

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2018

Volume 2, Pages 295-306

ICRES 2018: International Conference on Research in Education and Science

Gaussian Calculations of 3-(*p*-Chlorobenzyl)-4-(3,4-Dihydroxybenzylidenamino)-4,5-Dihydro-1*H*-1,2,4-Triazol-5-One and *N*-Acetyl Derivative using B3lyp and HF Basis Sets

Gul KOTAN

Kafkas University, Kars Vocational School

Sule BAHCECI Fatih Education Faculty, Karadeniz Technical University

> Haydar YUKSEK Kafkas University, Department of Chemistry

Abstract: 3-*p*-Chlorobenzyl-4-(3,4-dihydroxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one (1) and 1acetyl-3-*p*-chlorobenzyl-4-(3,4-dihydroxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one (2) were described in the literature. In this study, these compounds were optimized by using the B3LYP/631G (d,p) and HF/631G (d,p) basis sets. IR absorption frequencies of analysed molecules were calculated by two methods. The veda4f program, was used in defining IR data, which were calculated theoreticall. ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by the method of GIAO using the program package Gaussian G09. Experimental and theoretical values were inserted into the grafic according to equatation of $\delta \exp_{=}a+b$. δ calc. The standard error values were found via SigmaPlot program with regression coefficient of a and b constants. The experimental and the obtained theoretical values were compared and found by regression analysis that are accurete. Furthermore, electronic, geometric and thermodynamic parameters, UV-Vis values, dipole moments, the HOMO-LUMO energy, total energy of the molecule, bond angles, bond lengths and mulliken charges from both methods were calculated.

Keywords: 4,5-Dihydro-1H-1,2,4-triazol-5-one, GIAO, HOMO-LUMO, UV-Vis

Introduction

1,2,4-Triazoles were reported to shown substantial antibacterial, antifungal and antihelmintic activities (Hardman et al., 1996; Gennaro et al., 1995; Richardson et al., 1984; Ammermann et al., 1991; Heindel et al., 1980). On the other hand, quantum chemical calculation methods have widely been used to theoretically predict the structural, spectroscopic, thermodynamic and electronic properties of molecular systems. The quantum chemical alculation methods provide support for experimental structural and spectroscopic studies (Yüksek et.al., 2005a; Yüksek et.al., 2005b; Yüksek et.al., 2008a; Yüksek et.al., 2008b; Gökçe ve ark., 2013; Gökçe ve ark., 2014). In this study, we report the thereotical properties of Shiff bases containing 1,2,4-triazoles. All theoretical calculations investigated for the molecule were calculated with the Gaussian 09 quantum chemistry program (Frisch et.al., 2009) on a equipped computer. Assential calculations were carried out using the Density Functional Theory (DFT) and Hatree Fock (HF) method with the restricted B3LYP (Kohn et.al., 1996; Becke et.al., 1993; Becke et.al., 1988) level of theory, using 6-31G(d,p) basis sets, for all atoms. For this, firstly, 3-p-Chlorobenzyl-4-(3,4-dihydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one (1) and 1-acetyl-3-pchlorobenzyl-4-(3,4-dihydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one (2) were optimized by using and 6-31G(d,p) two different basis sets (Frisch et al., 2009; Wolinski, Hilton & Pulay, 1990). Thus, the most stable form of the compound were determined. The optimized structures were used to calculation of the varied theoretical properties of the compound. Then, theoretical vibrational frequency were done in gas phase. Therefore, The veda4f program was used in defining IR data (Jamróz, 2004) which are multiplied with

⁻ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁻ Selection and peer-review under responsibility of the Organizing Committee of the Conference

appropriate adjustment factors (Merrick et al., 2007) and result gave positive frequency values. This result, structure of compound were shown stable. Experimental data obtained from the literature (Bahçeci et al., 2002). The experimental and the calculated theoretical values were compared .The thereotical data obtained according to DFT/HF 6-31G(d,p) basis sets are formed using theoretical infrared spectrum. The experimental and theoretical IR spectra are given in Figs. 3. The ¹H and ¹³C-NMR chemical shifts for the optimized molecular geometry of the molecule were calculated at B3LYP/6-31G(d,p) levels by using GIAO (the Gauge-Independent Atomic Orbital) (Pearson, 1989) approach in dimethyl sulfoxide (DMSO) solvent. Experimental and theoretical values were found via SigmaPlot program with regression coefficient of **a** and **b** constants. The temperature addicted thermodynamic parameters (thermal energies **E**, thermal capacity **CV**, entropy **S**) were calculated from the vibrational frequency calculations of the title compound in the gas phase using the DFT/HF 6-31G(d,p) level. In addition to the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), bond lengths, mulliken charges, E_{LUMO} - E_{HOMO} energy gap (ΔE_g), electronegativity (χ), electron affinity (A), global hardness (η), softness (S), ionization potential (I), chemical potential (Pi), electrophilic index(ω), Nucleophilic index (IP), total energy of the molecule, dipole moments were calculated.

Computational Details

Figure 1. The Gausview structure of the molecules 1 and 2.

Table 1. The calculated and experimental ¹³ C	and ¹ H-NMR DMSO isotropic chemical shifts of the molecule 1
	and 2 (δ /nnm)

