

The Eurasia Proceedings of Science, Technology,
Engineering & Mathematics (EPSTEM)

ISSN: 2602-3199

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License,

permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the conference

*Corresponding author: Yildiz Sahin-E-mail: yildiz.sahin@kocaeli.edu.tr

© 2017 Published by ISRES Publishing: www.isres.org

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM)

Volume 1, Pages 411-419

ICONTES2017: International Conference on Technology, Engineering and Science

SOLUTION OF CONSTRAINTS THROUGH THINKING PROCESS IN

SOFTWARE CODE REVIEWS

Yildiz Sahin

Kocaeli University

Pinar Yildiz Kumru

Kocaeli University

Ozgur Gun

Kocaeli University

Abstract: The high quality of software produced in software projects is vital for the success and life of

institutions. Software defects can lead to reduced customer satisfaction, increased maintenance costs, and / or

reduced productivity and utility. Software code review is one of the most important techniques used to improve

software quality and reduce errors in software. Software code review is the process by which one or more people

evaluate a code before writing a new version and putting it in a code repository.

The main purpose of the code is to prevent defects and to be able to understand the code at the same time as it is

to carefully examine the code against deviations from the development standards. Another goal is to help people

who write code to produce much better products in the future. In this study, it is aimed to investigate the reasons

why the code review process cannot be implemented and to solve these reasons with the “Theory of Constraints

Thinking Process”.

Keywords: Theory of constraints, thinking processes, software code review process

Introduction

Theory of Constraints

Theory of Constraints (TOC) was discussed and developed in the book published by Goldratt in 1984. TOC was

first time; It was used for production planning and scheduling to increase profit taking into account market

conditions. The latter was also used in marketing, sales and information systems. TOC was not widely used in

profit-oriented organizations such as government and administrative services (Goldratt (1990a) [1], Goldratt

(1990b) [2]).

Goldratt (1990c) [3], Klein and DeBruine (1995) [4] and Dettmer (1997) [5] consider the constraint theory that

an organization consists of interconnected chain rings. From this perspective, a system is as strong as its weakest

link. According to Goldratt, if you want to improve the performance of a system, you must first find its weakest

rings, in other words, its constraints.

In the theory of constraints; Constraints affect the performance of the system negatively. Many classifications ca

n be made about constraints.

Goldratt divided the constraints into two, internal and external. External constraints are those that are outside the

organization and organization have little effect on their control. Internal constraints are divided into two groups,

physically and politically. Physical constraints; hardware and staff. Political constraints include the organization-

wide practice of breaking the system.

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

412

Ring and Perry (1985) [6] point out that there is a difference between constraints in the public and private

sectors.

In this study, it was tried to gather information about the process performance of the code review processes of

the projects carried out in a public organization in the military and civil projects in Research and Development

activities. As a result of reviewing this information, it has been found that the biggest problems in the code

review process of software projects are not to allocate sufficient resources (budget, time, labor) for code

checking activities in project planning, not to operate the code review process of the project team and not to use

a tool for code checking. In this study, "Thinking Process of the Theory of Constraints" was used to find out and

solve the main cause of the problem.

Method

Constraints Management

A five-step model of Goldratt’s book aim to analyze and manage constraints has been identified. This model is

one of the most important parts of the constraint theory.

1. Identify constraints

2. Get the greatest benefit possible from constraints

3. Design other activities / processes according to the properties of the constraint

4. Add resources to improve performance

5. Go back to the first step and start searching for the new constraint

The above model is a systematic approach developed to manage constraints. There are many tools and

techniques to operate this model. The Drum-Buffer-Rope (drum-buffer-ip) scheduling technique indicates that

the process follows a tapping sound when it produces a constraint piece. At the end of the process, the finished

product buffer is used so that the final product shipment is not adversely affected if it cannot produce constrained

parts. A rope is a signal that when a product is sold, the part entry must be done.

Thinking Process

Another technique in the management of constraints is the Thinking Process. According to Goldratt (1990a) [1],

managers who deal with constraint management must make three decisions.

