

The Eurasia Proceedings of Science, Technology,

Engineering & Mathematics (EPSTEM)

ISSN: 2602-3199

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License,

permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the Conference

© 2023 Published by ISRES Publishing: www.isres.org

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2023

Volume 26, Pages 624-632

IConTES 2023: International Conference on Technology, Engineering and Science

Roadmap for Simulating Quantum Circuits Utilising IBM’s Qiskit

Library: Programming Approach

Yousef Jaradat

Al-Zaytoonah University of Jordan

Mohammad Alia

Al-Zaytoonah University of Jordan

Mohammad Masoud

Al-Zaytoonah University of Jordan

Ahmad Mansrah

Al-Zaytoonah University of Jordan

Ismael Jannoud

Al-Zaytoonah University of Jordan

Omar Alheyasat

AlBalqa’ Applied University

Abstract: This paper explains the roadmap for running quantum circuit programs based on the Qiskit library

in quantum simulators as well as real cloud-based IBM quantum computers. Qiskit is a free and open-source

software development platform based on the Python programming language that is used in quantum

programming. Qiskit acts as a link between quantum computing’s theoretical foundations and the practical

aspects of programming and experimentation. It also allows users to experiment with and develop quantum

algorithms, as well as simulate and execute them on simulators and real-world cloud-based quantum devices. It

also simplifies the quantum programming process and allows a diverse range of people to participate in the

exciting world of quantum computing. The paper, on the other hand, provides the mathematical foundation for

analyzing quantum circuits and algorithms using linear algebra principles, as they provide the tools needed to

describe and manipulate quantum states and operations. Furthermore, the paper shows quantum circuit design

and implementation using real Qiskit codes.

Keywords: Qiskit, Quantum circuit, Quantum algorithm, Entanglement, IBM

Introduction

Quantum computing is a type of computer that processes information using quantum mechanics principles.

Quantum computers are substantially quicker than conventional computers at solving specific sorts of problems,

such as breaking encryption, simulating physical systems, and discovering novel pharmaceuticals (Gill et al.,

2023). Information is processed in classical computing using bits that can represent either as 0 or a 1. Quantum

computing, on the other hand, employs quantum bits, or qubits, which can exist in a state of superposition,

expressing both 0 and 1 at the same time (Preskill, 2021; Hidary & Hidary, 2019). Some of the key ideas in

quantum computing (Nielsen & Chuang, 2010; Gyongyosi & Imre, 2019):

http://www.isres.org/

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

625

 Superposition: Unlike classical bits, which can only exist in one of two states (0 or 1) at any time,

qubits can exist in a superposition of both states at the same time. This enables quantum computers to

do several calculations at the same time, potentially speeding up certain algorithms.

 Entanglement occurs when the state of one qubit becomes intertwined with the state of another,

regardless of their physical distance. This phenomenon allows quantum computers to process

information in a highly correlated and interconnected manner, which can be used to perform

specialized computations.

The most prevalent types of quantum computers being developed are gate-based quantum computers and

adiabatic quantum computers (Bruzewicz et al., 2019; Albash & Lidar, 2018). Gate-based quantum computers

operate qubits using a series of quantum gates, whereas adiabatic quantum computers find the ground state of a

quantum system via a process known as adiabatic evolution. Quantum computing is still in its early stages of

research and development, but it has the potential to transform many sectors. The following are some of the

potential uses of quantum computing (Hassija et al., 2020):

 Breaking encryption: Quantum computers have the potential to break the encryption employed in many

modern security systems, such as credit card and online banking systems.

 Physical system simulation: Quantum computers could be used to simulate the behavior of physical

systems like molecules and materials. This might be used to develop novel treatments and materials, as

well as to investigate the effects of climate change.

 Finding new pharmaceuticals: By simulating the interactions of molecules, quantum computers could

be utilized to find novel drugs. This might significantly speed up the drug discovery process.

 Optimization: Quantum computers could be used to address optimization problems like finding the

shortest path between two points or determining the best method to allocate resources. This could be

applied to transportation, logistics, and manufacturing.

Qiskit is a free and open-source software development (SDK) platform for programming, simulation, or and

performing quantum computations on real-world quantum hardware (Wille et al., 2019; Fingerhuth et al., 2018).

It is one of the most prominent frameworks for working with quantum computers, invented by IBM. Qiskit is a

suite of tools and components (Python libraries) that allows researchers, developers, and programmers to work

with quantum computing algorithms and experiments. Qiskit is made up broadly of four core modules:

 Qiskit Terra: is the foundation of the Qiskit framework. It serves as the foundation for quantum

circuits, gates, and operators. Users can create quantum circuits with numerous gate types and apply

operations on qubits. Terra also provides circuit visualization and optimization tools.

