Investigation of Biological Properties of New 1-(2,6-Dimetilmorfolin-4-yl-metil)-3-alkyl(aryl)-4-[3-ethoxy-(4-benzenesulfonyloxy)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones

Gul OZDEMIR

Kafkas University

Muzaffer ALKAN
Kafkas University

Haydar YUKSEK
Kafkas University

Abstract

In this study, six new 1-(2,6-dimethylmorpholin-4-yl-methyl)-3-alkyl(aryl)-4-[3-ethoxy-(4-benzenesulfonyloxy)-benzylideneamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones were obtained from the reactions of 3-alkyl(aryl)-4-[3-ethoxy-(4-benzenesulfonyloxy)-benzylideneamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones with 2,6-dimethylmorpholine and formaldehyde. Characterization of new compounds obtained was carried out by IR, ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR spectral data. Antibacterial properties of the synthesized novel compounds were evaluated by agar well method against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus cereus and Klepsiella pneumoniae strains.

Keywords: 1,2,4-triazol-5-one, Schiff base, Mannich base, Synthesis, Antimicrobial actvitiy

Introduction

Biochemical properties of rings containing triazole ring or triazole derivative ring, which are important members of heterocyclic compounds, have a wide range of academic work (Ure, 2010; Manap, 2009; Kardaş, 2006). Recently, antitumor (Ikizler et al., 1998), anti-HIV, antihypertensive, diuretic properties (Gursoy et al., 2013; Yuksek et al., 2004; Yuksek et al., 2008), antimicrobial, antioxidant, antiinflammatory and pharmacological properties of the triazole ring, (Ikizler et al., 1997), antioxidants, antiinflammatory, anticonvulsant, antiparasitic, analgesic, antiviral and antibiotic effects of the triazole rings to have a broad spectrum of biological activities (Yuksek, 2001; Ocak, 2004; Gursoy Kol et al., 2012) have been reported. In addition, several articles have been published concerning the synthesis of some N -arylideneamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives.

Synthesis

The Pinner method was used as an appropriate method for synthesizing the starting compounds used in the work (Pinner, 1892) (Equation 1). The compounds 4 obtained according to this method were reacted with 3-ethoxy-4benzenesulfonyloxybenzaldehyde to provide synthesis of 6 type Schiff bases (Equation 2). Subsequently, six Mannich bases were synthesized (Equation 3) from the reactions of compounds 6 with 2,6-dimethylmorpholine and formaldehyde.

[^0]

Equation-1

Equation-2

Equation-3

Method

Chemicals and Apparatus

Chemical reagents and all solvents used in this study were purchased from Merck AG, Aldrich and Fluka. Melting point was determined in open glass capillary using a Stuart melting point SMP30 apparatus and is uncorrected. The IR spectra were obtained on an ALPHA-P BRUKER FT-IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated dimethyl sulfoxide with TMS as internal standard using a Bruker Ultrashield Plus Biospin spectrometer at 400 MHz and 100 MHz , respectively.

Synthesis of Compounds 7: The General Procedure

3-Ethoxy-4-hydroksibenzaldehyde ($0,01 \mathrm{~mol}$) dissolved in ethylacetate $(20 \mathrm{~mL})$ was treated with benzenesulphonyl chloride $(0,01 \mathrm{~mol})$ and to this solution was slowly added triethylamine $(0.01 \mathrm{~mol})$ with stirring at $0-5{ }^{\circ} \mathrm{C}$. The process of stirring continued for 2 h , and then the mixture was refluxed for 3 h and filtered. The filtrate evaporated in vасиo, and the crude product was washed with water and recrystallized from ethanol to afford compound 5. The corresponding compound $\mathbf{4}(0.01 \mathrm{~mol})$ was dissolved in acetic acid (20 mL) and treated with 3-ethoxy-4-benzenesulphonyloksibenzaldehyde (0.01 mol). The mixture was refluxed for 2 h and then evaporated at $50-55^{\circ} \mathrm{C}$ in vacuo. Several recrystallizations of the residue from ethanol gave pure compounds 3-alkyl(aryl)-4-[3-ethoxy-(4-benzenesulfonyloxy)-benzylidenamino]-4,5-dihydro-1 H -1,2,4-triazol-5-ones 6 as crystals (Özdemir, 2016).