1. What will change in the system?

2. What will it turn into?

3. How will the change take place?

To address these questions, the thinking process presented the following five tools.

1. Current reality tree

2. Evaporating cloud

3. Future reality tree

4. Prerequisite tree

5. Transition tree

Current Reality Tree (CTR): The first step in implementing thinking processes is to list the undesirable effects

and build the existing reality tree accordingly. CRT is designed to analyze the current state of a system and to

better understand the problems, and to identify the basic problems with undesirable effects that reduce the

performance of the system. CRT is a diagram showing cause-and-effect relationships between adverse effects

and their consequences. The aim is to find the root cause of the problem. First the root cause is found and

removed. Thus, unwanted effects disappear.  

Evaporating Cloud (EC): The solution to remove the unwanted result is the tool in which the basic and

preliminary requirements are defined, the clash between the solutions is made, and the injection is made to

destroy the clash. This tool involves the handling of a single problem separately, the determination of conflicts

and assumptions encountered, and the examination of a solution. The evaporative cloud method acts as an

effective bridge, contributing to the removal of problems from the current state of affairs in the transition to the

desired future state.

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

413

Future Reality Tree (FRT): A tool used to imagine, animate and predict the future. Future reality tree shows the

causal relationship between the changes to be made in the existing system and the consequences that may

occur. FRT is a what-if application. It tries to determine the benefits of the proposed change, the negative effects

it will have, and how to remove these effects.

Prerequisite Tree (PRT): Provides a logical way to create secondary solution clusters that are required to come

up from the top of all obstacles in front of the solution idea. The aim is to help define all of the intermediate

steps needed to achieve a great goal. The development of the pre-requisite network defines local barriers,

situations and omissions that prevent achievement of the desired outcomes and sets new goals and objectives that

will enable these barriers and change to come from the superior.

Transition Tree: The transition tree is used to identify the activities required to achieve the purpose. It is a

cause-and-effect chain designed to reveal step-by-step processes from the definition of an undesirable outcome

to the completion of change.

Software Code Review Process

Software review process is an endorsed process that improves the quality of the software product and reduces

software development life cycle time and costs.

Software reviews are recommended as a cost-saving quality assurance technique to improve the Software

Development Process and are widely used in industrial applications.

Software reviews are defined as "techniques that are used to carefully examine software products against

deviations from development standards and that do so without performing software".

The main goal of software review is to find errors during the Software Development Process. The goal of the

software oversight is not only to find mistakes, to gather improvement suggestions, but also to help people who

write code to produce better products in the future.

Software reviews can be classified based on the level of formalism in the oversight process or on the level of

severity and flexibility.

Formal code reviews have a very attentive process structure, which requires support for advanced planning and

corporate infrastructure.

Informal reviews are unstructured processes that are built on the desire to meet the needs of specific situations.

Such reviews require less time, lower costs, no need for advanced planning and support for the institutional

infrastructure.

The software code review typically consists of the following activities: providing the criteria for starting the

review, setting the units to be reviewed, making an announcement to the people who will participate in the

review (individual reviewers), sending bugs/defects to software developers, making related corrections, sending

updated software units back to the reviewers for inspection, approval of all reviewers and closing reviews.

In recent years, many open source and commercial projects have used the code review process. In the following

selected publications, information is given about the factors that affect the efficiency and effectiveness of the

code review process, and the studies on the technical and non-technical benefits of reviewing.

Poerter et al. [7] investigated the factors that influence the effectiveness of the traditional phagan examination

method. These factors are the code unit, auditor and project team, respectively. The most influential factors in

this study are the code size and functionality and the viewer's experience.

Rigby and Bird [8, 9] published publications on cooperative code observing practices in open source projects.

They compared the oversight processes in commercial projects and open source projects. Although there are

differences between projects, there are similarities between many characteristics, such as the time interval

between reviews, the number of defects and the number of reviewers.

