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Abstract: In the data network field, particularly in the domain of fast evolving data networks, it is necessary 

to have a good bandwidth estimating for resource planning and user guarantee because the system of weft or 

dynamics between data flows is increasingly and progressively complex in the structures topology. In this paper, 

we present  a novel forecasting method known as SmartSARIMAX (S_SARIMAX) based on the Seasonal 

Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) approach to estimate 

bandwidth consumption. S_SARIMAX incorporates additional variables, including user behaviour patterns and 

historical bandwidth trends, to accurately simulate complex  seasonal and network traffic trends. Our model is 

rigorously tested with real-world datasets, dramatically improving prediction accuracy over standard  methods. 

The results show that the S_SARIMAX model provides reliable predictions to support strategies to stimulate 

network management processes with an MAE and  RMSE as forecasting metrics and the proposed model 

outperforms the comparable model by more than 90%. This study presents essential contributions to bandwidth 

prediction, offering a strong asset for network operators to predict the demand, plan  capacity and develop the 

users' Quality of Experience (QoE). 

 

Keywords: Bandwidth prediction, Time series analysis, ARIMA, SARIMAX, Network performance. 

 

 

Introduction 
 

In physical layer communications, the  term "bandwidth" is suited to the spectral width of the electromagnetic 

signals and the propagation behaviour associated with communication systems. In data networks, bandwidth refers 

to the  maximum data transfer rate a network link or path can support. The data network bandwidth estimation  

model will be discussed in this article. The other major topic of central relevance to this standard is bandwidth; 

this measures the amount of data that can be carried from one point to another in a given timeframe, especially  

in the context of packet networks (Prasad et al., 2003). 

 

Recent advancements in mobile networks and streaming  technologies enable users to access live content through 

mobile devices (Bentaleb et al., 2020). About 4.9 billion internet users worldwide  consume billions of hours of 

online video daily (Loh et al., 2022). Consequently, streaming has become the primary type of traffic  in 

communication networks. Measurements are necessary for diagnosing network errors, optimizing network 

performance in best-effort networks, and adaptive mechanisms  in applications like streaming video (Johnsson et 

al., 2023). The available bandwidth (avail-bw) is an essential metric in many scenarios , including capacity 
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provisioning, routing, traffic engineering, quality of service management, streaming applications, server selection, 

etc. (Dovrolis & Jain, 2002). A link's available bandwidth (ABW)  is the unused part of its capacity (Strauss et 

al., 2003). 

 

This involves measuring and analyzing all variables that impact bandwidth;  they are then statistically 

summarized to obtain the ultimate prediction. The success of predictive models is highly dependent on the 

selection  of temporal and user behaviour-related features. In this context That is the Baseline Model 

(Mathormad, n.d.), a plain ARIMA (Autoregressive Integrated Moving Average) model with no independent 

variables that shows how fundamentals might affect bandwidth. While this provides insight to basic tendencies, 

it neglects user interactions and other environmental variables that influence the bandwidth usage pattern.  

 

The SmartSARIMAX model based on the Seasonal Autoregressive Integrated Moving Average with Exogenous 

eXogenous variables (SARIMAX) method is proposed to improve the accuracy of predictions. Considering 

external  factors like user activity, the SmartSARIMAX outperformed the Baseline Model in terms of prediction 

and capturing the seasonality. S_SARIMAX is a robust solution providing more advanced modeling features 

relying on the SARIMAX method that can support the addition of exogenous variables to handle seasonality and 

externalities influencing bandwidth usage. Second, although the MAE and RMSE are simple for explanation, the 

S_SARIMAX can be more user-friendly model as an interpreterble model to provide meaningful and reliable 

forecasts since it guides interpretable prediction results that matter to decision makers. In addition, giving high-

quality visualizations makes  results more interpretable and helps convey results across different types of 

audiences properly. 

 

The paper is organized into five main sections: Section 1 describes related works; Section 2 frames the dataset 

and summarizes feature selection techniques and data preprocessing methods; Section 3 discusses  the 

architecture of S_SARIMAX; Section 4 discusses the model evaluation based on scale-dependent metrics; and 

Section 5 provides a summary of this paper. 

