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Abstract: In the data network field, particularly in the domain of fast evolving data networks, it is necessary

to have a good bandwidth estimating for resource planning and user guarantee because the system of weft or
dynamics between data flows is increasingly and progressively complex in the structures topology. In this paper,
we present a novel forecasting method known as SmartSARIMAX (S_SARIMAX) based on the Seasonal
Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) approach to estimate
bandwidth consumption. S SARIMAX incorporates additional variables, including user behaviour patterns and
historical bandwidth trends, to accurately simulate complex seasonal and network traffic trends. Our model is
rigorously tested with real-world datasets, dramatically improving prediction accuracy over standard methods.
The results show that the S SARIMAX model provides reliable predictions to support strategies to stimulate
network management processes with an MAE and RMSE as forecasting metrics and the proposed model
outperforms the comparable model by more than 90%. This study presents essential contributions to bandwidth
prediction, offering a strong asset for network operators to predict the demand, plan capacity and develop the
users' Quality of Experience (QoE).

Keywords: Bandwidth prediction, Time series analysis, ARIMA, SARIMAX, Network performance.

Introduction

In physical layer communications, the term "bandwidth" is suited to the spectral width of the electromagnetic
signals and the propagation behaviour associated with communication systems. In data networks, bandwidth refers
to the maximum data transfer rate a network link or path can support. The data network bandwidth estimation
model will be discussed in this article. The other major topic of central relevance to this standard is bandwidth;
this measures the amount of data that can be carried from one point to another in a given timeframe, especially
in the context of packet networks (Prasad et al., 2003).

Recent advancements in mobile networks and streaming technologies enable users to access live content through
mobile devices (Bentaleb et al., 2020). About 4.9 billion internet users worldwide consume billions of hours of
online video daily (Loh et al., 2022). Consequently, streaming has become the primary type of traffic in
communication networks. Measurements are necessary for diagnosing network errors, optimizing network
performance in best-effort networks, and adaptive mechanisms in applications like streaming video (Johnsson et
al., 2023). The available bandwidth (avail-bw) is an essential metric in many scenarios , including capacity
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provisioning, routing, traffic engineering, quality of service management, streaming applications, server selection,
etc. (Dovrolis & Jain, 2002). A link's available bandwidth (ABW) is the unused part of its capacity (Strauss et
al., 2003).

This involves measuring and analyzing all variables that impact bandwidth; they are then statistically
summarized to obtain the ultimate prediction. The success of predictive models is highly dependent on the
selection of temporal and user behaviour-related features. In this context That is the Baseline Model
(Mathormad, n.d.), a plain ARIMA (Autoregressive Integrated Moving Average) model with no independent
variables that shows how fundamentals might affect bandwidth. While this provides insight to basic tendencies,
it neglects user interactions and other environmental variables that influence the bandwidth usage pattern.

The SmartSARIMAX model based on the Seasonal Autoregressive Integrated Moving Average with Exogenous
eXogenous variables (SARIMAX) method is proposed to improve the accuracy of predictions. Considering
external factors like user activity, the SmartSARIMAX outperformed the Baseline Model in terms of prediction
and capturing the seasonality. S SARIMAX is a robust solution providing more advanced modeling features
relying on the SARIMAX method that can support the addition of exogenous variables to handle seasonality and
externalities influencing bandwidth usage. Second, although the MAE and RMSE are simple for explanation, the
S SARIMAX can be more user-friendly model as an interpreterble model to provide meaningful and reliable
forecasts since it guides interpretable prediction results that matter to decision makers. In addition, giving high-
quality visualizations makes results more interpretable and helps convey results across different types of
audiences properly.

The paper is organized into five main sections: Section 1 describes related works; Section 2 frames the dataset
and summarizes feature selection techniques and data preprocessing methods; Section 3 discusses the
architecture of S_ SARIMAX; Section 4 discusses the model evaluation based on scale-dependent metrics; and
Section 5 provides a summary of this paper.

Related Works

In the past couple of decades, the field of bandwidth prediction has received considerable attention due to the
rising demand for effective means of network management and improving user experiences. Much work has been
done examining different methodologies and frameworks to support the complexity of bandwidth estimation,
especially with regard to multimedia services and real applications. We provide an overview of the following
significant research contributions that employ a range of methodologies, such as traditional statistical models,
machine learning, and hybrid approaches.

