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Abstract: An analytical solution of any given potential model presenting particle interaction is hot topic in 

physics. There are few potential models that can be analytically solved in literature. The analytically solvable 

potential models are the infinite and the finite well, the harmonic oscillator, the Coulomb and the Kratzer 

potential for any angular momentum quantum number. In this study, we examine the interaction of charged 

particle in the generalized Woods-Saxon Potential with an approximation to the effective potential by using the 

Hypergeometric function with physical boundary conditions and continuity requirement of the wave function. 

We obtain the bound state energy eigenvalues and corresponding wavefunction in closed form and discuss the 

effect of the potential parameters on the energy eigenvalues and corresponding eigenfunctions.  
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Introduction 

 

Analytical solution of the generalized Woods-Saxon potential for the Schrödinger equation has a very important 

place in determining interaction of the particle in case of the bound, quasi-bound and scattering states 

(Zaichenko & Ol'Khovskii 1976; You et. al., 2002; Guo & Sheng, 2005; Panella et. al., 2010; Alpdoğan et. al., 

2013; Bayrak&Aciksoz, 2015; Lütfüoğlu et. al., 2016; Lütfüoğlu 2018; Lütfüoğlu et. al. 2018). The generalized 

Woods-Saxon potential is given by (Satchler 1983), 
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where 0V  and 0W  are depths of the potential. R  and a  are the nuclear radius and surface thickness of the 

nucleus. The second term in Equation (1) is the surface term of the Woods-Saxon potential and crucial role for 

surface interaction of the nuclei (Satchler, 1983). In Figure 1, we plot the effective potential constituted the 

nuclear potential, Coulomb and centrifugal barrier potentials. It is seen that the surface potential in Equation (1) 

changes shape of the effective potential at the surface region. Depending on the sign of 0W  parameter, the 

nuclear potential is repulsive or attractive at the surface region. 

 

There no an analytical solution of the generalized Woods-Saxon potential for the case of charged particles. We 

need to use an approximation for the Coulomb and centrifugal potentials. In literature, there are some 

approximation scheme. If we use Taylor expansion for the centrifugal potential and suggest an exponential 

potential as well as equating both of them, we obtained the parameter of the suggested exponential potential. 

This approximation firstly used by Pekeris for the analysis of the Rotation-Vibration Coupling in Diatomic 

Molecules (Pekeris, 1934). The second approximation for the Coulomb and Centrifugal potentials is called 

Greene-Aldrich approximation (Greene&Aldrich, 1976). Greene-Aldrich approximation is given by Equation 

(3). This approximation is convenient for small   parameter. We use this approximation for the Coulomb and 

Centrifugal potentials in our calculations. Another approximation is suggested by Jia et. al. in the obtaining 

bound state energy eigenvalues and corresponding wave function of the Hulthen potential (Jia et. al., 2008).  
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In next section, we present method and calculation procedure. The brief discussion for obtained numerical 

results are given in Results and Discussion section. Then, we give a conclusion.    

 

 

Method 

 

In order to describe behavior of a proton orbiting around 
56

Fe nucleus, we have to determine the effective 

potential between interacting nuclei. By transforming the Schrödinger equation with  
( )
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where ( )NV r  and ( )CV r  are the nuclear and Coulomb potentials. The last term in Equation (2) is the centrifugal 

potential. The reduced mass of interacting particle is 1 2

1 2

m m

m m
 


. Here, 1m  and 2m  are atomic mass of 

interacting particles. In the calculation we use point charge interaction between projectile and target nuclei.  The 

Coulomb potential is 
2

1 2( )C

Z Z e
V r

r
 . Here, 1Z  and 2Z  are proton numbers of the projectile proton and target 

56
Fe. The effective potential is shown in Figure 1.  

 

Figure 1. The effective potentials in Equation (1) which are the superposition of the nuclear, Coulomb and 

centrifugal barrier potentials for several nuclear parameters. The parameters in the effective potential can be 

given by the function as 
0 0 2( , , , , )effV r V W Z l . We take Z1=1, R = 8, a = 0.65 

