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Abstract: A broad family of differential dynamic systems is considered on a real plane of their phase 

variables x, y. The main common feature of systems under consideration is the follows: every particular system 

includes two equations with polynomial right parts of the third order in one equation and of the second order in 

another one. These polynomials are mutually reciprocal in the following understanding: their decomposition 

into forms of lower order does not contain common multipliers. The whole family of such dynamic systems has 

been split into subfamilies according to numbers of different multipliers in the abovementioned decomposition 

and depending on an order of sequence of different roots of polynomials. Every subfamily has been studied in a 

Poincare circle using especially developed investigation methods. As a result all possible for the dynamic 

systems belonging to this family phase portraits have been revealed and described. There appeared to exist more 

than 200 different topological types of phase portraits in a Poincare circle. The obtained results have a scientific 

interest as well as a methodical and educational one. 
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Introduction 

 

A differential dynamic system is interesting as a mathematical model of a phenomenon or a process, where 

statistical events (fluctuations) may be disregarded. Main characteristics of a dynamic system are: its initial state 

and a law of its transition to a different state. A totality of all possible (admissible) states for a given dynamic 

system is called a phase space of it. 

 

The two fundamentally different categories of dynamic systems are: systems with continuous time and systems 

with discrete time. For cascades (dynamic systems with discrete time) their behavior is described as a sequence 

of states of a system. For flows (dynamic systems with continuous time) a state of a system is defined for each 

time point on a real (or an imaginary) axis. Flows and cascades are studied in the topological and the symbolic 

dynamics.  

 

All types of dynamic systems (the both - with discrete and with continuous time) are commonly described using 

an autonomous system of differential equations. Such a system is defined in a certain domain. In that domain it 

satisfies the conditions of the Cauchy theorem of existence and uniqueness of solutions of differential equations.   

In this model singular points of differential equations will correspond to the positions of equilibrium of dynamic 

systems. Also periodical solutions of differential equations will correspond to dynamic systems’ closed phase 

curves.  

 

A global task of the dynamic systems theory is an investigation of curves which are defined by differential 

equations. It’s necessary to split a phase space into trajectories and study a limit behavior of them. That means 

to find out equilibrium positions and make their classification; reveal attracting and repulsive manifolds 

(attractors and repellers, or the so-called sinks and sources).  

 

Notions of the greatest importance in the theory of dynamic systems are: the notion of stability of equilibrium 

states, i.e. an ability of a system to remain near an equilibrium state under satisfactory small changes of initial 

data - or on a certain manifold - for an arbitrary long period of time; and the notion of a roughness of a system 

(preserving of a considered system’s properties under some small changes of the model itself). A rough dynamic 
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system preserves its qualitative character of motion despite of (satisfactory small) changes of its parameters.  

Special research methods described in this paper we consider effective; they may be useful for investigation of 

applied dynamic systems having polynomials in their right parts. 

 

 

A bit of History 
 

Studies of normal autonomous second-order differential systems with polynomial right parts were inspired by 

the great French mathematician-encyclopedist Jules Henri Poincare (April 29, 1854 – July 17, 1912). Jules H. 

Poincare (together with David Hilbert) is considered as one of the very last mathematicians, who were able to 

keep in mind all results in all areas of contemporary for them mathematics and mechanics. Poincare has created 

the topology, the qualitative theory of differential equations, he has developed new methods in celestial 

mechanics, also he has laid the mathematical foundations of the theory of relativity, etc.  

 

Jules Poincare has revealed, that normal autonomous second-order differential system (having polynomial right 

parts) allows in principle its full qualitative investigation on an extended arithmetical plane  (A. Andronov 

and other authors, 1973).  

 

Being inspired by Poincare’s studies, next generations of mathematicians – followers, including contemporary 

scientists, have successfully studied some kinds of such systems. Among those, for example, are the quadratic 

dynamic systems (A. Andreev, I. Andreeva, 1997); systems, containing nonzero linear terms; cubic 

homogeneous systems; dynamic systems having nonlinear (of the odd degrees 3, 5, 7) homogeneous terms (A. 

Andreev, I. Andreeva, 2007), which have a center or a focus in a singular point O (0,0) (A. Andreev and other 

authors, 2017), and some additional systems’ types.  

 

 

The Article Subject Matter    
 

We describe in the present paper results of the research of an extended family of dynamic systems on a real 

(arithmetical) plane x, y  

 

= X (x, y),      = Y (x, y),                                                                      (1) 

 

for which X (x, y), Y (x, y) are reciprocal forms of x and y, X be a cubic, and Y be a square form, such as X (0,1) 

> 0, Y (0, 1) > 0.  