There is an urgent need to predict bandwidth while adapting to changing network conditions. The data consists of
live video conferences recorded to provide significant samples(Gottipati et al., 2024). The proposed model (Ivy)
adopts the appropriate algorithm selection in line with network changes based on offline meta-learning, achieving
an 11.4% improvement in (QoE) compared to similar works based on meta-heuristics. In similary, (Khairy et al.,
2024) improving the quality of experience (QoE) adds importance to building a bandwidth estimation approach
for real-time communication (RTC). Voice/video calls represent data used across Microsoft Teams. The model
was created to bridge the gap between simulation and actual user experience, depending on offline reinforcement
learning, leveraging the data’s realism and emphasising user-relevant metrics.

Kougioumtzidis et al. (2022) aims to improve the prediction and management of Quality of Experience (QoE) for
multimedia services through predictive models of perceptual experiences, focusing on video streaming and
gaming. QoE has been model led and predicted by machine learning approaches using common factors
influencing QoE. In comparison Labonne et al. (2020), suggests a solution for predicting the bandwidth usage
of the network links using a machine learning technique and examining both ARIMA, Multi-Layer Perceptron
(MLP), and Long Short-Term Memory (LSTM) models for building these techniques. The LSTM model achieves
a prediction error of less than 3%, significantly outperforming the other models and ensuring the ability to detect
and prevent congestion.

Using long short-term memory (LSTM) networks for a realtime mobile bandwidth prediction, this study is a
continuation of work similar to Mei et al. (2020) by incorporating multi-scale entropy analysis and model
switching. The base RLS model is compared with the LSTM models trained offline to capture temporal patterns
and predict future bandwidth, and the LSTM model performs better accuracy in various mobility scenarios The
basic RLS model is compared to an off-line trained LSTM models, which has temporal pattern memory
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capabilities and has learned to forecast future bandwidth. In (Bentaleb et al., 2020) instead, it aimed at increasing
bandwidth measurement and prediction accuracy in low-latency streamingsystems. The bandwidth prediction
techniques in the ACTE architecture are implemented as an estimate of the current available bandwidth through
Sliding Window Moving Average and Recursive Least Squares (RLS), which improves the adaptation decisions
made in real-time video sessions to improve overall QoE.

Motivated by Al-Issa et al. (2019), where the paper presents BCIDASH+, a smarts streaming framework using
time-series prediction to improve HTTP adaptive streaming over wireless networks. Implementing two
forecasting approaches, the model offers optimal bitrate levels from clients according to network conditions,
improving video delivery performance that can address quality fluctuations and reduce re-buffering events using
an extensive evaluation in a wireless testbed environment. Similarly (Vasilev et al., 2018), this study utilizes
machine learning algorithms, namely the Bayesian Networks and the Neural Networks, that estimate the QoE
factors from network quality of service metrics. This study proposes a combination of hidden variable extraction
and information about the context to achieve more accurate predictions concerning the re-buffering ratios and
variations in video quality.

Like ways Yue et al. (2017), The LinkForecast framework uses machine learning, specifically random forest
algorithms, and combines upper- and lower-layer information to predict cellular link bandwidth in LTE networks.
It has enhanced accuracy in predicting diagrams with prediction errors for average prediction diagrams ranging
from 3.9% to 17.0% in different scenarios. This work provides a machine learning-based method to predict QoE
in SDN, based on techniques such as Decision Trees and Neural Networks (Abar et al., 2017). It is an attempt to
provide realtime behind-the-screen user experience analysis by comparing the performance of varying computer
through benchmarking their reading depth parameter computes including (but not limited at) Pearson's Correlation
Coefficient and Root-mean-square deviation.

In MLASH, a machine learning optimized approach to enhance video rate adaptation when using HTTP
streaming is introduced (Chien et al.,2015). MLASH: MLASSH enhances user's video quality and brings about
significant network-resource-saving through the admission of utilized information on video quality, and dynamic
encoding rate scaling based on impact analysis in response to network state change employing a world-wide
representative test data set. This document Charonyktakis et al. (2015) describes a primarily modular mechanism
for predicting QoE in VolIP services through different ML-based experiments. The MLQoE mechanism aims to
achieve telecommunication service improvement concerning predictors depicting the effect of network
performance on user experience and by selecting the best-performing algorithms for prediction.