 

 

Related Works 
 

In the past couple of decades, the field of bandwidth  prediction has received considerable attention due to the 

rising demand for effective means of network management and improving user experiences. Much work has been 

done examining different methodologies and frameworks to support the complexity of bandwidth estimation, 

especially with regard to multimedia services and  real applications. We provide an overview of the following 

significant research contributions that  employ a range of methodologies, such as traditional statistical models, 

machine learning, and hybrid approaches. 

 

There is an urgent need to predict bandwidth while adapting to changing network conditions. The data consists of 

live video conferences recorded to provide significant samples(Gottipati et al., 2024). The proposed model (Ivy) 

adopts the appropriate algorithm selection in line with network changes based on offline meta-learning, achieving 

an 11.4% improvement in (QoE) compared to similar works based on meta-heuristics. İn similary, (Khairy et al., 

2024) improving the quality of experience (QoE) adds importance to building a bandwidth estimation approach 

for real-time communication (RTC). Voice/video calls represent data used across Microsoft Teams. The model 

was created to bridge the gap between simulation and actual user experience, depending on offline reinforcement 

learning, leveraging the data’s realism and emphasising user-relevant metrics. 

 

Kougioumtzidis et al. (2022) aims to improve the prediction and management of Quality of Experience (QoE) for 

multimedia services through predictive models of perceptual experiences,  focusing on video streaming and 

gaming. QoE has been model led and predicted by machine learning approaches using common factors 

influencing QoE. In  comparison Labonne et al. (2020), suggests a solution for predicting the bandwidth usage 

of the network links using a machine learning technique and examining both ARIMA, Multi-Layer Perceptron 

(MLP), and Long Short-Term Memory (LSTM) models for building these techniques. The LSTM model achieves 

a  prediction error of less than 3%, significantly outperforming the other models and ensuring the ability to detect 

and prevent congestion. 

 

Using long short-term memory (LSTM) networks for a realtime mobile bandwidth prediction, this study is a  

continuation of work similar to Mei et al. (2020) by incorporating multi-scale entropy analysis and model 

switching. The base RLS model is compared with the LSTM models trained  offline to capture temporal patterns 

and predict future bandwidth, and the LSTM model performs better accuracy in various mobility scenarios The 

basic RLS model is compared to an off-line trained LSTM models, which has temporal pattern memory 
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capabilities and has learned to forecast future bandwidth. In (Bentaleb et al., 2020) instead, it aimed at increasing 

bandwidth measurement and prediction accuracy in low-latency streamingsystems. The bandwidth prediction 

techniques in the ACTE architecture are implemented as an estimate of the current available bandwidth through 

Sliding Window Moving Average and Recursive Least Squares (RLS), which improves the adaptation decisions 

made in real-time video sessions to improve overall QoE. 

 

Motivated by Al-Issa et al. (2019), where the paper presents BCIDASH+, a smarts streaming framework using 

time-series prediction to improve HTTP adaptive streaming over wireless networks. Implementing two 

forecasting approaches, the model offers optimal  bitrate levels from clients according to network conditions, 

improving video delivery performance that can address quality fluctuations and reduce re-buffering events using 

an extensive evaluation in a wireless testbed environment. Similarly (Vasilev et al., 2018), this study utilizes 

machine learning algorithms, namely the Bayesian Networks and the NeuraI Networks, that estimate the QoE 

factors from  network quality of service metrics. This study  proposes a combination of hidden variable extraction 

and information about the context to achieve more accurate predictions concerning the re-buffering ratios and 

variations in video quality. 

 

Like ways Yue et al. (2017), The LinkForecast framework uses machine learning, specifically random forest 

algorithms, and combines upper- and lower-layer information to predict cellular link bandwidth in LTE networks. 