				and 2	$\simeq (0, ppm)$				
No	Exp.	DFT	Differ.	DFT/ DMSO	Differ./ DMSO	HF	Differ.	HF/ DMSO	Differ./ DMSO
C1	145.71	152.07	-6.36	153.90	-8.19	145.10	0.61	147.93	-2.22
C2	154.57	148.46	6.11	149.59	4.98	147.33	7.24	148.56	6.01
C3	151.24	160.27	-9.03	161.83	-10.59	168.16	-16.92	171.09	-19.85
C4	124.57	133.21	-8.64	131.49	-6.92	120.99	3.58	119.38	5.19
C5	121.75	129.15	-7.40	131.01	-9.26	118.74	3.01	121.80	-0.05
C6	112.86	114.99	-2.13	117.17	-4.31	107.46	5.40	110.10	2.76
C7	145.71	147.88	-2.17	149.96	-4.25	138.88	6.83	140.35	5.36
C8	149.25	148.05	1.20	147.43	1.82	138.91	10.34	137.37	11.88
C9	115.53	119.55	-4.02	117.82	-2.29	116.97	-1.44	113.76	1.77
C10	30.35	42.55	-12.20	42.09	-11.74	27.32	3.03	26.87	3.48
C11	134.72	136.69	-1.97	137.87	-3.15	128.68	6.04	130.08	4.64
C12	130.69	134.13	-3.44	134.72	-4.03	127.12	3.57	127.52	3.17
C13	128.59	131.61	-3.02	131.83	-3.24	125.00	3.59	125.16	3.43
C14	133.31	145.93	-12.62	144.73	-11.42	133.21	0.10	131.64	1.67
C15	128.59	131.63	-3.04	131.74	-3.15	124.98	3.61	125.11	3.48
C16	130.69	135.10	-4.41	135.41	-4.72	127.55	3.14	127.82	2.87
H17	11.95	7.81	4.14	8.26	3.69	7.19	4.76	7.58	4.37
H18	9.42	8.51	0.91	8.69	0.73	8.89	0.53	9.15	0.27
H19	7.05	7.56	-0.51	7.86	-0.81	7.36	-0.31	7.82	-0.77
H20	6.82	7.29	-0.47	7.76	-0.94	7.10	-0.28	7.64	-0.82
H21	7.27	8.21	-0.94	8.16	-0.89	3.63	3.64	4.59	2.68

1122	0.42	4 4 1	5.01	5 52	2.80	1 79	161	5 10	1 22
П22 1122	9.42	4.41 5 70	2.07	5.55	2.59	4.70	4.04	9.10 9.50	4.52
H23	9.75	3.78	5.97	0.17	5.58	0.92 2.06	0.85	8.30 2.42	1.23
П24 1125	4.02	4.57	-0.55	4.04	-0.02	2.00	0.90	5.45 2.70	0.39
H25	4.02	4.//	-0.75	4.83	-0.85	5.30	0.44	5.78	0.24
H20	7.52	0.00	-0.70	8.30 8.30	-0.98	7.74	-0.42	8.00 7.05	-0.08
H2/	7.30	8.07	-0.71	8.22	-0.80	1.18	-0.42	7.95	-0.59
H28	7.30	8.12	-0.70	8.27	-0.91	1.12	-0.30	7.90	-0.54
П29	1.32	0.20	-0.00	0.42	-1.10	1.51	-0.23	/.04	-0.32
No	Exp.	DFT	Differ.	DF 1/ DMSO	DMSO	HF	Differ.	DMSO	DMSO
C1	144.55	152.43	-7.88	155.13	-10.58	146.04	-1.49	149.88	-5.33
C2	153.24	149.18	4.06	149.76	3.48	147.89	5.35	148.44	4.80
C3	148.20	159.51	-11.31	161.85	-13.65	168.43	-20.23	171.56	-23.36
C4	131.85	136.67	-4.82	137.09	-5.24	123.69	8.16	124.66	7.19
C5	126.82	133.08	-6.26	134.87	-8.05	123.50	3.32	126.42	0.40
C6	122.36	127.27	-4.91	128.16	-5.80	118.83	3.53	120.15	2.21
C7	148.20	153.01	-4.81	152.13	-3.93	143.25	4.95	141.84	6.36
C8	142.35	148.57	-6.22	147.67	-5.32	137.51	4.84	135.74	6.61
C9	124.38	126.79	-2.41	127.23	-2.85	123.20	1.18	121.86	2.52
C10	30.92	41.91	-10.99	41.53	-10.61	27.22	3.70	26.82	4.10
C11	130.90	134.11	-3.21	136.17	-5.27	126.57	4.33	128.89	2.01
C12	130.90	133.52	-2.62	134.64	-3.74	126.85	4.05	127.56	3.34
C13	128.34	131.56	-3.22	131.86	-3.52	125.14	3.20	125.23	3.11
C14	133.95	146.73	-12.78	144.98	-11.03	134.20	-0.25	132.04	1.91
C15	128.34	132.10	-3.76	131.65	-3.31	125.44	2.90	125.16	3.18
C16	130.90	135.83	-4.93	135.81	-4.91	127.87	3.03	128.04	2.86
C17	165.90	164.99	0.91	167.77	-1.87	156.51	9.39	160.43	5.47
C18	23.48	32.39	-8.91	32.67	-9.19	21.15	2.33	21.38	2.10
C19	168.10	171.91	-3.81	173.78	-5.68	160.96	7.14	162.99	5.11
C20	20.29	28.21	-7.92	28.44	-8.15	17.65	2.64	17.82	2.47
C21	167.98	167.84	0.14	171.54	-3.56	156.93	11.05	161.19	6.79
C22	20.29	28.40	-8.11	28.71	-8.42	17.02	3.27	17.34	2.95
H23	9.58	8.76	0.82	9.03	0.55	9.08	0.50	9.39	0.19
H24	7.76	8.08	-0.32	8.44	-0.68	7.78	-0.02	8.28	-0.52
H25	7.45	7.98	-0.53	8.28	-0.83	7.68	-0.23	8.06	-0.61
H26	7.78	8.16	-0.38	8.38	-0.60	8.93	-1.15	8.78	-1.00
H27	4.17	4.63	-0.46	4.94	-0.77	3.10	1.07	3.53	0.64
H28	4.17	4.71	-0.54	4.87	-0.70	3.57	0.60	3.84	0.33
H29	7.43	7.99	-0.56	8.28	-0.85	7.71	-0.28	8.02	-0.59
H30	7.41	8.08	-0.67	8.22	-0.81	7.81	-0.40	7.96	-0.55
H31	7.41	8.23	-0.82	8.31	-0.90	7.80	-0.39	7.92	-0.51
H32	7.43	8.46	-1.03	8.63	-1.20	7.62	-0.19	7.88	-0.45
H33	2.50	3.34	-0.84	3.42	-0.92	2.91	-0.41	3.00	-0.50
H34	2.50	3.17	-0.67	3.17	-0.67	2.79	-0.29	3.03	-0.53
H35	2.50	2.63	-0.13	2.67	-0.17	2.37	0.13	2.39	0.11
H36	2.32	3.02	-0.70	3.23	-0.91	2.48	-0.16	2.73	-0.41
H37	2.32	2.63	-0.31	2.66	-0.34	2.71	-0.39	2.77	-0.45
H38	2.32	3.31	-0.99	3.37	-1.05	2.20	0.12	2.21	0.11
H39	2.32	3.24	-0.92	3.29	-0.97	2.28	0.04	2.29	0.03
H40	2.32	2.52	-0.20	3.15	-0.83	2.07	0.25	2.18	0.14
H41	2.32	2.95	-0.63	2.56	-0.24	2.21	0.11	2.59	-0.27