Bachelli and Bird [10] conducted research on the aims and results of modern code reviews. Although the

primary purpose of reviewing is to find errors in software, they have found that only a fraction of the findings /

comments found in the review result are defects. They also argued that code reviews provides information

sharing, team awareness and better solutions.

Baysal et al. [11] found that factors such as software size, component type, viewer experience / knowledge level,

and experience of code writer were significant influences on code review.

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

414

Bosu et al. [12] investigated the factors that influence the effectiveness of code review. As a result of analyzing

the code review results made on the projects realized in Microsoft company; a) The experienced software

engineers who have worked in the institution for many years have more effective reviews, b) The effectiveness

of the reviews is decreased by increasing the number of rows in the software components to be watched, c) The

weaknesses in the file types or software components in the software system can be determined by calculating the

code review efficiency.

Bosu, Carver et al. [13] studied the non-technical benefits of the review process. He also made suggestions on

how to properly interpret comments / findings and how to better understand the software through which

reviewers can see.

Sripada et al. [14] pointed out that as a result of a research conducted in a software engineering classroom of 200

people in India by second-year college students, increased coding skills, improved program understanding

capabilities, increased knowledge of coding standards, and increased team communication.

Bernhart et al. [15], based on an industrial firm; evaluated the results of 114 surveys conducted within 18 months

on a project which 8 software engineers worked. At the end of the evaluation; seeing that code review has

positive effects on understanding the software code and making the software co-ownership.

Mantyla et al. [16] handled a total of 32 code reviews, 9 of which are industrial and 23 of which are students. It

has 2 classes as error class. The first is functional and the second is the class of evolvability. It has been argued

that finding the type of evolvability defects can contribute to the long life of software products. As for the classes

of evolvability defects, structure, visual presentation, documentation types. As a result; pointed out that the code

review process is a good tool for revealing the types of evolvability defects.

Findings

Usage of Thinking Process of Theory of Constraints in the Software Code Review Process

In this study, it was tried to gather information about the process performance of the code review processes of

the projects carried out in a public organization in the military and civil projects in Research and Development

activities. As a result of examining this information, it has been found that the biggest problems in the code

review process of software projects are not to allocate sufficient resources (budget, time, labor force) for code

review activities in project planning, not to operate the code review process and not to use a tool for code

reviews. In this study, "Thinking Process of the Theory of Constraints" was used to find out and solve the main

cause of the problem in software code reviews.

The first step in implementing the thinking processes is listing the unwanted effects, then creating the Current

Reality Tree (CRT). CRT is a diagram showing the causal relationship between adverse effects and their

consequences. The goal is to find root cause. When this cause is found and removed, the unwanted effects

disappear. The main constraints encountered in the software code review process are; absence of support tools in

code review activities, lack of definition of code review process, failure of project employees to implement

processes, and lack of definition of performance measurement and evaluation process. Figure 1 The Current

Reality Tree (CRT) reveals the root causes of the problems experienced in the code review process. Problems

with the "*" sign are the main problems that lead to the problem.

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

415

No license for

code review tools

Inadequate training of

software engineers on

how to do code

review on the tool

Not using tools

for software code

review*

Project

employees not

implementing

the code review

process*

No management

support

Current and
potential defects in

the software
(defective product)

Process

performance

indicators not

defined

Code review

performance

measurement

and evaluation

process not

defined*

Due to the tightness

of the project

calendar, there is no

time for code review

The project team is

unaware of the code
review contribution to

code

Code review
process not

defined*

Figure 1. Current reality tree (CRT)

The second step in the process of thinking is the creation of the Evaporating Cloud (EC). The evaporating cloud

technique is used to reveal the solutions of the problems that present the root cause.

In this technique, after the conflict is revealed, injection(s) are recommended for destroying this conflict. Figure

2 The Evaporating Cloud shows one of the conflicts that can be encountered in the software code review process

and the possible injections for the solution. The conflict here is whether project employees implement the code

review process. Injections to remove this conflict are the addition of resources (labor, time and budget) required

for code reviews in preparation of the project contract, and training of project staff about the code review

process. By applying these injections, it is possible to remove the root cause that leads to the problems.

