 

Sparsity can be thought of as having a small amount of information or packing a large proportion of energy in a 

small number of coefficients (Hurley & Rickard, 2009).  For instance, a matrix with many zeros is referred to as 

sparse.  The concept of sparsity is widely used in various areas of research.  Areas such as ocean engineering, 

antennas and propagation, and image processing employ this concept (Hurley & Rickard, 2009).  In addition, 

sparsity was a central concept for the success of machine learning algorithms and numerous techniques such as 
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matrix factorization, signal processing, dictionary learning, and support vector machines.  Because the concept 

of sparsity could be abstract, many measures of sparsity were introduced. 
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The majority of the studies use ℓ𝑝-based sparsity measures, with ℓ0 and ℓ1 being most common.  Given a vector 

𝐜 ∈ ℝ𝑁, the traditional definition of ℓ𝑝 norm is described in (1).  The ℓ0 measure simply counts the number of 

non-zero elements in a vector.  It is the traditional measure in a lot of mathematical settings.  However, ℓ0 is 

difficult to solve as the derivative of the measure has no information (Hurley & Rickard, 2009), and problems 

involving ℓ0 are combinatorial in nature.  Given this, the ℓ1 measure is usually an approximation of the ℓ0 norm 

and is being employed in many optimization problems. ℓ1 can be used as a penalty.  Other ℓ𝑝 based measures 

use 0 < 𝑝 < 1, such as the study of Xu et al. (2010) that proposed the use of ℓ
1

2 norm.  Other sparsity measures 

are the Hoyer and Gini indices, as defined in (2) and (3), respectively. 
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given ordered data: 𝑐(1) ≤ 𝑐(2) ≤ ⋯ ≤ 𝑐(𝑁) 

(3) 

 

 

 

 

Logistic Regression and Regularization 
 

A logistic regression models variables whose response is categorical.  A categorical variable takes on discrete 

values and does not use the ratio scale (Czepiel, 2002).  Logistic regression derives from the generalized linear 

model developed by Nelder and Wedderburn.  For a binary logistic model, the response variable has two 

possible values, and the model is defined in (4). 

 

 

logit(𝜋𝑖) = log (
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In (4), 𝜋𝑖 represents the probability of success, 𝑥𝑖𝑘 represents the predictor variables and 𝛽𝑘 is a parameter of the 

model.  The predictor variables can also be put in a matrix 𝐗 ∈ ℝ𝑁×(𝐾+1), and 𝑥𝑖0 = 1 for 𝑖 = 1,2, … , 𝑁. Unlike 

linear models, where parameters are found by minimizing the squares of the errors—the Least Squares 

Estimate—logistic models use maximum likelihood.  For a binary logistic model, the likelihood is the binomial 

probability distribution. 
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(5) 

 

When estimating the parameters by maximum likelihood, the log-likelihood is maximized, or equivalently, the 

negative of the log-likelihood is minimized, as in (6).  However, Czepiel (2002) noted that estimating the 

maximum likelihood is computationally intractable, and numeric methods are employed instead. 

 

 argmin
𝜷
− ln 𝐿(𝜷|𝐲) (6) 
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Binary logistic regression can be extended to form Multinomial Logistic Regression (MLR), in which the 

response variable can take at least two values.  For an MLR model, given 𝐽 discrete categories of the response 

where 𝐽 ≥ 2, with the 𝐽th category as the baseline, the model is defined in (7).  The probability distribution of 

the multinomial response variable 𝑦 is defined in (8). 
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Methodology 
 

For predicting channel availability, penalized logistic regression models have been formulated.  From the whole 

data set, 80% are relegated training, and 20% are for testing.  The training and testing data points are randomly 

selected, and the testing data is used to evaluate the model.  Online sources include primary user information 

such as company name, channel, and location (longitude and latitude).  Channel availability is surveyed from 

00:00H (12:00 AM) to 23:59H (11:59 PM) in 30-minute intervals.  For a secondary user, the channel is deemed 

available if the primary user broadcasting on the channel is off-air or does not interfere with a primary user.  