The optimized \mathbb{R}^2 values of the compound 1: B3LYP/631G(d,p) (DMSO): ¹³C: 0.9883, ¹H: 0.4533; HF/631G(d,p) (DMSO): ¹³C: 0.9762, ¹H: 0.5872.

The optimized \mathbb{R}^2 values of the compound 2: B3LYP/631G(d,p) (DMSO): ¹³C: 0.9971, ¹H: 0.9883; HF/631G(d,p) (DMSO): ¹³C: 0.9916, ¹H: 0.9862. There is such a relationship between R²-values of the compound. Found standard error rate and a, b constants

regression values were calculated according to formule exp =a +b. δ calc Eq. These values for compound were

given in the table 2. Theoretical and experimental carbon and proton chemical shifts ratios between acording to a, b ve R^2 values, lineer a correlation were observed.

		Table 2.	The correla	tion data fo	mical shifts of the molecules 1 and 2						
			¹³ C							¹ H	
1	DFT	R 0.9878	S. hata	a 1.0640	13	b - 026	33	R 0.3445	S. hata 2.1386	a 0.4761	b 4.2815
2	HF	0.9797	5.9515	0.9483	13. 9.()50	0	0.5763	1.8616	0.6130	3.5978
4	DFI	0.9971	3.7293	1.0388	10.	-002	22	0.9883	0.4190	1.0287	-0.6739
	HF	0.9916	6.3450	0.9778	4.7	724	8	0.9862	0.4539	0.9389	0.2417
¹³ C.NMR DENEYSEL DEĞERLER	180 160 140 120 100 60 40 - 0 0 13	50 C-NMR B3LYP/HF(D	100 ромбо) теогік не	y = 1,050x - 11,70 R ² = 0,976 150 SAPLANAN DEĞERL	200 .ER	¹ H-NMR EXPERIMENTAL VALUES	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, 2 #H	¢ 4 6 I-NMR B3LYP/HI	8 10 THEORETICAL	y = 0,303x + 5,001 R ² = 0,205 12 14 VALUES
	180 - 160 - 140 - 140 - 140 - 140 - 140 - 140 - 140 - 140 - 120 - 140 - 140 - 120 - 140 - 120 - 140 - 120 - 140 - 120 - 140 - 140 - 120 - 140 - 14	50	100	y= 1,028x - 9,48 R ² =0,994	34	¹³ C-NMR DENEYSEL DEĞERLER	12 - 10 - 8 - 4 - 2 - 0 -		4	v= 6	1,001x-0,688 R ² =0,977 8 10
		13C-NMR B3LYP/HF	(DMSO) TEORİK H	ESAPLANAN DEĞERI	LER			¹ H-NMR E	3LYP/HF(DMSO) T	EORİK HESAPLANA	N DEĞERLER

Figure 2. The correlation graphs for 6-31G(d,p) chemical shifts of the molecules 1 and 2

The Vibration Frequency of the Compound

Theoretically IR values were calculation veda 4f programme and scala values were obtain. IR spectrums were drawn with obtained values according to HF and DFT method. Theoretically IR values were compare with experimentally IR values. The result of this compare were found corresponding with each other of values. (Table 3).

Table 3. Significant vibrational frequencies (cm⁻¹)of the molecules 1 and 2

Significant vibrational frequencies	Expe	rimental (cm ⁻¹)	B3LYP/HF 6-31G(d,p)					
inquinties	IR(1)	IR(2)	DFT(1)	HF(1)	DFT(2)	HF(2)		
vC=C	1570		1593	1620				
v C=N	1590,1580	1610,1590	1623	1717	1601	1701		
vC=0	1715	1780,1760,1700	1773	1780	1773	1831		
v=CH	3056		3091	3039				
v NH	3150		3557	3555				
vОН	3336		3643	3750				

Figure 3. Experimantal and theoretical IR spectrums and simulated of the molecules 1 and 2.