It has  enhanced accuracy in predicting diagrams with prediction errors for average prediction diagrams ranging 

from 3.9% to 17.0% in different scenarios. This work provides a machine learning-based method to predict QoE 

in SDN, based on techniques such as Decision Trees and Neural Networks (Abar et al., 2017). It is an attempt to 

provide realtime behind-the-screen user experience analysis by comparing the performance of varying computer 

through benchmarking their reading depth parameter computes including (but not limited at) Pearson's Correlation 

Coefficient and Root-mean-square deviation. 

 

In MLASH, a machine learning optimized approach to enhance video rate adaptation when using HTTP 

streaming is introduced (Chien et al.,2015). MLASH: MLASSH enhances user's video quality and brings about 

significant network-resource-saving through the admission of utilized information on video quality, and dynamic 

encoding rate scaling based on impact analysis in response to network state change employing a world-wide 

representative test data set. This  document Charonyktakis et al. (2015) describes a primarily modular mechanism 

for predicting QoE in VoIP services through different ML-based experiments. The  MLQoE mechanism aims to 

achieve telecommunication service improvement concerning predictors depicting the effect of network 

performance on user experience and by selecting the best-performing algorithms for prediction. 

 

Similarly (Aroussi & Mellouk, 2014), the study analyzes the correlation between QoE and quality of service. To 

this end, different  machine learning algorithms are used for modelling. This adds new perspectives to correlation 

and models to improve prediction algorithms used to understand the user experience on wireless  devices based 

on network performance data. By the same token  (Alreshoodi & Woods, 2013), this paper surveys techniques 

significantly improving the accuracy of prediction  of the quality of service and QoE relationships in multimedia 

services.  

 

The study also analyses several classification algorithms (including Decision Trees and Support Vector Machine) 

and proposes how different performance metrics contribute to better integrating QoS into the evaluations of QoE. 

The actual paper (Mushtaq et al., 2012) looks into the relationship between quality of service and QoE in streamed 

video, with a stress on the ways that network parameters drive user satisfaction. The paper presents a comparative 

analysis of various machine learning algorithms for QoE prediction and shows that the usage of Decision Trees 

and Random Forest classifiers is efficient for this task. System for Requisite Bandwidth Estimation Using SVM 

We proposed system of estimating the Requisite Bandwidth using Machine learning algorithms is to be given in 

Chen et al. (2007). It contrasts two ways of probing models and introduces a normalization technique to improve 

estimation, even in the absence of similar samples seen during training. We demonstrate that this proposed method 

can be used to accurately estimate bandwidth compared to pathChirp and Spruce tools using NS-3 emulation 

data. Table 1: Summary of the studies on these issues is shown. 

 

 

Methodology 
 

In this section, we explore our systematic approach to developing and validating S_SARIMAX for bandwidth 

forecasts. This includes detailed descriptions of the dataset and feature selection methods, as well as how to 

preprocess the data before using. Congratulations! Good point that the data is only one piece of a complex puzzle, 

and this method focused on maturity in both terms of accumulated external variables and simply better models. 
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Table 1. Compressive of related work 

Reference Methodology Key Findings Strengths Limitations 

Gottipati et al., 

2024 

Employing 

offlline meta-

learning for 

bandwidth 

prediction 

Enhancing QoE by 

more than 11.4%. 

Depending on 

dynamic network for 

selection bandwidth  

prediction  

algorithms. 

Ambiguity in 

clarifying the 

relationship between 

QoS and QoE. 

Khairy et al., 

2024 

Offline RL 

prediction model. 