.

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

416

Project employees not
implementing the code

review process

Project employees
implementing the code

review process

Execution of code

review activities at

scheduled times

Training on how to do

code reviews on the

tool

Catching defects in

early phases of

software development

life cycle

Injection 1: Allocating of
the code review time and
cost into the project plan
while the project contract

is being prepared

Injection 2: Training on
the contribution of the
code review activity to

software quality

Figure 2. Evaporating cloud

The next step is the implementation of the Future Reality Tree (FRT). The intent of this phase is to confirm that

a desired state will achieve the expected best results (Desired Effect - DE). Figure 3 The Future Reality Tree

(FRT) shows the future reality tree of this work. In FRT, productivity increases (code, documentation

development time, etc.) and cost of code development are reduced as project employees mentioned in Figure 2

Evaporative Cloud diagram begin to implement the code review process. By resolving the errors in the code, the

customer will receive fewer error-intensive products. It improves the quality of product software without any

mistakes, it provides customer satisfaction. Increased customer satisfaction enables the same client to win more

projects. Thus the software firm can increase its capacity and profit.

Increase of

productivity

Increased staff

coding skills

Getting more

project

Customer

satisfaction

Cost decrase
Products with low

defect density

Capacity and profit

increase

Catching and

resolving defects

Increased

knowledge sharing

and team

communication

Becoming co-

ownership of the

software and reducing

dependency on person

Finding better

solutions

Figure 3. Future reality tree (FRT)

The next step is to Prerequisite Trees (PRT) and Transition Trees to be able to pass on the changes and create

solution clusters. With the Prerequisite Tree, the situation that prevents me from reaching the solution is defined.

As seen in Figure 4 Prerequisite Trees, there are not enough resources (labor, time, and budget) to run the code

reviews in the projects. If these resources are not placed in the project contract during the proposal preparation

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

417

stage, delaying the project schedule will be inevitable since the execution of the code review activities will

require the expenditure of unplanned source. In order to remove this obstacle, budget is allocated for code

reviews at the project proposal stage, personnel are assigned to train employees. With the support of the

management, it is encouraged to employees and code reviews is made in the projects. Thanks to the reporting

capabilities of the code review tools, code review process performance is monitored periodically or instantly.

Budget allocation
for workforce, time

and tools in the
project plan

Workforce not
defined for code

reviews in project plan

No time defined for
code reviews in

project plan

Insufficient
resources for code

reviews

Training of project employees,
Encouragement of staff by the

management to make code
review by means of tools,

recording of captured defects
and resolving defects

Management
support and

employee
encouragement

Figure 4. Prerequisite tree (PRT)

The transition tree is used in detail to define the activities planned to achieve the main objectives and to put them

into practice.

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

418

Conducting code

reviews on tools

Training code

review process and

tools

Allocating

resources in the

project plan for

Code Review

Process

Defining and

implementing Code

Review Process

Establishing policy

for Code Review

Process

Developing low
defect density

product

Improving Code Review

Process through doing

process performance

evaluation

Catching and

solving defects in

the early phases

of the project

Figure 5. Transition tree

Figure 5 Transition Tree defines a policy by the enterprise management to produce error-low software, defines

and implements the code review process, allocates resources for the code review process in the project plans,

training on the code reviewing tool and monitoring the process performance and updating the process if

necessary. Project process audits should be done, code review process performance should be measured and

statistical process control methods should be applied. Points to be improved in processes should be identified

and corrective actions should be carried out. Eliminating the bottlenecks in the code reviews will ensure delivery

of high quality products to the customer, reducing both costs and error rates.

Results

One of the biggest challenges facing the software industry today is to drive the product market in a shorter time

and at the same time to produce products with low error density. Rapidly pouring software products into

products can result in insufficient time for product validation and validation, resulting in product quality being

waived.