 

Our aim is to obtain and describe in a Poincare circle (A. Andreev, I. Andreeva, 2017) all types of phase 

portraits, possible – and different in the topological meaning - for the Eq. (1) systems, as well as to indicate 

special criteria of every portrait’s appearance, close to coefficient criteria.  

 

We follow the developed by Henri Poincare method of consecutive mappings: at first we perform a central 

mapping of a plane x, y (from a center (0, 0, 1) of a sphere ∑), augmented with a line at infinity (  plane) on 

a sphere ∑:  with identified diametrically opposite points.  

The first Poincare transformation helps us to do this: 

 

                                          ) 

 

The Eq.(1) system this mapping transforms into a system, which in the Poincare coordinates 

 

  after a time change   

     

where   Q  are reciprocal polynomials. 

 

Secondly we use an orthogonal mapping of a lower enclosed semi sphere of a sphere ∑ to a circle 

: with identified diametrically opposite points of its boundary Г. This is achieved with the help of 

the second Poincare transformation. 
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The second Poincare transformation 

 

 
 

also anambiguosly maps a phase plane R2
x,y onto a Poincare sphere ∑  with the diametrically opposite points 

identified, considered without its equator, and every Eq.(1)  system the second Poincare transformation converts 

into a system, which in the coordinates : 

 

.                             

 

The circle and the sphere ∑ are correspondingly called in this process the Poincare circle and the Poincare 

sphere (A. Andronov and other authors, 1973).  

 

 

Main Notation Basic Definitions  
 

a fixed point := a solution (a motion) of an Eq.(1) system with initial data  

Lp : Imax , - a trajectory of a motion  

:= +(-)- a semi trajectory of a trajectory Lp. 

O-curve of a system := its semi trajectory Ls
p (p ≠ O, s  ), adjoining to a point O under a condition that 

 

- curve of a system := its O-curve  

-curve of a system := its O-curve, adjoining to a point O from a domain x > 0    (x < 0). 

TO-curve of a system := its O-curve, which, being supplemented by a point O, touches some ray in it. 

A nodal bundle of NO-curves of a system := an open continuous family of its TO-curves Ls
p, where  s  

is a fixed index, p  ᴧ, ᴧ - a simple open arc, Ls
p  

A saddle bundle of SO-curves of a system, a separatrix of the point O:= a fixed TO -curve, which is not included 

into some bundle of NO-curves of a system. 

 

E, H, P - O-sectors of a system: an elliptical, a hyperbolic, a parabolic ones. 

A topological type (T-type) of a singular point O of a system := a word AO consisting of letters N,S (a word BO 

consisting of letters  E,H,P), which describes a circular order of bundles N, S of its O-curves (of its O-sectors E, 

H, P ) when traversing the point O in the «+»-direction, i. e. counterclockwise, starting with some of them. 

 

, 

 

 

Note 1. For each Eq.(1) system:  

 

1) a topological type (T-type) of a singular point O in its form BO is naturally to obtain from its Т-type in the 

form AO , and backwords (we have to find both forms); 

2) the real roots of a polynomial P(u) (polynomial Q(u)) are actually the angular coefficients of isoclines of 

infinity (isoclines of a zero); 

3) while listing the real roots of the system’s polynomials P(u), Q(u), alltogether or separately, we number the 

roots of each polynomial in an ascending order. 

 

 

Investigation of a Singular Point O (0, 0). Topological types of it 
 

For finding of all O-curves and splitting of their totality into the bundles N, S, we apply the method of 

exceptional directions of a system in the point O (A. Andronov and other authors, 1973). In accordance with this 

manuscript, an equation of the exceptional directions for the point O of the Eq.(1)  system must be written as 
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The following cases can be implemented for it:  

1) if  this equation defines simple straight lines   and   

2) if   this equation defines the straight line  and the double straight line    

3) if  only a straight line  

Theorem 1. Words AO and BO defining a T-type of a singular point O(0, 0) of the Eq.(1) system:  

1) if  depending on signs of values   

2) if   depending on signs of values and -   

3) if  : AO = S0S
0 , BO = HH  

(A. Andreev, I. Andreeva, 2007, 2008, 2009, 2010, 2017). 