Using data’s 

realism for 

estimation 

available  

bandwidth 

bridge the gap 

between simulation 

and actual user 

experience 

Focusing on the user 

side may not reflect a 

comprehensive view 

of the network 

(Kougioumtzidis 

et al., 2022) 

Predictive 

modeling using 

ML 

Developed models 

to quantify QoE in 

multimedia 

Comprehensive 

analysis of user 

experience 

Limited to specific 

multimedia services 

(Labonne et al., 

2020) 

Machine learning 

(ARIMA, MLP, 

LSTM) 

LSTM model 

significantly 

outperformed 

others 

High prediction 

accuracy 

Focused on specific 

network links 

(Mei et al., 2020) Long Short-Term 

Memory (LSTM) 

Realtime 

bandwidth 

prediction 

Captured temporal 

patterns effectively 

Requires extensive 

training data 

(Bentaleb et al., 

2020) 

Sliding Window 

Moving Average 

Improved 

adaptation 

decisions in 

streaming 

Effective in low-

latency environments 

May not generalize 

to other applications 

(Al-Issa et al., 

2019) 

Time series 

forecasting 

Optimized bitrate 

levels for adaptive 

streaming 

Effective in 

addressing quality 

fluctuations 

Evaluation limited to 

wireless testbed 

(Vasilev et al., 

2018) 

Bayesian 

Networks and 

Neural Networks 

Predict QoE 

factors from 

quality of service 

metrics 

Integration of hidden 

variables 

May complicate 

model interpretation 

(Yue et al., 2017) Random forest 

algorithms 

Improved cellular 

link bandwidth 

prediction 

Significant accuracy 

improvements 

Limited to LTE 

networks 

(Abar et al., 

2017) 

Decision Trees 

and Neural 

Networks 

Realtime QoE 

prediction in SDN 

Evaluates 

performance through 

multiple metrics 

Lacks empirical 

validation 

(Chien et al., 

2015) 

Machine learning 

framework 

Enhanced video 

rate adaptation 

Utilizes diverse 

datasets 

Complexity in 

implementation 

(Charonyktakis et 

al., 2015) 

Various machine 

learning 

algorithms 

QoE prediction in 

VoIP services 

Modular approach Specific to VoIP 

(Aroussi & 

Mellouk, 2014) 

Various machine 

learning 

algorithms 

Analyzed QoE and 

quality of service 

relationship 

Comprehensive 

survey 

Lacks new 

experimental data 

(Alreshoodi & 

Woods, 2013) 

Review 

methodologies 

Improved 

prediction accuracy 

for QoE/quality of 

service 

Highlights effective 

performance metrics 

Limited to 

comparative analysis 

(Mushtaq et al., 

2012) 

Machine learning 

approaches 

Investigated 

QoE/quality of 

service correlation 

The empirical study 

provides insights 

Focused on specific 

multimedia contexts 

(Chen et al., 

2007) 

Support Vector 

Machines (SVM) 

Enhanced 

bandwidth 

estimation 

Outperformed 

existing tools 

Relies on simulation 

data 
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Dataset and Features Selection 
 

Data collected through predictive models for bandwidth  estimation requires effective feature selection to 

improve model accuracy/performance. The datasets size for training and testing were (6234565, 6) and (371619, 

5) respectively. Fig. 1 Time series  of bandwidth _total from January 2017 to March 2019. More clarification on 

how to handle data, the input data into  the S_SARIMAX model includes six columns: BANDWIDTH_TOTAL, 

MAX_USER, HOUR_ID, SERVER_NAME, UPDATE_TIME, and ZONE_CODE (which would be removed 

during preprocessing). After the preprocessing, this  set is systematically reduced to 5 main variables in the 

feature selection, which has a high impact on the bandwidth-consuming behaviour, such as 

BANDWIDTH_TOTAL, MAX_USER, HOUR_ID, SERVER_NAME, and UPDATE_TIME, see Table 2. These 

elements can be  temporal trends and user behaviours, which influence bandwidth usage so that the model can 

use those for better accuracy in prediction analysis. On the other hand, the Baseline Model is filled with  the same 

6 of the original dataset, but in this case, all of them remain after preprocessing, see Table 3. 