In the final step, the corresponding 6 type Schiff Base (5 mmol), 2,6-dimethylmorpholine (6 mmol) and formaldehyde (10 mmol) was refluxed $\mathbf{6}$ hours. Obtained mixture was filtered and crystalliazed from approprivate solvents and pure 7 type compounds were synthesized.

Spektral Data

Table 1. Spectral data of compound 7 a

IR (KBr) cm^{-1}	${ }^{1} \mathrm{H}$-NMR	${ }^{13} \mathrm{C}$-NMR
1705 (C=O)	$\delta 1.03$ (d, 6H, 2 CH_{3}; J:6.40 Hz)	$10.94\left(\mathrm{CH}_{3}\right)$
1603, 1577 (C=N)	$\delta 1.10$ (T, 3H, OCH ${ }_{2} \mathrm{CH}_{3}$; J:6.40 Hz)	$14.04\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
1375 ve 1171 (SO_{2})	$\delta 2.01\left(\mathrm{~T}, 2 \mathrm{H}, \mathrm{CH}_{2} ; \mathrm{J}: 11.20 \mathrm{~Hz}\right)$	$18.92\left(2 \mathrm{CH}_{3}\right)$
754 ve 695	$\delta 2.31\left(\mathrm{~S}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$	$55.50\left(2 \mathrm{CH}_{2}\right)$
(monosubstitue ring	$\delta 2.75$ (d, 2H, CH2; J:10.40 Hz)	$64.05\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
	$\delta 3.50-3.55$ (m, 2H, 2 CH)	$71.02\left(2 \mathrm{CH}_{2}\right)$ \%
	$\delta 3.83\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$; J: 8.80 Hz)	112.91, 120.08, 124.30, 128.14,
	$\delta 4.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$	$139.58,150,87(\mathrm{ArC})$
	$\delta 7.31$ (d, 1H, ArH; J: 8.40 Hz)	$143.13\left(\text { Triazol C }{ }_{3}\right. \text {) }$
	$\delta 7.46-7.49$ (m, 2H, ArH)	150.15 ($\mathrm{N}=\mathrm{CH}$)
	$\delta 7.67$ (t, 2H, ArH; J: 8.00 Hz)	150.00 (Triazol C5)
	$\delta 7.83-7.85$ (m, 3H, ArH) $\delta 9.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$	

Table 2. Spectral data of compound 7 b

IR (KBr) cm^{-1}	${ }^{1} \mathrm{H}$-NMR	${ }^{13} \mathrm{C}$-NMR
1673 (C=O)	$\delta 1.03$ (d, 6H, 2CH3 ; J=6.40 Hz)	$\delta 10.01\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$
1603, 1576 (C=N)	$\delta 1.11\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right)$	$\delta 14.03\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
1373 ve $1159\left(\mathrm{SO}_{2}\right)$	$\delta 1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} ; J=7.60 \mathrm{~Hz}\right)$	$\delta 18.40\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$
749 ve 696	$\delta 2.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} ; J=10.80 \mathrm{~Hz}\right)$	$\delta 18.93\left(2 \mathrm{CH}_{3}\right)$
(monosubstitue aromatic	$\delta 2.72\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} ; J=7.60 \mathrm{~Hz}\right)$	$\delta 55.60\left(2 \mathrm{CH}_{2}\right)$
ring)	$\delta 2.75$ (t, 2H, CH $\left.{ }_{2} ; J=12.40 \mathrm{~Hz}\right)$	$\delta 64.03\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
	$\delta 3.51-3.54(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH})$)	$\delta 65.50\left(\mathrm{NCH}_{2}\right)$
	$\delta 3.93$ (q, 2H, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=7.20 \mathrm{~Hz}\right)$	$\delta 71.02\left(2 \mathrm{CH}_{2}\right)$
	$\delta 4.55$ ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$	§ 112.95; 118.98; 124.33;
	$\delta 7.31$ (d, 1H, ArH; J=8.00 Hz)	128.14(2C); 128.49(2C); 133.62;
	ס 7.46-7.49 (m, 2H, ArH)	134.86; 135.14; 139.58; 150;87
	$\delta 7.67$ (t, 2H, ArH; J=8.00 Hz)	(ArC)
	$\delta 7.82-7.85$ (m, 3H, ArH)	$\delta 146.84$ (Triazol C ${ }_{3}$)
	$\delta 9.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$	$\delta 150.29$ (N=CH)
		$\delta 153.03$ (Triazol C_{5})