 

Table 1. Т-type of a singular point in the case of d > 0 (r = ). 

r P (q1) P (q2) 
  

1, 4 + + 
 

PH2 

2 _ _ 
 

PH2 

3, 6 _ + 
 

PEPH3 

5 + _ 
 

H3PEP 

 

Table 2. T-type of the singular point O(0, 0) in the case of d = 0. 

q P (q) 
  

+ + 
 

H2P 

_ _ 
 

PH2 

+ _ 
 

H2P 

_ + 
 

PH2 

0 + 
 

H2P 

0 _ 
 

PH2 

 

Note 2. It is necessary to explain the meaning of some new symbols appeared in the statement of the Theorem 1. 

A symbol S0 (a symbol S0) means a bundle S, adjoining to the point O(0, 0) from the domain along a semi 

axis , when t (along a semi axis  when t ). 

 

A lower sign index «+» or «-» of every bundle N or S, different from S0 and S0, indicates wheather the bundle 

consists of -curves or of -curves.  

 

Upper index 1 or 2 of every bundle indicates wheather its O-curves adjoining to the point O along a straight line 

 or along a straight line  

In the Table 2, lines 5, 6, a bundle N doesn`t have a lower sign index, because it contains both  -curves and  

 -curves simultaneously. 

Corollary 1. It’s possible to deduce from the Theorem 1, that Eq.(1)  systems on the R2
x;y plane do not have limit 

cycles. 

 

Really, a limit cycle could surround a singular point O (0,0), and in that case the Poincare index of such a 

singular point should equal to 1 (A. Andronov and other authors, 1973).  But let us use the Bendixon’s formula 

for the index of an isolated singular point of a smooth dynamic system. It looks like the follows: 

 

  

 

where  is a number of elliptical (hyperbolic) O-sectors of the system. Bendixon’s formula and our 

Theorem 1 say, that Poincare index I(O) = 0 for the singular point O (0, 0) of every Eq.(1)  system. 
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Corollary 2. For the singular point O (0, 0) of the Eq.(1) system eleven different topological types are possible. 

Their further analysis give: for every Eq.(1) system a singular point O(0, 0) has not more than four separatrices 

(in fact 2, 3 or 4 of them).  

 

 

Infinitely Remote Singular Points (IR-points) 

 

Further we study infinitely remote singular points of Eq.(1)  system.  

Topological types of IR-points   of Eq.(1)  systems are given in the  

Theorem 2. Let a real number ui ( ) be a root having the multiplicity ki  of a polynomial  of the 

Eq.(1) system. In this case a value gi = P (ki)(ui)Q(ui) 0 and words which determine theT-types  of IR-

points  of such a system, depending on the value of ki and signs of numbers ui and gi, have forms 

indicated in the Table 3. 

 

Table 3. T-types of IR-points  

ui ki gi 
 

 

+(-) 1, 3 + 
 

 

+(-) 1, 3 _ 
 

 

+(-) 2 + 
 

 

+(-) 2 _ 
 

 

 

Corollary 3. For the IR-points of the Eq.(1)  systems only finite number,  namely 13 of different T-types can 

appear. The further study of them indicates, that IR-points of each Eq.(1)  system may have only m separatrices: 

one separatrice per each singular point      

Note 3. In the tables 3 and 4 a lower sign index «+» or «-» of every bundle N or S, indicates wheather the bundle 

adjusts to the point  from the side  or from the side   of the isocline 

.  

 

 

Different Subfamilies of an Eq.(1) Family of Dynamic Systems 
 

Further we shall discuss special subfamilies of different order, which must be naturally distinguished depending 

on particular form of the decompositions of their polynomial right parts into multipliers of lower degrees. They 

need individual investigation and show different results of it, surely having also some common features. 

 

  
Systems Containing 3 and 2 Multipliers in their Right Parts  
 

Here we discuss Eq. (1) systems with decompositions of forms X (x, y), Y (x, y) into real forms of lower degrees 

including 3 and 2 multipliers correspondingly: 
 

X (x, y) =  Y (x, y) = c                      (2) 

where ,  for each i and  j.  

 

The investigation method demands the following actions. 

 

Basic notation and main concepts  
 

P(u), Q(u) – system’s polynomials P, Q: 

P(u)  

 

RSP (RSQ) – be an ascending sequence of all real roots of the polynomial P(u) (Q(u)),  RSPQ –  be an ascending 

sequence of all real roots of both polynomials P(u), Q(u). 