 

 

Figure1. Time series analysis of BANDWIDTH_TOTAL 

 

Table 2. Features used in the S_SARIMAX model 

Feature Description Feature Description 

BANDWIDTH_TOTAL Total bandwidth usage over time 

MAX_USER Maximum number of users during the Period 

HOUR_ID Hour of the day 

SERVER_NAME Name of the server 

UPDATE_TIME  Timestamp of the data entry 

 

Table 3. Features used in the baseline model 

Feature Description Feature Description 

BANDWIDTH_TOTAL Total bandwidth usage over time 

MAX_USER Maximum number of users during the Period 

HOUR_ID Hour of the day 

SERVER_NAME Name of the server 

UPDATE_TIME  Timestamp of the data entry 

ZONE_CODE The geographic zone of the server 

 

 

Preprocessing 
 

S_SARIMAX: Ensuring data consistency  and integrity. It starts by loading the dataset and trimming whitespace 

from the column names,  which is convenient and avoids potential issues further in the analysis. We will first 

convert the UPDATE_TIME column to datetime type and then set this as the index in order to analyze time series 
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data. Notably, S_SARIMAX offers a systematic approach  to dealing with duplicate records through the 

averaging of numeric values and keeping the first entry of non-numeric fields, which helps keep the data compact 

and informative. 

 

In Fig. 2 and Fig. 3, the graphs display continuous blue lines showing fluctuations in bandwidth consumption over 

that Period of time and show total bandwidth usage from Jan 2017 to March 2019. They depict data processed by 

handling Duplicates in two ways (Handled Duplication by Keeping the First or Last Entry and Handled  

Duplication by Aggregating Duplicate Entries), where this Second Method was implemented. Resampling to a 

daily frequency  is the final step in preprocessing, as it conditions the data further and fills in gaps where 

necessary. 

 

 

Figure 2. Bandwidth total over time (After handling duplication) 

 

 

Figure 3. Bandwidth total over time (After aggregating duplicate entries) 
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Architecture S_SARIMAX 
 

The S_SARIMAX and Baseline Model use different models, methods, and complexities to predict bandwidth 

usage. SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous Variables) is a basic 

model for S_SARIMAX. The SARIMAX extends  the ARIMA framework by adding seasonal components to 

the built-in model, and it also allows for exogenous variables that affect the model predictions)(Amerise & 

Tarsitano, 2017; Özmen, 2021). Using historical data, it looks at the past data for target variable and its seasonal 

behavior with external factors such as holidays or events hence capturing complex relation amongst the data. 

SARIMAX greatly enhances estimation model prediction with temporal and external factors. 

 

S_SARIMAX Overview: The SARIMAX (Seasonal Autoregressive Integrated Moving Average with eXogenous 

variables) model that estimates BANDWIDTH_TOTAL and MAX_USER in an exogenous variable. It allows the 

model to take into account external parameters that have effect on bandwidth distribution, which will help in 

predicting by capturing seasonal and temporal trends. Both ARIMA and SARIMAX models were mixed. And in 

such model, I let ARIMA predict the MAX_USER values and SARIMAX predict BANDWIDTH_TOTAL 

according with external variables including MAX_USER, days of week, month and previous value from 

TOTAL_BANDWIDTH. The above-mentioned external parameters are factors that affect the object of interest 

and bandwidth prediction. Step 3: Model Parameter Optimization The model parameters are tuned via an 

outo_ARIMA function that was created, which selects the best parameters for the model using AIC, and BIC 

criteria by picking the best fitting model based on these with minima. Fig. 4 displays the steps of data 

preprocessing, model fitting, and  evaluation. Every step  aims to guarantee that the model is both strong and 

precise. 

 

 

Figure 4. Flowchart of proposal model  

 

The integrated model has an additional step: the time series, including the MAX_USER for  each source, is 

statistically analyzed, where an ARIMA (Autoregressive Integrated Moving Average) model is fitted for 

MAX_USER alone based on historical data with no exogenous variable considered, where Fig. 5 shows the peak 

number of users over time from November 2017 to March 2019. The vertical  axis shows the account on the 
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proper unit, and the x-axis shows the date. Fig. 6 explains how the Dual-Model approach is a full framework to 

investigate, both quantitatively and qualit-vly, the relationship between user activity and bandwidth 

appropriations). 