Table 3. Spectral data of compound 7 c

IR (KBr) cm^{-1}	${ }^{1} \mathrm{H}$-NMR	${ }^{13} \mathrm{C}$-NMR
1708 (C=O)	$\delta 1.03$ (d, 6H, 2CH3; J=6.40 Hz)	$\delta 14.03\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
1587 (C=N)	$\delta 1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right)$	$\delta 18.93\left(2 \mathrm{CH}_{3}\right)$
1391 ve 1166 (SO_{2})	$\delta 2.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} ; \quad J=11.20 \mathrm{~Hz}\right)$	$\delta 30.94\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$
850 (1,4-disubstitue	$\delta 2.78$ (d, 2H, $\left.\mathrm{ArH}_{2} ; J=10.40 \mathrm{~Hz}\right)$	$\delta 55.64\left(2 \mathrm{CH}_{2}\right)$
aromatic ring)	$\delta 3.51-3.55$ (m, 2H, 2CH))	$\delta 63.99\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
760 ve 698 (monosubstitue	$\delta 3.80\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right)$	$\delta 65.60\left(\mathrm{NCH}_{2}\right)$
	$\delta 4.55$ (s, 2H, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$	$\delta 71.01\left(2 \mathrm{CH}_{2}\right)$
	$\delta 4.59$ ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$	$\delta 112.04 ; 120.68 ; 124.29$;
	$\delta 7.28-7.32$ (m, 6H, ArH)	128.14; 128.47(2C); 128.60(2C);
	ס 7.37-7.40 (m, 2H, ArH)	129.48(2C); 133.54; 134.86;
	$\delta 7.66$ (t, 2H, ArH; J=8.00 Hz)	135.11; 135.71; 139.60;
	$\delta 7.81-7.85$ (m, 3H, ArH)	150.81 (ArC)
	$\delta 9.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$	$\delta 144.86$ (Triazol C ${ }_{3}$)
		$\delta 150.17$ ($\mathrm{N}=\mathrm{CH}$)
		$\delta 152.45$ (Triazol C_{5})

Table 4. Spectral data of compound 7d

IR (KBr) cm^{-1}	${ }^{1} \mathrm{H}$-NMR	${ }^{13} \mathrm{C}$-NMR
$\begin{aligned} & 1709(\mathrm{C}=\mathrm{O}) \\ & 1589(\mathrm{C}=\mathrm{N}) \\ & 1349 \text { ve } 1167\left(\mathrm{SO}_{2}\right) \\ & 849(1,4-\text { disubstitue } \\ & \text { aromatic ring }) \\ & 763 \text { ve } 697(\mathrm{monosubstitue} \\ & \text { aromatic ring) } \end{aligned}$	```\(\delta 1.03\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{CH}_{3} ; J=6.40 \mathrm{~Hz}\right)\) \(\delta 1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right)\) \(\delta 2.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~J}=10.80 \mathrm{~Hz}\right)\) \(\delta 2.25\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right)\) \(\delta 2.78\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~J}=10.40 \mathrm{~Hz}\right)\) \(\delta 3.51-3.55(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH})\) \(\delta 3.81\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right)\) \(\delta 4.03\) (s, 2H, \(\mathrm{CH}_{2} \mathrm{Ph}\)) \(\delta 4.59\) (\(\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\)) \(\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH} ; J=8.00 \mathrm{~Hz})\) \(\delta 7.20\) (d, 2H, ArH; J=8.00 Hz) \(\delta 7.30\) (d, 1H, ArH; J=8.00 Hz) § 7.38-7.41 (m, 2H, ArH) \(\delta 7.67\) (t, 2H, ArH; J=8.00 Hz) \(\delta 7.81-7.85\) (m, 3H, ArH) \(\delta 9.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})\)```	$\delta 14.03\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ $\delta 18.92\left(2 \mathrm{CH}_{3}\right)$ $\delta 20.56\left(\mathrm{PhCH}_{3}\right)$ $\delta 30.55\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ $\delta 55.65\left(2 \mathrm{CH}_{2}\right)$ $\delta 63.98\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ $\delta 65.50\left(\mathrm{NCH}_{2}\right)$ $\delta 71.00\left(2 \mathrm{CH}_{2}\right)$ $\delta 112.03 ; 120.68 ; 124.29 ;$ $128.14(2 \mathrm{C}) ; 128.48(2 \mathrm{C}) ;$ $129.03(2 \mathrm{C}) ; 129.47(2 \mathrm{C}) ;$ $132.57 ; 133.56 ; 134.84 ;$ $135.13 ; 135.87 ; 139.60 ;$ $150.81(\mathrm{ArC})$ $\delta 145.00\left(\mathrm{Triazol} \mathrm{C}_{3}\right)$ $\delta 150.17(\mathrm{~N}=\mathrm{CH})$ $\delta 150.38\left(\mathrm{Triazol} \mathrm{C}_{5}\right)$