Similarly (Aroussi & Mellouk, 2014), the study analyzes the correlation between QoE and quality of service. To
this end, different machine learning algorithms are used for modelling. This adds new perspectives to correlation
and models to improve prediction algorithms used to understand the user experience on wireless devices based
on network performance data. By the same token (Alreshoodi & Woods, 2013), this paper surveys techniques
significantly improving the accuracy of prediction of the quality of service and QoE relationships in multimedia
services.

The study also analyses several classification algorithms (including Decision Trees and Support Vector Machine)
and proposes how different performance metrics contribute to better integrating QoS into the evaluations of QoE.
The actual paper (Mushtaq et al., 2012) looks into the relationship between quality of service and QoE in streamed
video, with a stress on the ways that network parameters drive user satisfaction. The paper presents a comparative
analysis of various machine learning algorithms for QoE prediction and shows that the usage of Decision Trees
and Random Forest classifiers is efficient for this task. System for Requisite Bandwidth Estimation Using SVM
We proposed system of estimating the Requisite Bandwidth using Machine learning algorithms is to be given in
Chen et al. (2007). It contrasts two ways of probing models and introduces a normalization technique to improve
estimation, even in the absence of similar samples seen during training. We demonstrate that this proposed method
can be used to accurately estimate bandwidth compared to pathChirp and Spruce tools using NS-3 emulation
data. Table 1: Summary of the studies on these issues is shown.

Methodology

In this section, we explore our systematic approach to developing and validating S SARIMAX for bandwidth
forecasts. This includes detailed descriptions of the dataset and feature selection methods, as well as how to
preprocess the data before using. Congratulations! Good point that the data is only one piece ofa complex puzzle,
and this method focused on maturity in both terms of accumulated external variables and simply better models.
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Table 1. Compressive of related work

Reference Methodology Key Findings Strengths Limitations
Gottipati et al., Employing Enhancing QoE by  Depending on Ambiguity in
2024 offlline meta- more than 11.4%. dynamic network for  clarifying the
learning for selection bandwidth  relationship between
bandwidth prediction QoS and QoE.
prediction algorithms.
Khairy et al., Offline RL Using data’s bridge the gap Focusing on the user
2024 prediction model.  realism for between simulation side may not reflect a
estimation and actual user comprehensive view
available experience of the network
bandwidth
(Kougioumtzidis  Predictive Developed models ~ Comprehensive Limited to specific
et al., 2022) modeling using to quantify QoE in  analysis of user multimedia services
ML multimedia experience
(Labonne et al., Machine learning  LSTM model High prediction Focused on specific
2020) (ARIMA, MLP, significantly accuracy network links
LSTM) outperformed
others
(Mei et al., 2020) Long Short-Term  Realtime Captured temporal Requires extensive
Memory (LSTM)  bandwidth patterns effectively training data
prediction
(Bentaleb et al., Sliding Window Improved Effective in low- May not generalize
2020) Moving Average  adaptation latency environments to other applications
decisions in
streaming
(Al-Issa et al., Time series Optimized bitrate Effective in Evaluation limited to
2019) forecasting levels for adaptive  addressing quality wireless testbed
streaming fluctuations
(Vasilev et al., Bayesian Predict QoE Integration of hidden =~ May complicate
2018) Networks and factors from variables model interpretation

(Yue et al., 2017)

(Abar et al.,
2017)

(Chien et al.,
2015)
(Charonyktakis et
al., 2015)

(Aroussi &
Mellouk, 2014)

(Alreshoodi &
Woods, 2013)
(Mushtaq et al.,

2012)

(Chen et al.,
2007)

Neural Networks

Random forest
algorithms

Decision Trees
and Neural
Networks
Machine learning
framework
Various machine
learning
algorithms
Various machine
learning
algorithms
Review
methodologies

Machine learning
approaches

Support Vector
Machines (SVM)

quality of service
metrics

Improved cellular
link bandwidth
prediction
Realtime QoE
prediction in SDN

Enhanced video
rate adaptation
QoE prediction in
VolIP services

Analyzed QoE and
quality of service
relationship
Improved
prediction accuracy
for QoE/quality of
service
Investigated
QoE/quality of
service correlation
Enhanced
bandwidth
estimation