Table 4. The calculated bond lengths of the molecules 1 and 2											
bond length 1	DFT	HF	bond length 1	DFT	HF	bond length 2	DFT	HF	bond length 2	DFT	HF
C(1)-N(31)	1.300	1.267	C(15)-H(28)	1.084	1.073	C(1)-N(43)	1.294	1.263	C(16)-C(11)	1.400	1.388
C(1)-N(32)	1.388	1.380	C(15)-C(16)	1.393	1.383	C(1)-N(44)	1.398	1.384	N(45)-C(3)	1.289	1.259
C(1)-C(10)	1.499	1.498	C(16)-H(29)	1.086	1.075	C(1)-C(10)	1.501	1.498	C(3)-H(23)	1.091	1.079
N(31)-N(30)	1.381	1.370	C(16)-C(11)	1.399	1.388	N(42)-N(43)	1.394	1.381	C(3)-C(4)	1.470	1.484
N(30)-H(17)	1.006	0.990	N(33)-C(3)	1.290	1.260	N(42)-C(17)	1.429	1.410	C(4)-C(5)	1.403	1.390
N(30)-C(2)	1.374	1.349	C(3)-H(18)	1.091	1.079	C(17)-O(47)	1.207	1.183	C(4)-C(9)	1.404	1.389
C(2)-O(34)	1.217	1.199	C(3)-C(4)	1.466	1.481	C(17)-C(18)	1.508	1.506	C(5)-H(24)	1.085	1.075
C(2)-N(32)	1.422	1.383	C(4)-C(5)	1.404	1.388	C(18)-H(33)	1.092	1.081	C(5)-C(6)	1.391	1.381
N(32)-N(33)	1.393	1.397	C(4)-C(9)	1.408	1.394	C(18)-H(34)	1.094	1.082	C(6)-H(25)	1.084	1.073
C(1)-C(10)	1.499	1.498	C(5)-H(19)	1.085	1.075	C(18)-H(35)	1.089	1.079	C(6)-C(7)	1.395	1.382
C(10)-H(24)	1.098	1.086	C(5)-C(6)	1.392	1.385	N(42)-C(2)	1.399	1.374	C(7)-O(48)	1.375	1.358
C(10)-H(25)	1.096	1.084	C(6)-H(20)	1.087	1.076	C(2)-O(46)	1.215	1.197	O(48)-C(21)	1.398	1.362
C(10)-C(11)	1.513	1.512	C(6)-C(7)	1.390	1.378	C(2)-N(44)	1.410	1.373	C(21)-O(49)	1.199	1.177
C(11)-C(12)	1.398	1.386	C(7)-O(36)	1.370	1.355	N(44)-N(45)	1.391	1.399	C(21)-C(22)	1.507	1.505
C(12)-H(26)	1.086	1.076	O(36)-H(21)	0.965	0.942	C(10)-H(27)	1.091	1.086	C(22)-H(39)	1.093	1.080
C(12)-C(13)	1.394	1.384	C(7)-C(8)	1.409	1.394	C(10)-H(28)	1.095	1.084	C(22)-H(40)	1.092	1.083
C(13)-H(27)	1.084	1.073	C(8)-O(35)	1.361	1.345	C(10)-C(11)	1.513	1.512	C(22)-H(41)	1.089	1.079
C(13)-C(14)	1.393	1.381	O(35)-H(22)	0.968	0.944	C(11)-C(12)	1.397	1.386	C(7)-C(8)	1.402	1.387
C(14)-Cl(37)	1.760	1.744	C(8)-C(9)	1.386	1.377	C(12)-H(29)	1.086	1.076	C(8)-O(50)	1.390	1.371
C(14)-C(15)	1.393	1.382	C(9)-H(23)	1.081	1.071	C(12)-C(13)	1.395	1.384	O(50)-C(19)	1.374	1.343
						C(13)-H(30)	1.084	1.073	C(19)-O(51)	1.207	1.184
						C(13)-C(14)	1.392	1.380	C(19)-C(20)	1.503	1.498
						C(14)-Cl(52)	1.759	1.743	C(20)-H(36)	1.092	1.083
						C(14)-C(15)	1.394	1.382	C(20)-H(37)	1.089	1.083
						C(15)-H(31)	1.084	1.073	C(20)-H(38)	1.094	1.079
						C(15)-C(16)	1.392	1.382	C(8)-C(9)	1.384	1.378
						C(16)-H(32)	1.085	1.075	C(9)-H(26)	1.082	1.071

