In the present study, the Sono-Galvano-Fenton process is studied numerically as a tertiary treatment process for treated wastewater reuse in irrigation, with in situ generation of the Fenton’s reagent and catalyst, i.e., H2O2 and Fe2+. The sonochemical pathway is examined as a source of hydrogen peroxide under the pre-optimized condition of acoustic frequency, 200 kHz. The macroscopic model accounting for the performance of the single acoustic cavitation bubble and the bubble population density is combined with the Fe/Cu galvanic cell operating in acidic conditions (pH 3), following a cumulative and instantaneous production approach in terms of Fenton’s reagent. The combination is optimized based on the rate of hydroxyl radicals generated by the Galvano-Fenton process, as a non-selective powerful oxidant against recalcitrant pollutants, then considering the synergetic effect of the hybrid process in terms of HO● pumped sonochemically and via the Fenton based pathway, treated using simulations of the isolated processes then their combined configuration following both aforementioned approaches.
Primary Language | English |
---|---|
Subjects | Environmental and Sustainable Processes |
Journal Section | Articles |
Authors | |
Early Pub Date | December 19, 2023 |
Publication Date | November 30, 2023 |
Published in Issue | Year 2023 |