 Qiskit Aer: This is a quantum circuit simulator. It can be used to test and debug quantum programs

before they are executed on actual hardware. Aer also offers tools for modelling noise’s impact on

quantum circuits.

 Qiskit Ignis: This is a set of error-mitigation tools. It can be used to increase the accuracy of quantum

programs by compensating for noise errors.

 Qiskit Aqua: is a quantum algorithm development framework. It contains libraries for many different

quantum algorithms, as well as tools for optimizing and benchmarking these algorithms.

Qiskit is an elegant tool for building and testing quantum computing algorithms. Researchers and developers

from all over the world use it to investigate the potential of quantum computing for a wide range of applications.

The rest of the paper is organized as follows. Section II provides an overview of the quantum circuits. Quantum

circuits programming details for both simulators and real quantum computers are provided in section III. Section

IV concludes the paper.

Quantum Circuits

Basic Concepts

A quantum circuit is a set of quantum gates that are applied to a group of qubits (Cervera-Lierta et al., 2019;

Fisher et al., 2023). In quantum computing, qubit is the fundamental computational unit. Quantum circuits are

used to create quantum algorithms that can only be run on a quantum computer. Depending on the quantum

algorithm used, quantum gates in any quantum circuit can be connected in series or parallel or both. Quantum

circuits have the following basic components:

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

626

 Qubits: In quantum computing, qubits are the fundamental unit of information. They can be in a state

that is a superposition of two states, 0 and 1.

 Quantum gates are the fundamental operations that can be done on qubits. They can be employed to

spin a qubit’s state or to entangle two qubits.

 Measurements are used to determine the state of a qubit. When a qubit is measured, it collapses into

one of two states: 0 or 1.

Quantum circuits are depicted graphically, with qubits denoted by lines and quantum gates denoted by boxes.

The sequence of the gates in the circuit is critical because it dictates how the gates are applied to the qubits. Fig.

1 shows a sample of quantum circuits that is used throughout this paper. This circuit is produced using the

IBM’s quantum composer platform.

Figure 1. Entangled quantum circuit using IBM’s composer platform

Quantum circuits can be used to construct a wide range of quantum algorithms, including Shor’s algorithm for

integer factoring, Grover’s algorithm for searching an unsorted database, and quantum simulation of physical

systems. Quantum circuits have the following essential properties:

 Quantum circuits are acyclic: This signifies that the circuit has no loops. A loop is a gate sequence that

begins and ends at the same qubit. Loops are not permitted in quantum circuits because they can induce

computing errors.

 Fan-in and fan-out are not permitted in quantum circuits. The number of qubits that can be acted on by

a single gate is known as fan-in, and the number of qubits that can be influenced by a single gate is

known as fan-out. Fan-in and fan-out in quantum circuits are normally limited to 1.

 Quantum circuits are reversible: Quantum circuit reversibility is a fundamental characteristic of

quantum physics. It is critical for the development of quantum computing and offers a wide range of

possible applications. Quantum reversibility requires that the number of inputs for any quantum circuits

is equal to the number of outputs. The reason for quantum circuit reversibility is that the wavefunction

that represents the state of he quantum system obeys the Schrodinger equation, which is a reversible

equation. This means that it is possible to go from any state of the system to any other state. In

addition, quantum gate is a unitary operator, which means it retains the wavefunction’s norm. This

means that the quantum gate is reversible.

 quantum measurement is irreversible: This is because measuring a qubit causes its wavefunction to

collapse into a fixed state. This means that the knowledge about the qubit’s other potential states is lost.

Mathematical Analysis

Qubits can be represented using vectors in Hilbert space. Dirac notation is used to represents qubits [3]. Unitary

matrices can be used to study quantum circuits (Cruz-Lemus et al., 2021). A unitary matrix is one that maintains

the inner product of vectors. This means that multiplying a vector by a unitary matrix has no effect on its length.

The unitary matrix for a quantum circuit is the product of the unitary matrices for the individual gates in the

circuit. The direction of the product is from right to left. Tensor product is utilized to multiply two or more

parallel gates. The final state (|ψf⟩) of the circuit shown in Figure 1 is given by:

 |ψf⟩ = CNOT(H ⊗ I)(q[0] ⊗ q[1]) (1)

if q[0] and q[1] are both initialized to |0⟩, then the equation will be:

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

627

 |ψf⟩ = CNOT(H ⊗ I)|00⟩ (2)

CNOT, Hadamard, and identity gates are given by the following unitary matrices.

Then, equation 2 is given by:

after reduction, the equation above is given by:

which is a perfect entangled state, usually referred to as a Bells state. Bell states are an essential component of

quantum ´ information science. Many quantum algorithms, such as quantum teleportation and quantum

cryptography, make use of them.

Qiskit Programming Roadmap

This section describes how to run Qiskit-based quantum circuit programs on both a quantum simulator and

IBM’s real cloud-based quantum computer.