 Table 4. The calculated bond lengths of the molecules 1 and 2

able 5.	The calculated bo	angle	s with B3	6LYP	/HF 631G(d,j	(\mathbf{p}) of the \mathbf{p}	molecule	el and
	bond angles	B3LYP	HF		bond angle	es B3I	LYP	HF
1	C(1)-N(31)-N(30)	104.314	104.822	27	H(28)-C(15)-C	(16) 120	.825 12	0.690
2	C(1)-N(32)-C(2)	107.989	107.670	28	C(14)-C(15)-C	(16) 119	.031 11	9.162
3	N(31)-C(1)-N(32)	111.741	111.506	29	C(15)-C(16)-H	(29) 119	.153 11	9.091
4	N(31)-N(30)-H(17)	120.090	120.790	30	H(29)-C(16)-C	(11) 119	.667 11	9.825
5	H(17)-N(30)-C(2)	124.717	125.429	31	C(1)-N(32)-N(33) 121	.389 12	2.020
6	N(31)-N(30)-C(2)	114.513	113.416	32	N(32)-N(33)-C	2(3) 118	.973 11	7.547
7	N(30)-C(2)-O(34)	130.513	129.838	33	N(33)-C(3)-H(18) 110	.921 11	2.173
8	O(34)-C(2)-N(32)	128.522	127.998	34	H(18)-C(3)-C	(4) 113	.594 11	4.513
9	C(2)-N(32)-N(33)	125.612	123.480	35	C(3)-C(4)-C(5) 116	.446 11	5.879
10	C(1)-C(10)-C(11)	113.794	113.863	36	C(3)-C(4)-C(9) 124	.515 12	4.561
11	C(1)-C(10)-H(24)	108.475	107.910	37	C(4)-C(5)-H(1	9) 119	.654 12	0.283
12	C(1)-C(10)-H(25)	107.581	107.738	38	H(19)-C(5)-C	(6) 119	.438 11	9.283
13	H(24)-C(10)-H(25)	105.470	106.127	39	C(4)-C(5)-C(6) 120	.905 12	0.431
14	H(24)-C(10)-C(11)	110.273	110.340	40	C(5)-C(6)-C(7) 119	.590 11	9.704
15	H(25)-C(10)-C(11)	110.868	110.524	41	C(5)-C(6)-H(2	20) 120	.486 12	0.325
16	C(10)-C(11)-C(12)	120.708	120.683	42	H(20)-C(6)-C	(7) 119	.922 11	9.969
17	C(10)-C(11)-C(16)	120.780	120.724	43	C(6)-C(7)-O(3	36) 124	.746 12	4.043
18	C(11)-C(12)-H(26)	119.647	119.863	44	C(6)-C(7)-C(8) 120	.333 12	0.294
19	H(26)-C(12)-C(13)	119.148	119.046	45	C(7)-O(36)-H(21) 110	.141 11	1.829
20	C(12)-C(13)-H(27)	120.818	120.664	46	O(36)-C(7)-C	(8) 114	.918 11	5.658
21	H(27)-C(13)-C(14)	120.185	120.190	47	C(7)-C(8)-O(3	35) 120	.294 12	0.601
22	C(12)-C(13)-C(14)	118.996	119.146	48	C(8)-O(35)-H(22) 107	.807 11	0.084
23	C(13)-C(14)-Cl(37)	119.473	119.563	49	O(35)-C(8)-C	(9) 119	.915 11	9.423
24	Cl(37)-C(14)-C(15)	119.450	119.512	50	C(8)-C(9)-H(2	23) 117	.848 11	8.418
25	C(13)-C(14)-C(15)	121.077	120.925	51	H(23)-C(9)-C	(4) 121	.645 12	1.507
26	C(14)-C(15)-H(28)	120.145	120.148					
_	bond angles 2	B3LYP	HF	bo	nd angles 2	B3LYP	HF	_
	C(1)-N(43)-N(42)	105.214	105.578	N(4	(2)-C(2)-O(46)	130.406	129.835	
	C(1)-N(44)-C(2)	108.033	107.757	C(2	-N(44)-N(45)	126.350	122.967	
	N(43)-C(1)-N(44)	111.945	111.768	N(4	4)-N(45)-C(3)	118.801	117.333	
	N(43)-N(42)-C(17)	119.321	119.327	N(4	-5)-C(3)-H(23)	111.634	112.577	
	N(43)-C(1)-C(10)	126.535	126.852	HC	23)-C(3)-C(4)	114.648	115.066	
	N(44)-C(1)-C(10)	121.460	121.342	Ċ	(3)-C(4)-C(5)	117.883	116.809	
	C(1)-C(10)-H(27)	107.932	107.654	C	3)-C(4)-C(9)	123.408	123.860	
	C(1)-C(10)-H(28)	107.437	107.596	C(4	4)-C(5)-H(24)	119.602	120.135	
	H(27)-C(10)-C(11)	110.428	110.437	H(24)-C(5)-C(6)	119.499	119.269	
	H(28)-C(10)-C(11)	110.713	110.525	C	(4)-C(5)-C(6)	120.893	120.583	
	H(27)-C(10)-H(28)	105.314	106.180	C(:	5)-C(6)-H(25)	120.867	120.668	
	C(1)-C(10)-C(11)	114.550	114.088	H(1	25)-C(6)-C(7)	119.046	119.357	
	C(10)-C(11)-C(16)	121.075	120.719	C	5)-C(6)-C(7)	120.079	119.973	
	C(10)-C(11)-C(12)	120.339	120.573	C((5)-C(7)-O(48)	121.873	121.752	
	C(11)-C(12)-H(29)	119.755	119.959	C(7)-O(48)-C(21)	122.962	125.018	
	H(29)-C(12)-C(13)	119.047	119.011	O(4	8)-C(21)-O(49)	116.867	117.203	
	C(11)-C(12)-C(13)	121.198	121.030	O(4	9)-C(21)-C(22)	125.764	124.346	
	C(12)-C(13)-H(30)	120.783	120.656	C(2	1)-C(22)-H(39)	111.321	111.211	
	H(30)-C(13)-C(14)	120.231	120.203	C(2	1)-C(22)-H(40)	110.187	110.371	
	C(13)-C(14)-Cl(52)	119.502	119.557	C(2)	1)-C(22)-H(41)	107.680	107.215	
	Cl(52)-C(14)-C(15)	119.459	119.502	H(3	9)-C(22)-H(40)	108.034	108.943	
	C(12)-C(13)-C(14)	118.987	119.141	H(4	0)-C(22)-H(41)	110.344	110.115	
	C(14)-C(15)-H(31)	120.130	120.149	H(3	9)-C(22)-H(41)	109.280	108.952	
	H(31)-C(15)-C(16)	120.728	120.671	O(-	48)-C(7)-C(8)	118.706	118.659	
	C(14)-C(15)-C(16)	119.142	119.180	C('	7)-C(8)-O(50)	120.293	120.789	
	C(15)-C(16)-H(32)	119.132	119.071	C(8)-O(50)-C(19)	118.423	119.972	
	H(32)-C(16)-C(11)	119.806	119.925	O(5	U)-C(19)-O(51)	123.306	122.963	
	C(15)-C(16)-C(11)	121.057	121.003	O(5	1)-C(19)-C(20)	126.534	126.217	
	N(42)-C(17)-O(47)	119.616	119.760	C(19	9)-C(20)-H(36)	110.560	109.892	
	U(47)-C(17)-C(18)	124.610	123.550	C(19	9)-C(20)-H(37)	109.418	109.387	
	N(42)-C(17)-C(18)	115.766	116.690	C(19	9)-C(20)-H(38)	109.059	109.012	
	C(17)-C(18)-H(33)	111.249	110.996	H(3)	(20) - H(37)	107.537	10/.940	
	C(17)-C(18)-H(34)	111.158	111.020	H(3	/)-C(20)-H(38)	109.657	110.088	
	U(17)-U(18)-H(35)	107.208	106.956	H(3)	b)- $C(20)$ - $H(38)$	110.573	110.494	
	H(33)-C(18)-H(34)	106.425	107.064	C(8	s)-C(9)-H(26)	118.178	118.863	
	H(34)-C(18)-H(35)	110.221	110.382	H()	20)-C(9)-C(4)	121.436	121.313	_

Table 5. The calculated bond angles with B3LYP/HF 631G(d,p) of the molecule1 and 2.