 

There is no analytical solution of the generalize Woods-Saxon potential with Coulomb potential for any angular 

momentum quantum number. We use an approximation for the Coulomb potential and centrifugal potential in 

Equation (2). The approximation is (Greene&Aldrich, 1976),     
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where   is screening parameter. Transforming Equation (2) with 
1

1

x
r R

ae






 we can easily obtain,  
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where, 
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Investigating the singular points of Equation (4), we purpose an asymptotic wave function as 

   1 ( )x x x f x
   with 2 2 2 2 2        and insert into Equation (4). We obtain a 

Hypergeometric differential equation. Comprising between obtained differential equation with the 

Hypergeometric differential equation we can obtain the wave function as, 
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The wave function should satisfy the boundary conditions, namely,   00, 1r x   . Therefore, the wave 

function explicitly analysis near the 1x   by using following relation (Flügge, 1994), 
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As a result, the energy eigenvalue equation is obtained  
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where, 
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This equation is called a “transcendental equation”. The energy eigenvalues in Equation (8) are independent 

from function of r . Since the energy eigenvalues is not obtained increasing r with step h for the given boundary 

conditions, obtained energy eigenvalues in Equation (8) are analytical results. But the energy eigenvalues cannot 

be extracted form Equation (8), we should be used any root finding method such as Bisection, Newton-Raphson 

etc.   

 

 

Results and Discussion 
 

We calculate the bound state energy eigenvalues of proton-
56

Fe system with Equation (8) which is obtained for 

the effective potential in Equation (2) by using the approximation in Equation (3) to the Coulomb and 

Centrifugal potentials. In calculation we take 4R  fm, 0.4a  fm, 1 20.01 , 1, 26fm Z Z     and change 

other potential parameters. The variation of the energy eigenvalues with the potential parameters are calculated 

by using Bisection method which is a method to calculate roots of a function (Table 1).      
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Table 1. Variation of the bound state energy eigenvalues for several potential parameters. In calculation we take 

potential parameter as V0=60 MeV, W0=30 MeV, l=0 and n=0. We keep the other parameter constant by 

calculating energy eigenvalues Enl as a function of a parameter 

V0 (MeV) E00 (MeV) W0 (MeV) E00 (MeV) n En0 (MeV) 

0 - 0 −48.35 0 −49.17 

20 −12.75 20 −48.88 1 −21.67 

40 −30.44 40 −49.48 2 - 

60 −49.17 60 −50.15 3 - 

80 −68.30 80 -50.91 3 - 

 

When we increase depth of the potential V0 by keeping other potential parameters constant, we see that the 

energy increases. While the depth of the surface term W0 in the effective potential increases, the depth of the 

effective potential also increases. In this way, the energy eigenvalues increase for the ground state. We calculate 

exited state of 
56

Fe nucleus by the constant potential parameters. We see that increasing quantum number n, the 

energy eigenvalues decrease and after n>2, the proton could be unbound or quasi-bound in last column in Table 

1. This station could be calculated by changing the boundary conditions.         

 

 

Conclusion  
 

We investigate the energy eigenvalues and corresponding wave function of the generalized Woods-Saxon 

potential with taking into account of the Coulomb potential and centrifugal barrier potentials. There is no 

analytical solution of the generalized Woods-Saxon potential with Coulomb and/or Centrifugal potential. In 

order to overcome this issue, we use the approximation to the Coulomb and Centrifugal potentials and obtain the 

approximate analytical solution for the energy eigenvalues and corresponding wave function. An application we 

calculate the energy eigenvalues of the proton orbiting around 
56

Fe nucleus. Then we quantitatively investigate 

how energy eigenvalues is related to the potential parameters. This potential model could be important in order 

to investigate nuclear structure of the nuclei.   
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