1) To begin, run the following command in a Jupyter notebook terminal to quickly install the library. This

will install the most recent stable version of the library. It is recommended to install Qiskit with the extra

visualization if you intend to use visualization functionality or Jupyter notebooks. The Qiskit library was install

on August 20
th

, 2023.

2) To check the version of Qiskit and its components in the Notebook by running the following command:

3) To implement the quantum circuit shown in Figure 1, execute the following code:

pip install qiskit[visualization]

import qiskit

qiskit.__qiskit_version__

from qiskit import

QuantumCircuit

qc = QuantumCircuit(2,2)

qc.barrier()

qc.h(0)

qc.barrier()

qc.cx(0,1)

qc.measure([0,1],[0,1])

qc.draw(output='mpl')

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

628

The code utilizes the matplotlib library to produce much better circuit visualization as shown in Figure 2.

Figure 2. Entangled quantum circuit using Qiskit library

4) To confirm the entanglement of the two qubits, the code must be performed on either a quantum

simulator or a real quantum computer platform. Quantum simulator can run quantum circuit programs on your

local machine or on the cloud. Qiskit Aer is the simulator used to run and debug quantum programs before

executing them on real quantum computers. First, let us run the given code on Aer simulator installed on a local

machine. To get a list of the available simulators, the following statement should be executed.

The above statement should produce something similar to the following list, as illustrated in Figure 3.

Figure 3. List of local Aer quantum simulators

Then we choose one of these simulators, transpile the quantum circuit to match the constraints and

characteristics of the target quantum simulator/device and produce the results of the entangled quantum circuit

as shown in the following code:

Figure 4 shows the result of the above code, and it is compatible with equations above, with a

probability of almost 0.5 for each of the entangled state.

from qiskit import Aer

Aer.backends()

sim = Aer.get_backend('qasm_simulator')

from qiskit import transpile

qc_trans = transpile(qc, sim)

result = sim.run(qc_trans).result()

state_counts = result.get_counts(qc_trans)

from qiskit.visualization import plot_histogram

plot_histogram(state_counts,title='Bell-State counts')

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

629

Figure 4. Histogram of entangled states (counts)

To get the probability of each quantum state, Qiskit introduced primitives which are the smallest processing

instruction for a given abstraction level. Sampler is a Qiskit primitive that calculates probabilities or quasi-

probabilities of quantum states. Quasi-probabilities are similar to regular probabilities except they may include

negative values, which can occur when using certain error mitigation techniques. The code below shows how to

calculate the quasi-probabilities of the Bell circuit. Figure 5 shows the corresponding probability distribution of

the quantum states.

Figure 5. Histogram of entangled states probabilities

from qiskit_aer.primitives import Sampler

sampler = Sampler()

job = sampler.run(qc_trans)

plot_histogram(job.result().quasi_dists, title='Bell-State prob.')

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

630

5) To run the quantum circuit code on IBM’s online quantum computer systems, the following code

should be run:

The code above will import the QiskitRuntimeService class and use it to connect the IBM cloud-based quantum

computer through your IBM API token. The circuit code then can be run on a simulator or real quantum system.

To get a list of real operational quantum computers, the following code is used.

Figure 6 shows a list of the operational real quantum systems.

Figure 6. Real quantum computers backends

To check the queue of pending jobs, number of qubits of the quantum computer backends, the following code is

used.

The output of the above code is shown in Figure 7.

Figure 7. Pending jobs and number of qubits on the backends

To selected the least busy real quantum computer to run your quantum circuit, the following code is used.

from qiskit_ibm_runtime import QiskitRuntimeService, Sampler

IBMTOKEN = "*******" # IBM API Token

service = QiskitRuntimeService(channel='ibm_quantum', token=IBMTOKEN)

service_real = QiskitRuntimeService(channel='ibm_quantum', token=tkn)

be_real = service_real.backends(simulator=False, operational=True)

for i in range(len(be_real)):

 be_name = be_real[i].name

 be_qb = be_real[i].num_qubits

 be_pj = be_real[i].status(). to_dict()['pending_jobs']

 print(f'{be_name :<15}: {be_pj :<5}, num_qubits: {be_qb}')

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

631

In our case, the least busy computer to run the quantum circuit is the ibmq perth quantum computer. The

quantum circuit program is then executed on the real quantum computer backend. Most of the time, the result is

not as immediate as it is on the simulator backend. Normally, the program is queued before being executed. So,

checking the program status is necessary as it may take a long time before it is executed. The following code

provides the necessary steps for executing and monitoring the program.

It is important to run the program many times as real quantum computers suffer from noise. In the code above

the program was run 4000 times before getting the results as shown in Figure 8. Noise has its own effect on the

entangled states. Negative low probabilities are noticed on the |01⟩ and |10⟩ quantum states.