 

The possibility with the SARIMAX model to take into account external factors that may influence bandwidth 

usage. It does this by accounting for the MAX_USER / BANDWIDTH_TOTAL relationship. To conclude, the 

differences in forecasting performance we have observed can be mostly explained by the early promotion of a 

more sophisticated model framework that better depicts the characteristics of the data as shown in Fig. 7. 

 

 

Figure 5. Maximum users over time 

 

Figure 6. Bandwidth total and maximum users over time 
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Figure 7. Actual vs predicted BANDWIDTH_TOTAL over time 

 

 

Evaluation 
 

Performance evaluation is a cross-cutting research issue. Performance metrics “error measures” are key parts of 

evaluation frame works across professional domains; the performance metric can be seen as a logical and 

mathematical theory, through which we measure how close actual outcomes are to what has been expected or 

predicted (Botchkarev, 2019). In general performance measures are based on scientific concepts of distance and 

similarity. For the machine learning regression tasks, performance metrics are calculated on comparing the 

trained predictions with actual (observed) data from the testing dataset. The outcomes of these comparisons can 

have direct impact to the decision-making on adoption machine learning algorithms for deployment. Among the 

most popular metrics, we can note Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 

 

 

Performance Metrics 

 

Metrics derived from absolute or squared errors are called scale-dependent metrics, which share the same scale 

as the original data (Hyndman, 2006). They present errors in identical units (Sanders, 1997).  

 

a) MAE is a metric that quantifies the average size of absolute errors between expected and actual values. The 

MAE is frequently called the mean absolute deviation (MAD) (Rakićević & Vujošević, 2015). The range of 

Mean Absolute Error (MAE) is (0, +∞); a lower MAE number indicates more predictive model accuracy. The 

benefit of MAE lies in its unit being identical to that of the original data, facilitating straightforward calculation 

and comprehension. The Mean Absolute Error (MAE) is frequently employed as a symmetric loss function 

(Flores, 1986). 

 

The calculation process of the metric can be described as (Kim & Kim, 2020) 

 

MAE = 1

𝑛
∑ |𝐷𝑝𝑟𝑒 −

𝑛

1
𝐷𝑎𝑐𝑡|   (1) 

 

b) The RMSE estimates the magnitude of average error between anticipated and actual values (Jierula et al., 

2021). That is why, RMSE is nothing but the average vertical distance between the real points and the trend-

line. It’s just the square root of the Mean Squared Error. The RMSE information range from (0, +) a possible 

lower premium implies that the model prediction is more accurate. The units of RMSE correspond to the 

original units, enhancing its interpretability. 

  

The metric's calculating procedure is delineated as (Kim & Kim, 2020) 
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RMSE = √
1

𝑛
∑ (1𝐷𝑝𝑒𝑟 − 𝐷𝑎𝑐𝑡

𝑛
1  )2                                            (2) 

 

Both MAE and RMSE quantify the average prediction error size in the original data units. Compared to MAE, 

RMSE assigns a greater weight to significant errors due to squaring mistakes before averaging.  

 

c) The normalized MAE is delineated as(Gustafson Jr & Yu, 2012):  

 

NMAE = 

1
𝑛 ∑ |𝐷𝑝𝑟𝑒−

𝑛

1
𝐷𝑎𝑐𝑡|

[𝑚𝑒𝑎𝑛 𝐷𝑎𝑐𝑡]
                                                            (3) 

 

Where the MAE is normalising by dividing the MAE by the mean of actual values. 

 

 

The Results 
 

The assessment for SmartSARIMAX is extensive; the MAE and RMSE are applied to measure the precision of 

predictions regarding BANDWIDTH_TOTAL and MAX_USER. That is, 0.24 MAE is were presented for 

BANDWIDTH_TOTAL, and 0.18 MAE were presented for MAX_USER, which resulted in a total MAE of 0.21. 