Significant accuracy
improvements

Evaluates
performance through
multiple metrics
Utilizes diverse
datasets

Modular approach

Comprehensive
survey

Highlights effective
performance metrics
The empirical study

provides insights

Outperformed
existing tools

Limited to LTE
networks

Lacks empirical
validation

Complexity in
implementation
Specific to VoIP

Lacks new
experimental data
Limited to
comparative analysis
Focused on specific

multimedia contexts

Relies on simulation
data
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Dataset and Features Selection

Data collected through predictive models for bandwidth estimation requires effective feature selection to
improve model accuracy/performance. The datasets size for training and testing were (6234565, 6) and (371619,
5) respectively. Fig. 1 Time series of bandwidth _total from January 2017 to March 2019. More clarification on
how to handle data, the input data into the S SARIMAX model includes six columns: BANDWIDTH TOTAL,
MAX USER, HOUR ID, SERVER NAME, UPDATE TIME, and ZONE CODE (which would be removed
during preprocessing). After the preprocessing, this set is systematically reduced to 5 main variables in the
feature selection, which has a high impact on the bandwidth-consuming behaviour, such as
BANDWIDTH _TOTAL, MAX USER, HOUR_ID, SERVER NAME, and UPDATE TIME, see Table 2. These
elements can be temporal trends and user behaviours, which influence bandwidth usage so that the model can
use those for better accuracy in prediction analysis. On the other hand, the Baseline Model is filled with the same
6 of the original dataset, but in this case, all of them remain after preprocessing, see Table 3.

BANDWIDTH_TOTAL Over Time
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Figurel. Time series analysis of BANDWIDTH _TOTAL
Table 2. Features used in the S SARIMAX model
Feature Description Feature Description
BANDWIDTH _TOTAL Total bandwidth usage over time
MAX USER Maximum number of users during the Period
HOUR ID Hour of the day
SERVER NAME Name of the server
UPDATE TIME Timestamp of the data entry
Table 3. Features used in the baseline model
Feature Description Feature Description
BANDWIDTH TOTAL Total bandwidth usage over time
MAX USER Maximum number of users during the Period
HOUR ID Hour of the day
SERVER NAME Name of the server
UPDATE_TIME Timestamp of the data entry
ZONE CODE The geographic zone of the server
Preprocessing

S SARIMAX: Ensuring data consistency and integrity. It starts by loading the dataset and trimming whitespace
from the column names, which is convenient and avoids potential issues further in the analysis. We will first
convert the UPDATE TIME column to datetime type and then set this as the index in order to analyze time series
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Notably, S SARIMAX offers a systematic approach to dealing with duplicate records through the
averaging of numeric values and keeping the first entry of non-numeric fields, which helps keep the data compact

and informative.

In Fig. 2 and Fig. 3, the graphs display continuous blue lines showing fluctuations in bandwidth consumption over
that Period of time and show total bandwidth usage from Jan 2017 to March 2019. They depict data processed by
handling Duplicates in two ways (Handled Duplication by Keeping the First or Last Entry and Handled
Duplication by Aggregating Duplicate Entries), where this Second Method was implemented. Resampling to a

daily frequency is the final step in preprocessing, as it conditions the data further and fills in gaps where

necessary.
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Figure 2. Bandwidth total over time (After handling duplication)
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Figure 3. Bandwidth total over time (After aggregating duplicate entries)
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Architecture S SARIMAX

The S_ SARIMAX and Baseline Model use different models, methods, and complexities to predict bandwidth
usage. SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous Variables) is a basic
model for S SARIMAX. The SARIMAX extends the ARIMA framework by adding seasonal components to
the built-in model, and it also allows for exogenous variables that affect the model predictions)(Amerise &
Tarsitano, 2017; Ozmen, 2021). Using historical data, it looks at the past data for target variable and its seasonal
behavior with external factors such as holidays or events hence capturing complex relation amongst the data.
SARIMAX greatly enhances estimation model prediction with temporal and external factors.