Frontier Molecular Orbital Analysis

Frontier molecular orbitals (FMO) (Figs. 4,5) determines the electric, electronic transitions, optical properties and kinetic stability (Fukui et al., 1952). HOMO-LUMO energy of compound was calculated using 6-31G (d,p)

level of theory. Using HOMO-LUMO energy gap electronegativity (χ), electron affinity (A), global hardness (η), softness (S), chemical potential (μ), ionization potential (I), chemical potential (Pi), electrophilic index(ω), Nucleophilic index (IP) for the compound was calculated. These all properties are calculated as follows (Parr, 1989; Parr et al., 1999; Özdemir et al., 2013):

$$\eta = (I - A)/2$$
, $\mu = -(I + A)/2$, $\chi = (I + A)/2$, $Pi = \chi$, $\omega = \mu^2 / 2\eta$

In this formule, I and A symbolised ionization potential and electron affinity of the compound, which are virtually obtained from HOMO and LUMO energies. Where I = $-E_{HOMO}$ and A= $-E_{LUMO}$ showed as per Janak theorem (Janak, 1978) and Perdew et al. (Perdew et al., 1982). The HOMO-LUMO energy gap in compounds is 4.29; 11,18 e.v. All these parameters such as global hardness (η) chemical potential (μ), the global electrophilicity index (ω), electronegativity (χ), ionization potential (I), chemical potential (Pi), electrophilic index(ω), Nucleophilic index (IP) have been calculated for the target compound using 6-31G (d,p) basis set and are showed in Tables 6,7.

 $E_{HOMO}(B3LYP): -0.21225 \ Hatree \\ Figure 4. \ HOMO-LUMO \ energy \ calculated \ with \ DFT/HF \ 6-31G(d,p) \ levels \ of \ the \ molecule \ 1$

	Table 6. The calculated electronic structure parameters of the molecule 1										
		Hatree	ev	kcal/mol	KJ/mol						
	LUMO	-0,05446	-1,48189	-34,1738	-142,985						
	номо	-0,21225	-5,77547	-133,188	-557,262						
Α	electron affinity	0,05446	1,48189	34,1738	142,985						
Ι	ionization potential	0,21225	5,77547	133,188	557,262						
ΔE	energy gap	0,15779	4,29358	99,0137	414,278						
χ	electronegativity	0,133355	3,62868	83,6807	350,124						
Pi	chemical potential	-0,133355	-3,62868	-83,6807	-350,124						
ω	electrophilic index	0,000701517	0,01909	0,4402	1,84183						
IP	Nucleophilic index	-0,01052104	-0,28628	-6,60199	-27,623						
S	molecular softness	12,6751	344,898	7953,65	33278,4						
η	molecular hardness	0,078895	2,14679	49,5068	207,139						

 $\begin{array}{lll} E_{HOMO}\left(B3LYP\right): -0.24155 \ Hatree & E_{HOMO}\left(HF\right): -0.33380 \ Hatree \\ Figure 5. \ HOMO-LUMO \ energy \ calculated \ of \ the \ molecule \ 2 \end{array}$

Table 7. The calculated electronic structure parameters of the molecule 2

Δ	LUMO HOMO electron affinity	Hatree -0,08088 -0,24155 0.08088	ev -2,2008 -6,57274 2,2008	kcal/mol -50,7524 -151,573 50,7524	KJ/mol -212,35 -634,19 212,35
I	ionization potential	0,24155	6,57274	151,573	634,19
ΔE	energy gap	0,16067	4,37194	100,821	421,839
χ	electronegativity	0,161215	4,38677	101,163	423,27
Pi	chemical potential	-0,161215	-4,38677	-101,163	-423,27
ω	electrophilic index	0,001043964	0,02841	0,65509	2,74093
IP	Nucleophilic index	-0,01295121	-0,35241	-8,12692	-34,0034
S	molecular softness	12,4479	338,715	7811,08	32681,9
η	molecular hardness	0,080335	2,18597	50,4105	210,92

Thermodynamics Properties of Compound

_

Table 8. The calculated thermodynamic	s properties of the	molecule 1.
Rotational temperatures (Kelvin)	DFT	HF
А	0.02986	0.01930
В	0.00363	0.00439
С	0.00353	0.00406
Rotational constants (GHz)		
А	0.62224	0.40219
В	0.07555	0.09141
С	0.07348	0.08467
Thermal Energies E (kcal/mol)		
Translational	0.889	0.889
Rotational	0.889	0.889
Vibrational	183.677	196.381
Total	185.455	198.159

I hermal Capacity CV (cal/mol-K)	2 001	2 0 9 1
I ransiational	2.981	2.981
Kotational Vibrational	2.981	2.981
v Ibrational Total	75.755	08.087
$\frac{101a1}{\text{Entropy S}}$	19.115	74.040
Translational	42 401	42 401
Potetional	45.401	43.401
Vibrational	55.765 81.320	55.009 75.340
Total	160 507	154 630
Total Zero point correction (Hartree/Darticle)	0.274631	0.206125
Thermal correction to Energy	0.274031	0.290125
Thermal correction to Entralpy	0.295541	0.315780
Thermal correction to Gibbs Free Energy	0.290485	0.243260
Sum of electronic and zero point Energies	1522 105640	1515 008045
Sum of electronic and thermal Energies	-1522.105040	-1515.008945
Sum of electronic and thermal Entralpies	-1522.084730	-1514.989204
Sum of electronic and thermal Free Energies	-1522.085780	-1515.061810
Zero point vibrational energy (Keal/Mel)	-1322.100048	-1515.001810
Zero-point viorational energy (Keal/Wor)	172.33333	165.62120
Table 9 The calculated thermodynamics	properties of the	molecule 2
Rotational temperatures (Kelvin)	DET	HF
	0.01278	0.00903
B	0.01278	0.00261
D C	0.00242	0.00201
Rotational constants (GHz)	0.00229	0.00233
	0 26638	0 18817
B	0.05035	0.05/33
C C	0.03033	0.03433
Thermal Energies E (kcal/mol)	0.01702	0.01900
Translational	0.889	0 889
Rotational	0.889	0.889
Vibrational	260 146	277 814
Total	261.924	279.592
Thermal Capacity CV (cal/mol-K)		
Translational	2.981	2.981
Rotational	2.981	2.981
Vibrational	107.833	99.762
Total	113.794	105.724
Entropy S (cal/mol-K)		
Translational	44.332	44.332
Rotational	37.458	37.704
Vibrational	129.793	123.222
Total	211.583	205.257
Zero-point correction (Hartree/Particle)	0.386315	0.416320
Thermal correction to Energy	0.417402	0.445558
Thermal correction to Enthalpy	0.418346	0.446502
Thermal correction to Gibbs Free Energy	0.317816	0.348977
Sum of electronic and zero-point Energies	-1979.955917	-1970.231524
Sum of electronic and thermal Energies	-1979.924831	-1970.202287
Sum of electronic and thermal Enthalpies	-1979.923887	-1970.201343
Sum of electronic and thermal Free Energies	-1980.024417	-1970.298867
Zero-point vibrational energy (Kcal/Mol)	242.41655	261.24488