Availability is labeled with a 1 for available channels and 0 for unavailable channels.  The dataset is available 

online (Ocampo, Vladimir, n.d.).  The model input-process-output diagram is illustrated in Figure 2. 

 

 
Figure 2.  Input-process-output diagram 

 

Penalized logistic models have been developed to predict channel availability.  The training and test data points 

are randomly selected.  The penalties included in the study are Lasso (ℓ1), Ridge (ℓ2), and Elastic net (ℓ1 + ℓ2).  

The analysis has been carried out through R with the source codes available online (Vladimir Ocampo, 2022). 

 

For evaluating the model, accuracy is used.  This metric is determined by hits, misses, false alarms, and correct 

rejections.  A hit (true positive) is called when an available channel is predicted available.  A miss (false 

negative) is called when an available channel is predicted as unavailable.  A false alarm (false positive) is called 

when an unavailable channel is predicted as available.  A correct rejection is called when an unavailable channel 

is predicted as unavailable.  Table 1 summarizes the evaluation criteria of hits, misses, false alarms, and correct 

rejections. 
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Table 1.  Forecast quality evaluation criteria 

 
Forecasted TVWS channel availability 

Observed TVWS channel availability Available Not Available 

Available 
Hit 

(True Positive) 

Miss 

(False Negative) 

Not Available 
False Alarm 

(False Positive) 

Correct Rejection 

(True Negative) 

 

The accuracy is defined in (9). 

 

 
%Accuracy =

Hit +  Miss

Total samples in test data
× 100% (9) 

 

 

Results and Discussion 
 

In predicting the channel availability for TVWS, logistic regression with and without regularization is 

developed.  The inputs include day and time and whether there is an interference or not.  The model has been 

carried out for eight channels: 4, 5, 7, 9, 11, 13, 27, and 37. Thirty trials have been conducted, where in each 

trial, training and test data are randomly selected from the whole data set.  The model is evaluated in terms of 

accuracy, precision, and recall, and the averages of those values are taken from those thirty trials.  Figure 3 

shows a bar graph of the average accuracies of logistic regression (Logit), cross-validated lasso (Cvlasso), cross-

validated ridge (Cvridge), and cross-validated elastic net (Cvelnet). 

 

 
Figure 3.  Average accuracies of TVWS logistic models. 

 
Figure 4.  Boxplot of the accuracies of the model (generated with R) 

 

In addition, a statistical analysis is carried out to determine if regularization has a significant effect.  For each 

trial, the accuracy of the model is taken.  Using the Shapiro-Wilk test, the accuracy data is not normally 

distributed; thus, Kruskal-Wallis was carried out to determine the significance of regularization.  The boxplot is 

shown in Figure 4.  The Kruskal-Wallis test resulted in a significant difference among groups.  However, the 

boxplot shows that regularized logistic regression performs just as well as unregularized logistic regression in 
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terms of accuracy.  Post-hoc tests confirm that was the case, seeing a difference between elastic net and ridge 

regressions, probably due to the presence of outliers.  The insignificant difference between regularized and 

unregularized logistic models may be because the input variables are limited when there could have been more 

variables in reality. 

 

 

Conclusion  
 

Due to sparse spectrum availability for a secondary user, the paper formulated logistic regression models with 

sparsity regularization to forecast wireless coverage and frequency availability in sparse geolocation spectrum 

databases.  The sparsity penalty terms incorporated in the logistic regression models are Lasso (ℓ1), Ridge (ℓ2), 

and Elastic Net (ℓ1 + ℓ2).  The average accuracies of the models range from 96.27% to 97.85%.  Statistical 

analyses indicate that regularized logistic regression has no significant difference from unregularized logistic 

regression in terms of accuracy, which could be due to a limited number of variables used in the model. 

 

 

Recommendations 

 

Given that the regularized logistic regression performs just as well as the unregularized logistic regression, the 

number of input variables may be limited.  A future direction for this research would include more input 

variables.  In addition, other sparsity penalty terms can be explored, such ℓ
1

2 and a function of the Fisher 

information matrix. 
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