S SARIMAX Overview: The SARIMAX (Seasonal Autoregressive Integrated Moving Average with eXogenous
variables) model that estimates BANDWIDTH TOTAL and MAX USER in an exogenous variable. It allows the
model to take into account external parameters that have effect on bandwidth distribution, which will help in
predicting by capturing seasonal and temporal trends. Both ARIMA and SARIMAX models were mixed. And in
such model, I let ARIMA predict the MAX USER values and SARIMAX predict BANDWIDTH TOTAL
according with external variables including MAX USER, days of week, month and previous value from
TOTAL BANDWIDTH. The above-mentioned external parameters are factors that affect the object of interest
and bandwidth prediction. Step 3: Model Parameter Optimization The model parameters are tuned via an
outo ARIMA function that was created, which selects the best parameters for the model using AIC, and BIC
criteria by picking the best fitting model based on these with minima. Fig. 4 displays the steps of data
preprocessing, model fitting, and evaluation. Every step aims to guarantee that the model is both strong and
precise.

Prepare Exogenous

Start (N Variable
Plot
‘ Results
Predict l
Load Dataset BANDWIDTH_TOTAL
Residuals vs.
‘ l predicted
Predict MAX_USER l
Prepare
dataset
End
Calculate MAE and
MAPE
Resample
to daily X
; Actual vs. Predicted
requency

values

Figure 4. Flowchart of proposal model

The integrated model has an additional step: the time series, including the MAX USER for each source, is
statistically analyzed, where an ARIMA (Autoregressive Integrated Moving Average) model is fitted for
MAX USER alone based on historical data with no exogenous variable considered, where Fig. 5 shows the peak
number of users over time from November 2017 to March 2019. The vertical axis shows the account on the
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proper unit, and the x-axis shows the date. Fig. 6 explains how the Dual-Model approach is a full framework to
investigate, both quantitatively and qualit-vly, the relationship between user activity and bandwidth
appropriations).

The possibility with the SARIMAX model to take into account external factors that may influence bandwidth
usage. It does this by accounting for the MAX USER / BANDWIDTH TOTAL relationship. To conclude, the
differences in forecasting performance we have observed can be mostly explained by the early promotion of a
more sophisticated model framework that better depicts the characteristics of the data as shown in Fig. 7.
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Figure 5. Maximum users over time
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Figure 6. Bandwidth total and maximum users over time
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Actual vs Predicted BANDWIDTH_TOTAL Over Time
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Figure 7. Actual vs predicted BANDWIDTH TOTAL over time
Evaluation

Performance evaluation is a cross-cutting research issue. Performance metrics “error measures” are key parts of
evaluation frame works across professional domains; the performance metric can be seen as a logical and
mathematical theory, through which we measure how close actual outcomes are to what has been expected or
predicted (Botchkarev, 2019). In general performance measures are based on scientific concepts of distance and
similarity. For the machine learning regression tasks, performance metrics are calculated on comparing the
trained predictions with actual (observed) data from the testing dataset. The outcomes of these comparisons can
have direct impact to the decision-making on adoption machine learning algorithms for deployment. Among the
most popular metrics, we can note Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

Performance Metrics

Metrics derived from absolute or squared errors are called scale-dependent metrics, which share the same scale
as the original data (Hyndman, 2006). They present errors in identical units (Sanders, 1997).

a) MAE is a metric that quantifies the average size of absolute errors between expected and actual values. The
MAE is frequently called the mean absolute deviation (MAD) (Rakicevi¢ & VujosSevi¢, 2015). The range of
Mean Absolute Error (MAE) is (0, +); a lower MAE number indicates more predictive model accuracy. The
benefit of MAE lies in its unit being identical to that of the original data, facilitating straightforward calculation
and comprehension. The Mean Absolute Error (MAE) is frequently employed as a symmetric loss function
(Flores, 1986).

The calculation process of the metric can be described as (Kim & Kim, 2020)

MAE?%Z?lere _Dactl (1)
b) The RMSE estimates the magnitude of average error between anticipated and actual values (Jierula et al.,
2021). That is why, RMSE is nothing but the average vertical distance between the real points and the trend-
line. It’s just the square root of the Mean Squared Error. The RMSE information range from (0, +) a possible
lower premium implies that the model prediction is more accurate. The units of RMSE correspond to the
original units, enhancing its interpretability.

The metric's calculating procedure is delineated as (Kim & Kim, 2020)
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RMSE = \/}1 Y7( Dyer — Dace )? )

Both MAE and RMSE quantify the average prediction error size in the original data units. Compared to MAE,
RMSE assigns a greater weight to significant errors due to squaring mistakes before averaging.

c) The normalized MAE is delineated as(Gustafson Jr & Yu, 2012):

1o
ﬁzl IDpre_Dactl

[mean Dact]

NMAE = 3)

Where the MAE is normalising by dividing the MAE by the mean of actual values.