 

A Double Change (DC)-transformation let’s call a double change of variables: (t, y)→ (-t, -y). A Double Change 

transformation converts a system into another dynamic system, where signs and numberings of roots of P(u), 
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Q(u), and also the direction of motion upon trajectories with the increasing of t are reversed. We call a pair of 

different Eq. (2) systems mutually inversed in relation to a DC-transformation, if such a transformation converts 

one system in this pair into another member of the given pair, and call them independent of a DC-transformation 

otherwise.  

 

Naturally, 10 diverse types of RSPQ may appear for an arbitrary Eq. (2) system, due to   = 10.  

 

Using the DC-transformation of Eq. (2) systems we can conclude: six of them appear to be independent in pairs. 

But each of the rest four systems has the mutually inversed one among the first six dynamic systems.  

 

Now we assign a specific number r  to each one of different RSPQ’s of the Eq. (2) systems in such a 

way that r =   will be independent in pairs, but  sequences numbered with r =  will be 

mutually inversed to ’s having numbers r =   

 

The following notion is important.  

An r-family of the Eq. (2) systems  the totality of systems (belonging to the Eq. (2) family) having the RSPQ 

number r  

 

Via the common plan we research families of Eq. (2) systems with numbers r =  For families numbered 

with r =  we receive data using the DC-transformation of families, r = . 

 

Here is a sequential plan of investigations for every given  family. 

 

Step 1. We draw up a list of singular points of systems in a Poincare circle  They are: a point O (0, 0) Ω and 

points  ( , 0)  Г, i = , =0. For every certain point in the list we apply the notions of a saddle (S) and 

node (N) bundles of adjacent to this point semi trajectories, of a separatrix of this singular point, and of its 

topodynamical type (TD – type). 

 

Step 2. Divide the whole family into subfamilies with numbers s =   For each given subfamily find 

topodynamical types of singular points as well as separatrices of them. 

 

Step 3. Reveal the separatrices’ behavior for all singular points of systems  s  {1, …, 7}. The important 

questions are: a question of uniqueness of continuation of every given separatrix from a small neighborhood of a 

singular point to all the lengths of it; a question of a mutual arrangement of all separatrices in a Poincare circle 

Ω. We have answered this questions for all families of considered systems. 

 

Step 4. Depict phase portraits belonging to systems of a given family and describe criteria of each portrait 

existence. 

 

Investigation results for these subfamilies looks like the follows. 

 

Systems belonging to the family number r=1 have 25 different types of phase portraits. 

Families number 2 and 3: there exist 9 types of phase portraits per each family. 

Families 4 and 5: there are 7 types of phase portraits per each one. 

Systems belonging to the family number r=6 show us 36 different topological types of phase portraits. 

Thus we conclude, that 93 different types of phase portraits in a Poincare circle exist in a total for the Eq. (2) 

systems. At the first glance there are lots of possibilities. But keep in mind, please: every chosen subfamily 

includes an uncountable number of differential dynamic systems. 

 

 

Other Possible Types of Right Parts 

 

Here we enlist other variants of decompositions of polynomials in right parts of our dynamic systems. All those 

types we’ve fully investigated and described. 

 

1. Systems, for which decompositions of forms X (x, y), Y (x, y) into real multipliers of lowest degrees contain 

two multipliers each: 
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X(x, y) =  Y(x, y) = q                                      (3) 

where  p, q,  ,  for each  i,  j , 

 =3. 

 

 It’s naturally to distinguish two classes of Eq. (3) -systems. The A class contains systems with   

and the B class contains systems with       

 

2. Systems containing 3 and 1 different multipliers in right parts.  

 

=     =  ,                                                      (4) 

, q  i =  

 

3. Systems containing 2 and 1 different multipliers in right parts. 

 

 ,                                        (5)              

                                                                                                                                                                                                                                                                                                                                                                        

=  

     where , . 

 

 

Conclusion  
 

This paper presents the results of the original investigation project. Its global aim is to reveal and describe all 

phase portraits in a Poincare circle different in the topological sense, which are possible for the broad and 

extended family of dynamic differential systems.  All those portraits have been successfully constructed in the 

two forms - in the descriptive (as a table) and in the graphical ones. 

 

The second aim of this work was to develop, successfully apply and describe certain new effective methods of 

investigation (A. Andreev, I. Andreeva, 2007, 2010, 2017). 

      

 

Recommendations 

 

The article presents a theoretical work, but above mentioned new methods of investigation may be useful for 

applied studies of dynamic systems of the second order with polynomial right parts. The work may be 

interesting for researchers as well as for students and post-graduate students.  
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