Table 5. Spectral data of compound 7e

IR (KBr) cm^{-1}	${ }^{1} \mathrm{H}$-NMR	${ }^{13} \mathrm{C}-\mathrm{NMR}$
1700 (C=O) ${ }^{1}$	$\delta 1.03$ (d, 6H, 2CH3 ; J=6.40 Hz)	$\delta 14.03\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
1612 ve $1576(\mathrm{C}=\mathrm{N})$	$\delta 1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right)$	$\delta 18.92\left(2 \mathrm{CH}_{3}\right)$
1365 ve $1162\left(\mathrm{SO}_{2}\right)$	$\delta 2.00$ (t, 2H, ArH; J=11.20 Hz)	$\delta 30.10\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$
811 (1,4-disubstitue aromatic	$\delta 2.77$ (d, 2H, ArCH; J=10.00 Hz)	$\delta 55.02\left(\mathrm{OCH}_{3}\right)$
ring)	$\delta 3.51-3.55$ (m, 2H, 2CH)	$\delta 55.65\left(2 \mathrm{CH}_{2}\right)$
752 ve 688 (monosubstitue	$\delta 3.71$ (s, 3H, OCH_{3})	$\delta 63.99\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$
	$\delta 3.82\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right)$	$\delta 65.50\left(\mathrm{NCH}_{2}\right)$
	$\delta 4.02$ (s, 2H, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$	$\delta 71.01\left(2 \mathrm{CH}_{2}\right)$
	$\delta 4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$	$\delta 112.15 ; 120.60 ; 127.43$;
	$\delta 6.86$ (d, 2H, ArH; J=8.40 Hz)	128.14(2C); 129.47(2C);
	$\delta 7.23$ (d, 2H, ArH; J=8.80 Hz)	129.68(2C); 133.57; 134.84;
	$\delta 7.31$ (d, 1H, ArH; J=8.00 Hz)	135.13; 139.60; 150;82
	$\delta 7.40-7.43$ (m, 2H, ArH)	151.12 (ArC)
	$\delta 7.67$ (t, 2H, ArH; J=8.00 Hz)	$\delta 145.15$ (Triazol C ${ }_{3}$)
	$\delta 7.83-7.85$ (m, 3H, ArH)	$\delta 150.18$ (N=CH)
	$\delta 9.62$ (s, 1H, N=CH)	$\delta 150.47$ (Triazol C ${ }_{5}$)