	Table 10. The calculated mulliken charges datas of the molecule 1 and 2										
1	DFT	HF	1	DFT	HF	2	DFT	HF	2	DFT	HF
C1	0.536	0.605	H18	0.086	0.156	C1	0.547	0.622	H27	0.142	0.163
C2	0.768	1.024	H19	0.331	0.361	C2	0.817	1.094	H28	0.152	0.179
C3	0.077	0.195	H20	0.336	0.371	C3	0.072	0.195	H29	0.092	0.160
C4	0.142	-0.098	H21	0.112	0.240	C4	0.131	-0.107	H30	0.111	0.180
C5	-0.140	-0.156	H22	0.134	0.161	C5	-0.122	-0.144	H31	0.113	0.181
C6	-0.128	-0.192	H23	0.149	0.176	C6	-0.113	-0.167	H32	0.097	0.161
C7	0.298	0.342	H24	0.094	0.161	C7	0.317	0.371	H33	0.154	0.168
C8	0.313	0.354	H25	0.110	0.178	C8	0.329	0.362	H34	0.160	0.157
C9	-0.117	-0.151	H26	0.109	0.177	C9	-0.123	-0.139	H35	0.136	0.161
C10	-0.321	-0.288	H27	0.093	0.160	C10	-0.322	-0.291	H36	0.148	0.160
C11	0.131	0.001	N28	-0.412	-0.543	C11	0.128	-0.001	H37	0.151	0.174
C12	-0.109	-0.138	N29	-0.341	-0.344	C12	-0.119	-0.139	H38	0.165	0.167
C13	-0.069	-0.112	N30	-0.438	-0.638	C13	-0.068	-0.110	H39	0.138	0.189
C14	50.094	-0.164	N31	-0.279	-0.274	C14	-0.093	-0.162	H40	0.184	0.142
H15	0.288	0.340	O32	-0.584	-0.681	C15	-0.071	-0.110	H41	0.150	0.175
H16	0.114	0.169	Cl33	-0.028	-0.006	C16	-0.083	-0.121	N42	-0.423	-0.667
H17	0.093	0.162				C17	0.560	0.743	N43	-0.315	-0.286
						C18	-0.387	-0.409	N44	-0.462	-0.661
						C19	0.586	0.763	N45	-0.252	-0.258
						C20	-0.389	-0.414	O46	-0.520	-0.646
						C21	0 567	0 759	047	-0 424	-0 511

C22

H23

H24

H25

H26

0.418

0.128

0.107

0.116

0.115

-0.454

0.181

0.175

0.184

0.242

O48

049

O50

051

Cl 52

-0.511 -0.671

-0.414 -0.510

-0.517 -0.667

-0.450 -0.560

-0.001

-0.023

Figure 6. The UV-vis spectrum of the molecules 1 and 2

λ (nm)B3LYP/HF	Excitation energy (eV) B3LYP/HF	λ (nm)B3LYP/HF	Excitation energy (eV) B3LYP/HF
329.11/225.85	3.7673/5.4898	323	.65/216.16	3.8308/5.7357
299.75/214.20	4.1362/5.7883	286	.10/210.31	4.3336/5.8952
274.69/209.87	4.5137/5.9076	278	.04/208.65	4.4592/5.9422
T	able 11. The calculated d	ipole moment	s datas of the mo	lecule
T Dipole moments	able 11. The calculated di	ipole moment	s datas of the mo	HE 2
T Dipole moments	able 11. The calculated di B3LYP 1	ipole moment HF 1	s datas of the mo B3LYP 2	HF 2
T Dipole moments μ _x	able 11. The calculated di B3LYP 1 -1.4678	ipole moment HF 1 -0.6046	s datas of the mo B3LYP 2 2.4975	HF 2 2.7535
$\frac{T}{\textbf{Dipole moments}}$ μ_{x} μ_{v}	able 11. The calculated di B3LYP 1 -1.4678 -5.2882	ipole moment HF 1 -0.6046 -6.5842	s datas of the mo B3LYP 2 2.4975 -4.5046	lecule HF 2 2.7535 -6.5222
$\begin{array}{c} T\\ \hline \textbf{Dipole moments}\\ \mu_{x}\\ \mu_{v}\\ \mu_{z} \end{array}$	able 11. The calculated di B3LYP 1 -1.4678 -5.2882 1.4558	HF 1 -0.6046 -6.5842 1.9100	s datas of the mo B3LYP 2 2.4975 -4.5046 2.3302	lecule HF 2 2.7535 -6.5222 2.3489

Figure 9. The ESP of the molecule

Conclusion

In this work, geometrical parameters and spectroscopic parameters such as IR, ¹H-NMR and ¹³C-NMR spectra of molecule are calculated by Density Functional Theory (DFT) and Hartree-Fock (HF) methods with the 631G(d,p) basis sets of the program package Gaussian G09W. Obtained spectroscopic parameters are compared with experimental data. Otherwise, calculated theoretical properties of the compound according to two different basis sets were compared. In the result, the obtained data with B3LYP/HF 631G (d,p) basis sets were found to be closer to the experimental data. The chemical shifts in the calculations ¹H-NMR and ¹³C-NMR and IR vibrational frequencies are found to be compatible with the experimental data. Theoretical and experimental carbon and proton chemical shifts ratios between acording to R² and a, b values, lineer a correlation were observed. The possitive frequency in the IR data was found. This result, structure of compound were shown stable. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), bond lengths, mulliken charges, E_{LUMO} -E_{HOMO} energy gap (ΔE_g), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), total energy of the molecule, thermodynamics properties (thermal energies (E), entropy (S), thermal capacity (CV), dipole moments were calculated B3LYP/HF 631G (d,p) basis sets.