Software product quality will only be very costly and will cause the project to be delayed if only the finished

product is tried to be tested and corrected. The cost of eliminating the faults detected at the end of the project is

much higher than the cost of removing the faults detected at the beginning of the project. For this reason, it is

very important that the code review process is executed correctly for every software component that is encoded.

The reasons for not applying the code overhaul process are mainly; Project Managers and Software Team are not

aware of the significance / importance of this process, and another reason is the lack of labor, time, budget and

vehicle infrastructure resources required for this process.

Since the software code review process is only defined on paper, it is not enough to implement it on projects, and

project support tools are needed to help implement these processes. Tools such as Bugzilla, Code Collaborator,

and Understand are typical tools that can be used for the code review process.

The use of these tools in the organization depends on a strong governance policy, the identification of the code

review process as a requirement of this policy, and the allocation of resources for code review tools.

International Conference on Technology, Engineering and Science(ICONTES) October 26 - 29, 2017 Antalya/Turkey

419

The project management should follow up and evaluate the code review process. Software units above a certain

level of error should not be included in the new version of the software product without errors.

It is believed that this study will provide a way for companies operating in the software industry to solve other

difficulties (software unit test, component test, etc.) they encounter in the software development process.

References

Goldratt, E.M. (1990a)What is this thing called theory of constraints and how should it be implemented?

Massachusetts:North River Press

Goldratt, E.M. (1990b). The haystack syndrome: Sifting information out of the data ocean. New York: North

River Press

Goldratt, E.M. (1990c). What is this thing called the theory of constraints? New York: North River Press

Klein, D., & DeBruine, M. (1995). A thinking process for establishing management policies. Review of

Business, 16(3), 31–37.

Dettmer, H.W. (1997). Goldratt’s theory of constraints: A systems approach to continuous improvement.

Milwaukee: ASQC Quality Press

Ring, P.S., & Perry, J.L. (1985). Strategic management in public and private organizations: Implications of

distinctive contexts and constraints. The Academy of Management Review, 10(2), 276–286.

Fagan, M. E. (1976). “Design and code inspections to reduce errors in program development,” IBM Systems

Journal, vol. 15, no. 3, pp. 182 –211

Rigby P. C., & German D. M., & Storey M. A. (2008). “Open source software peer review practices: a case

study of the apache server,” in Proceedings of the 30th international conference on Software engineering.

ACM, pp. 541–550

Rigby P. C., & Bird C. (2013). “Convergent contemporary software peer review practices,” in Proceedings of the

2013 9th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE, pp. 202–212.

Bacchelli A., & Bird C. (2013). “Expectations, outcomes, and challenges of modern code review,” in

Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, pp. 712–721.

Baysal O., & Kononenko O., & Holmes R., & Godfrey M. W. (2013). “The influence of non-technical factors on

code review,” in Reverse Engineering (WCRE), 2013 20th Working Conference on. IEEE, pp. 122–131

Bosu A., & Greiler M., & Bird C. (2015). Characteristics of Useful Code Reviews: An Empirical Study at

Microsoft, 12th Working Conference on Mining Software Repositories

Bosu A., & Carver J.C., & Bird C., & Orbeck J., & Chockley C. (2017). Process Aspects and Social Dynamics

of Contemporary Code Review: Insights from Open Source Development and Industrial Practice at

Microsoft, IEEE Transactions On Software Engineering, Vol. 43, No. 1.

Sripada S., & Reddy Y.R., & Sureka A. (2015). In Support Of Peer Code Review And Inspection In An

Undergraduate Software Engineering Course, 28th Conference On Software Engineering Education And

Training

Bernhart M., & Grechenig T. (2013). On The Understanding Of Programs With Continuous Code Reviews,

IEEE International Conference on Program Comprehension, San Francisco, USA

Mantyla M. V., & Lassenius C. (2009). What Types Of Defects Are Really Discovered In Code Reviews?, IEEE

Transactions On Software Engineering, Vol. 35, NO. 3