Table 6. Spectral data of compound 7 f

IR (KBr) cm^{-1}	${ }^{1} \mathrm{H}-\mathrm{NMMR}$	${ }^{13} \mathrm{C}$-NMR
$\begin{aligned} & 1705(\mathrm{C}=\mathrm{O}) \\ & 1577(\mathrm{C}=\mathrm{N}) \\ & 1373 \text { ve } 1162\left(\mathrm{SO}_{2}\right) \\ & 749 \text { ve } 694(1,3-\text { monobstitue } \\ & \text { aromatic ring }) \end{aligned}$	$\begin{aligned} & \delta 1.03\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{CH}_{3} ; J=6.40 \mathrm{~Hz}\right) \\ & \delta 1.11\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3} ; J=6.80 \mathrm{~Hz}\right) \\ & \delta 2.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} J=?\right) \\ & \delta 3.51-3.55(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}) \\ & \delta 3.79\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3 ;} \mathrm{J}=6.80 \mathrm{~Hz}\right) \\ & \delta 4.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) \\ & \delta 4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) \\ & \delta 7.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH} ; J=8.00 \mathrm{~Hz}) \\ & \delta 7.34-7.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) \\ & \delta 7.66(\mathrm{t}, 2 \mathrm{H}, \mathrm{ArH} ; J=8.00 \mathrm{~Hz}) \\ & \delta 7.82-7.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) \\ & \delta 9.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{~N}=\mathrm{CH}) \end{aligned}$	$\left.\begin{array}{l} \delta 14.04\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \\ \delta 18.92\left(\mathrm{CH}_{3}\right) \\ \delta 30.29\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \\ \delta 55.62\left(2 \mathrm{CH}_{2}\right) \\ \delta 63.99\left(\mathrm{O} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \\ \delta 65.50\left(\mathrm{NCH}_{2}\right) \\ \delta 71.02\left(2 \mathrm{CH}_{2}\right) \\ \delta 112.10 ; 120.68 ; 124.30 ; \\ 128.14(2 \mathrm{C}) ; 128.41(2 \mathrm{C}) ; \\ 129.48(2 \mathrm{C}) ; 130.53(2 \mathrm{C}) ; \\ 131.45 ; 133.49 ; 134.73 ; \\ 134.86 ; 135.10 ; 139.63 ; \\ 150.82(\mathrm{ArC}) \\ \delta 144.53(\mathrm{Triazol} \mathrm{C} \end{array}\right), 1$

Antibacterial Properties

Antibacterial properties of the synthesized type 7 compounds against bacterial strains of B. subtilis, B. cereus, P. aeruginosa, K. pneumoniae, S. aureus and E. coli were investigated and the results are presented in Table 7.

Table 7. Antibacterial Properties of Compounds 7a-f

	B. subtilis	B. cereus	P. aeruginosa	K. pneumoniae	S. aureus	E. coli
7a	-	14	18	7	-	21
7b	-	10	12	7	8	17
7c	-	17	9	8	9	14
7d	-	12	14	7	11	18
7e	-	18	13	8	8	13
7h	-	14	17	9	7	20

$0-5,5 \mathrm{~mm}$ negative effect; $5,5-10 \mathrm{~mm}(+)$ low effect; 11-16 (++) modarate effect; 17 and upper (+++) high effect (Perez et al., 1990; Ahmad et al., 1998)

Result and Discussion

There was no compound effect against B. subtilis strain. For B. cereus; compound 7 b is at a low level, compound $7 \mathrm{a}, 7 \mathrm{~b}, 7 \mathrm{~d}$ and 7 h is moderate and compounds 7 c and 7 e have a high level of activity. Different result obtained from P. aeruginosa. While compounds 7c-e were moderately active, compounds 7 a and 7 h had a high level of activity. All of the compounds have shown low effect for K. pneumoniae. For aureus, a gram-positive bacterium, while compounds $7 \mathrm{a}, 7 \mathrm{~b}, 7 \mathrm{c}, 7 \mathrm{e}$ and 7 f showed low activity, only compound 7 d had moderate activity. The bacterium in which the highest activity was observed is E. coli. While compounds 7c and 7e were moderately effective, other compounds were highly active.

As a result, it has been concluded that the synthesized 7a-f type Mannich Some type of compounds acted at various levels against gram negative and gram positive bacteria. This situation draws attention to further research.