References

Hardman, J., Limbird, L., Gilman, A., Goodman and Gilman's (1996). The Pharmacological Basis of Therapeutics, 9th edn, p.988, McGraw-Hill, New York.

Gennaro, A.R., Remington. (1995). The Science and Practice of Pharmacy, vol. II, Mack Easton, PA, p. 1327.

- Richardson, K., Whittle, P.J. (1984). Eur. Pat. Appl. EP 115 416; Chem. Abstr. 101 230544p.
- Ammermann, E., Loecher, F., Lorenz, G., Janseen, B., Karbach, S., Meyer, N. (1990). Brighton Crop Prot. Conf. Pests. Dis. 2 407; Chem. Abstr. 114 (1991) 223404h.

Heindel, N.D., Reid, J.R. (1980). J. Heterocycl. Chem. 17 1087.

Yüksek, H., Gürsoy, Ö., Çakmak, İ. and Alkan, M. (2005). Synthesis and GIAO NMR Calculation for Some New 4,5-Dihydro-1H-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental ¹H and ¹³C Chemical Shifts Magn. Reson. Chem43 585-587.

- Yüksek, H., Çakmak, İ., Sadi, S., Alkan, M. and Baykara, H. (2005). Synthesis and GIAO NMR Calculations for Some Novel 4-Heteroarylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental 1H and 13C Chemical Shifts Int. J. Mol. Sci 6 219-229.
- Yüksek, H., Alkan, M., Bahçeci, Ş., Çakmak, İ., Ocak, Z., Baykara, H., Aktaş, Ö. and Ağyel, E. (2008). Synthesis, Determination of pKa Values and GIAO NMR Calculations of Some New 3-Alkyl-4-(pmethoxybenzoylamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones J. Mol. Struc 873 142-148.
- Yüksek, H.,Alkan, M., Çakmak, İ., Ocak, Z., Bahçeci, Ş., Calapoğlu, M., Elmastaş, M., Kolomuç, A. and Aksu, H.(2008). Preparation, GIAO NMR calculations and acidic properties of some novel 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives with their antioxidant activities Int. J. Mol. Sci 9 12-32.
- Gökçe, H., Bahçeli, S., Akyıldırım, O., Yüksek, H. and Gürsoy-Kol, Ö. (2013). <u>The Syntheses, Molecular Structures, Spectroscopic Properties (IR, Micro–Raman, NMR and UV–vis) and DFT Calculations of Antioxidant</u> <u>3-alkyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one Molecules</u> Letters in Organic Chemistry 10 (6): 395-441.
- Gökçe, H., Akyıldırım, O., Bahçeli, S., Yüksek, H. and Gürsoy-Kol, Ö.(2014). <u>The 1-acetyl-3-methyl-4-[3-methyxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one</u> <u>Molecule</u> **Investigated** by a Joint Spectroscopic and Quantum Chemical Calculations Journal of Molecular Structure DOI: http://dx.doi.org/10.1016/j.molstruc.2013.10.044, 1056-1057: 273-284.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., et al. (2009). Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT.
- Kohn, W., Becke, A.D., Parr, R.G. (1996). Density functional theory of electronic structure, J. Phys. Chem. 100 12974-12980.
- Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact Exchange, J. Chem. Phys. 98 (7) 5648-5652.
- Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 3098-3010
- Wolinski, K., Hilton, J.F. and Pulay, P.J. (1990). Am. Chem. Soc., 112, 512.
- Jamróz, M.H. (2004). Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw.
- Merrick, J.P, Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors.Journal of Physical Chemistry,111 (45), 11683-11700.
- Bahçeci, Ş., Yüksek, H., Ocak, Z., Köksal, C., Özdemir, M. (2002). "Synthesis and non-aqueous medium titrations of some new 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", Acta Chim. Slov., 49: 783-794.
- Pearson, R.G. (1989). Absolute electronegativity and hardness: applications to organic chemistry, J. Org. Chem. 54 1423-1430.
- Fukui, K., Yonezawa, T., Shingu, H.J. (1952). A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys. 20 722-725.
- Parr, R., (1989). Density Functional Theory of Atoms and Molecules, Oxford University Press, New York.
- Parr, R., Szentpaly, L., Liu, S. (1999). Electrophilicity index, J. Am. Chem. Soc. 121 1922-1924.
- Ozdemir, N., Dayan, S., Dayan, O., Dinçer, M., Kalaycıoglu, N. (2013). Experimental and molecular modeling investigation of (E)-N-{2[(2\hydroxybenzylidene)amino]phenyl} benzenesulfonamide Experimental and molecular modeling investigation of (E)-N-{2[(2hydroxybenzylidene)amino]phenyl}benzenesulfonamide, Mol. Phys. 11 (6) 707-723.
- Janak, J.F. (1978). Proof that $\delta E/\delta ni=\epsilon$ in density-functional theory, Phys. Rev. B 18 7165.
- Perdew, J.P., Parr, R.G., Levy, M., Balduz Jr, J.L. (1982). density-functional theory for fractional particle number: derivative discontinuities of the energy, Phys. Rev. Lett. 49 1691.

Author Information				
Gul Kotan Kafkas University Kars Vocational School	Sule BAHCECI Fatih Education Faculty, Karadeniz Technical University			
Kars, Turkey	Trabzon, Turkey			
Contact e-mail: gulkemer@hotmail.com				
Haydar Yuksek				
Kafkas University, Department of Chemistry				
Kars, Turkey				