Figure 8. Quasi-probabilities of different quantum states

Conclusion

The paper includes programming details for building quantum applications using the IBM’s Qiskit toolkit. It

demonstrates the programming steps required to build quantum gates, quantum circuits, and quantum

algorithms. It additionally illustrates how to simulate quantum circuits in quantum simulator backends.

Moreover, it describes how to execute quantum circuits in a real cloud-based IBM quantum computer.

Furthermore, it demonstrates how to choose the least busy real quantum computer to run the circuit program.

Scientific Ethics Declaration

The authors declare that the scientific ethical and legal responsibility of this article published in EPSTEM

journal belongs to the authors.

backend_r = service_real.least_busy (simulator=False,operational=True)

print(backend_r.name)

sampler_r = Sampler(backend_r) job_r = sampler_r.run(qc, shots=4000)

job_r.status()

plot_histogram(job_r.result().quasi_dists,title='Bell-State prob.')

International Conference on Technology, Engineering and Science (IConTES), November 16-19, 2023, Antalya/Turkey

632

Acknowledgements or Notes

* This article was presented as an oral presentation at the International Conference on Technology, Engineering

and Science (www.icontes.net) held in Antalya/Turkey on November 16-19, 2023.

* The authors would like to thank the Deanship of scientific research and Innovation at Al-Zaytoonah

University of Jordan (ZUJ) for Funding this work through ZUJ research fund No. (41/17/2022-2023)

References

Albash, T., & Lidar, D. A. (2018). Adiabatic quantum computation. Reviews of Modern Physics, 90(1), 015002.

Bruzewicz, C. D., Chiaverini, J., McConnell, R., & Sage, J. M. (2019). Trapped-ion quantum computing:

Progress and challenges. Applied Physics Reviews, 6(2).

Cervera-Lierta, A., Latorre, J. I., & Goyeneche, D. (2019). Quantum circuits for maximally entangled states.

Physical Review A, 100(2), 022342.

Cruz-Lemus, J. A., Marcelo, L. A., & Piattini, M. (2021). Towards a set of metrics for quantum circuits

understandability. In International Conference on the Quality of Information and Communications

Technology (pp. 239-249). Cham: Springer International Publishing.

Fingerhuth, M., Babej, T., & Wittek, P. (2018). Open source software in quantum computing. PloS one, 13(12),

e0208561.

Fisher, M. P., Khemani, V., Nahum, A., & Vijay, S. (2023). Random quantum circuits. Annual Review of

Condensed Matter Physics, 14, 335-379.

Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya, R. (2022). Quantum computing: A

taxonomy, systematic review and future directions. Software: Practice and Experience, 52(1), 66-114.

Gyongyosi, L., & Imre, S. (2019). A survey on quantum computing technology. Computer Science Review, 31,

51-71.

Hassija, V., Chamola, V., Saxena, V., Chanana, V., Parashari, P., Mumtaz, S., & Guizani, M. (2020). Present

landscape of quantum computing. IET Quantum Communication, 1(2), 42-48.

Hassija, V., Chamola, V., Goyal, A., Kanhere, S. S., & Guizani, N. (2020). Forthcoming applications of

quantum computing: peeking into the future. IET Quantum Communication, 1(2), 35-41.

Hidary, J. D., & Hidary, J. D. (2019). Quantum computing: an applied approach (Vol. 1). Cham: Springer.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge university

press.

Preskill, J. (2021). Quantum computing 40 years later. In Feynman lecturures on computation (pp. 193-244).

CRC Press.

Wille, R., Van Meter, R., & Naveh, Y. (2019). IBM’s Qiskit tool chain: Working with and developing for real

quantum computers. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE)

(pp. 1234-1240). IEEE.

Author Information
Yousef Jaradat
Al-Zaytoonah University of Jordan

Amman - Jordan

Contact e-mail: y.jaradat@zuj.edu.jo

Mohammad Alia
Al-Zaytoonah University of Jordan

Amman - Jordan

Mohammad Masoud
Al-Zaytoonah University of Jordan

Amman - Jordan

Ahmad Mansrah
Al-Zaytoonah University of Jordan

Amman - Jordan

Ismael Janooud
Al-Zaytoonah University of Jordan

Amman - Jordan

Omar Alheyasat
AlBalqa’ Applied University

Salt-Jordan

To cite this article:

Jaradat, Y., Mohammad, A., Masoud, M., Mansrah, A., Jannoud, I., & Alheyasat, O. (2023). Roadmap for

simulating quantum circuits utilising ibm’s qiskit library: programming approach. The Eurasia Proceedings of

Science, Technology, Engineering & Mathematics (EPSTEM), 26, 624-632.

http://www.icontes.net/