The Results

The assessment for SmartSARIMAX is extensive; the MAE and RMSE are applied to measure the precision of
predictions regarding BANDWIDTH TOTAL and MAX USER. That is, 0.24 MAE is were presented for
BANDWIDTH TOTAL, and 0.18 MAE were presented for MAX USER, which resulted in a total MAE of 0.21.
It fetches RMSE for BANDWIDTH TOTAL is 0.35, and RMSE for MAX USER is about 0.20; thus, total
RMSE = 0.28. Additionally, the NMAE metric was used to present the results in relation to
BANDWIDTH _TOTAL is 0.12, MAX USER is 0.11 and the total NMAE is 0.11. With these metrics, we gain
high-quality insight into the model and can have a detailed review of prediction errors, fig. 8. Further, it provides
advanced debugging displays and visualizations (e.g. , histogram plots of prediction errors) to enable further
analysis of performance and error distribution of the model outputs, as shown in Fig 9. The distribution and density
curve assesses the reliability of the model prediction and shows possible enhancement regions.
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The evaluation methods utilized in SmartSARIMAX clearly show a discrepancy in the approaches to evaluating
the model performance. The model shows a scatter plot for actual vs. predicted values for
BANDWIDTH _TOTAL, which is a good predictor. Looking at the residuals plotted against the expected values
can give us insight into how well our model is fitting.

Fig. 10 is immediately apparent from the model's predictive performance. Additionally, Fig. 11 provides
information about the residuals plotted against the expected values; all the information is relative to the model's
fit and performance Additionally, future work includes leveraging data and the possibility of modifying
algorithms and preprocessing processes and addressing the limitation if the data is missing the stationary
characteristic or may struggle to adapt the model to complex seasonal patterns.

On the other hand, the Baseline model may not provide this level of detail in evaluation. Although it computes
some error metrics, it does not convey the level of visual checks and detailed outputs that make SmartSARIMAX
attractive. The differing evaluation rigour may make it harder to pinpoint exactly where the model has weaknesses
in its predictions . This also speaks to the reliability of the forecasting results, as the data in Table 4 illustrate the
differences between the two models' Returns. To sum up, the very completeness of SmartSARIMAX's evaluation
phase is an index of its effort to grant the correctness and interpretability of models— which deserve to be
considered mandatory for effective decisions based on their predictions.
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Table 4. Comparison with MAE & RMSE

Metric SmartSARIMAX Baseline model
MAE (BANDWIDTH_TOTAL) 0.24 5.12

MAE (MAX USER) 0.18 6.34

Total MAE 0.21 32.92

RMSE (BANDWIDTH_TOTAL) 0.35 6.66

RMSE (MAX USER) 0.20 8.24

Total RMSE 0.28 7.45

NMAE (BANDWIDTH_TOTAL) 0.12 0.9

NMAE (MAX USER) 0.11 0.21

TOTAL NMAE 0.11 0.71

Conclusion

Overall, The preprocessing, modelling, evaluation, contributions analysis and compare the two optimized model
with a Baseline Model is extensive. S SARIMAX does a great job of cleaning the input data by removing
extraneous whitespaces, transposing improper date-times into proper format and dropping duplicates. The daily
resampling component maximises the usability and reliability of subsequent analysis. It is worth mentioning that
the employed predictive models are also quite different; S SARIMAX adopts a SARIMAX model with
exogenous variables (introduced to enhance prediction through capturing bandwidth usage seasonality pattern).
The Baseline model, on the other hand, opt for a simple ARIMA model that while can be good-enough-but-not-
right, may overlook critical predictors and therefore predictions are not fully accurate. The second noticeable
difference is the evaluation metrics being implemented, S SARIMAX uses more comprehensive feedback
methods like MAE and RMSE to provide a better understanding of the model performance. The elaborate
validation and observation of trends in predictions help to better understand prediction error as well as model
performance across all samples. Therefore, the proposed model offers rich potential of network traffic
management and efficiency vacuum solutions indicating that rigorous studies on general protocols for band-
homogeneous process dynamics are needed.
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