It fetches RMSE for BANDWIDTH_TOTAL is 0.35, and  RMSE for MAX_USER is about 0.20; thus, total 

RMSE = 0.28. Additionally, the NMAE metric was used to present the results in relation to 

BANDWIDTH_TOTAL is 0.12, MAX_USER is 0.11 and the total NMAE is 0.11. With these metrics, we gain  

high-quality insight into the model and can have a detailed review of prediction errors, fig. 8. Further, it provides 

advanced debugging displays and visualizations (e.g. , histogram plots of prediction errors) to enable further 

analysis of performance and error distribution of the model outputs, as shown in Fig 9. The distribution and density 

curve assesses the reliability of the model prediction and shows possible enhancement regions. 

 

 

Figure 8. MAE Comparison 

 

 

Figure 9. Prediction errors for BANDWIDTH_TOTAL 
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The  evaluation methods utilized in SmartSARIMAX clearly show a discrepancy in the approaches to evaluating 

the model performance. The model shows a scatter plot  for actual vs. predicted values for 

BANDWIDTH_TOTAL, which is a good predictor. Looking at the residuals plotted against the expected values 

can  give us insight into how well our model is fitting. 

 

Fig. 10  is immediately apparent from the model's predictive performance. Additionally, Fig. 11 provides 

information about the residuals plotted against the expected values; all the information is relative to the model's 

fit and performance Additionally, future work includes leveraging data and the possibility of modifying 

algorithms and preprocessing processes and addressing the limitation if the data is missing the stationary 

characteristic or may struggle to adapt the model to complex seasonal patterns. 

 
On the other hand, the Baseline  model may not provide this level of detail in evaluation. Although it computes 

some error metrics, it does not convey the level of visual  checks and detailed outputs that make SmartSARIMAX 

attractive. The differing evaluation rigour may make it harder to pinpoint exactly where the model has weaknesses 

in its predictions . This also speaks to the reliability of the forecasting results, as the data in Table 4 illustrate the 

differences between the two models' Returns. To sum up, the very completeness of SmartSARIMAX's evaluation 

phase is an index of its effort to grant the correctness and interpretability of models— which deserve to be 

considered mandatory for effective decisions based on their predictions. 

 

 

Figure 10. Actual vs predicted BANDWIDTH_TOTAL 

 

 
Figure 11. Residuals vs predicted values for BANDWIDTH_TOTAL 
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Table 4. Comparison with MAE & RMSE 

Metric SmartSARIMAX Baseline model 

MAE (BANDWIDTH_TOTAL) 0.24 5.12 

MAE (MAX_USER) 0.18 6.34 

Total MAE 0.21 32.92 

RMSE (BANDWIDTH_TOTAL) 0.35 6.66 

RMSE (MAX_USER) 0.20 8.24 

Total RMSE 0.28 7.45 

NMAE (BANDWIDTH_TOTAL) 0.12 0.9 

NMAE (MAX_USER) 0.11 0.21 

TOTAL NMAE 0.11 0.71 

 

 

Conclusion 
 

Overall, The preprocessing, modelling, evaluation, contributions analysis and compare the two optimized model 

with a Baseline Model is extensive. S_SARIMAX does a great job of cleaning the input data by removing 

extraneous whitespaces, transposing improper date-times into proper format and dropping duplicates. The daily 

resampling component maximises the usability and reliability of subsequent analysis. It is worth mentioning that 

the employed predictive models are also quite different; S_SARIMAX adopts a SARIMAX model with 

exogenous variables (introduced to enhance prediction through capturing bandwidth usage seasonality pattern). 

The Baseline model, on the other hand, opt for a simple ARIMA model that while can be good-enough-but-not-

right, may overlook critical predictors and therefore predictions are not fully accurate. The second noticeable 

difference is the evaluation metrics being implemented, S_SARIMAX uses more comprehensive feedback 

methods like MAE and RMSE to provide a better understanding of the model performance. The elaborate 

validation and observation of trends in predictions help to better understand prediction error as well as model 

performance across all samples. Therefore, the proposed model offers rich potential of network traffic 

management and efficiency vacuum solutions indicating that rigorous studies on general protocols for band-

homogeneous process dynamics are needed. 
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