References

Ahmad, I., Mehmood, Z., Mohammed, F., (1998). Screening of Some Indian Medicinal Plants for Their Antimicrobial Properties, J. Ethnopharmacol. 62 (1998), 183-193.
Gürsoy-Kol, Ö., Yüksek, H., İslamoğlu, F., In-vitro Antioxidant and Acidic Properties of Novel 4-(5-methyl-2-thienylmethyleneamino)-4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives. Synthesis and Characterization, Revista de Chimie (Rev. Chim.) (Bucharest), 63(11); 1103-1111 (2012).
Gürsoy-Kol, Ö., Yüksek, H., İslamoğlu, F., Synthesis and In-vitro Antioxidant Activities of Novel 4-(3-Methyl-2-thienylmethylene-amino)-4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives with Their Acidic Properties, J. Chem. Soc. Pak., 35(4); 1179-1190 (2013).
Ikizler, A. A., Ikizler, A., Yüksek, H., Serdar, M., "Antitumor Activities of Some 4,5-dihydro-1H-1,2,4-triazol-5-ones", Modelling, Masurement \& Control C, AMSE 133res, 57; 25-33 (1998).
Ikizler, A.A., Uçar, F., Yuksek, H., Aytin, A., Yasa, I., Gezer, T., "Synthesis and Antifungal Activity of Some New Arylidenamino Compounds", Acta Pol. Pharm., 54 (2); 135-140 (1997).
Kardaş, F., (2006). Synthesis, Potentiometric Titrations and Antioxidant Properties of Some Novel 3-Substituted-4- (4-methylthiobenzylideneamino)-4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives, Master Thesis, Kafkas University, Institute of Science, Kars.
Manap, S., (2009). Synthesis of some novel 3-alkyl (aryl) -4- (3,4-disubstituedbenzylideneamino)-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives, Characterization of Their Structure, Investigation of Antioxidant and Acidity Properties, Master Thesis, Kafkas University, Institute of Science, Kars.
Ocak, M., Yüksek, H., Kolaylı, S., Küçük, M., Ocak, Ü., Bahçeci, Ş., Alkan,M., Şahinbaş, E., Yıldırım, N., Antioxidant Properties of Some Schiff Bases Containing Triazole Ring, XVIII. International Chemistry Congress, Kars, 556 (2004).
Özdemir, G. (2016), Synthesis of Some Novel 4- [3-ethoxy-4 (benzenesulfonyloxy) benzylideneamino] -4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives, Characterization of Their Structure and Investigation of Some Properties, Master Thesis, Kafkas University, Institute of Science, Kars.
Perez, C., Pauli, M., Bazerque, P. (1990). An Antibiotic Assay by Agar Well Diffusion Method, Acta Biol. Med. Exp. 15, 113-115.
Pinner, A., (1982). Die Imidoäther und Ihre Derivate, 1.Auflage, Oppenheim, Berlin.
Üre, S., (2010). Synthesis of Some 1-methyl-3-alkyl (aryl) -4- (3,4-dimethoxybenzylideneamino) -4,5-dihydro-1H-1,2,4-triazol-5-one to Characterization Structures and Investigation Antioxidant Properties, Master Thesis, Kafkas University, Institute of Science, Kars.
Yüksek, H., Alkan, M., Çakmak, I., Ocak, Z., Bahçeci, Ş., Calapoğlu, M., Elmastaş, M., Kolomuç, A., Aksu, H., (2008). Preparation, GIAO NMR Calculations and Acidic Properties ofSome Novel 4,5-dihydro-1H-1,2,4triazol-5-one Derivatives with Their Antioxidant Activities, Int. J. Mol. Sci. 9: 12-32.
Yuksek, H., Alkan, M., Ocak, Z., Bahceci, S., Ocak, M., Ozdemir, M., (2004). Synthesis and Acidic Properties of Some New Potential Biologically Active 4-acylamino-4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives" Indian J.Chem., 43 (7): 1527-153.
Yüksek, H., Bahçeci, Ş., Alkan, M.,(2001). Bazı 4-(4-hidroksibenzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5on Bileşiklerinin ve Asetil Türevlerinin Sentezi" XV. National Chemistry Congress, İstanbul, OK-P13 (2001).

	Author Information
Gul Ozdemir	Muzaffer Alkan
Kafkas University,	Kafkas University,
Department of Chemistry,	Education Faculty
Kars, Turkey	Kars, Turkey
	muzafferalkan61@ gmail.com
Haydar Yuksek	
Kafkas University,	
Department of Chemistry, Kars, Turkey	

[^0]: - This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 - Selection and peer-review under responsibility of the Organizing Committee of the Conference

