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Abstract: BLDC motors require a high level of precision and efficiency in controlling speed, which is needed
in a wide range of applications, such as electric vehicle, robotics, and industrial automation. The classical
proportional-integral-derivative (PID) controllers are often characterized by overshoot, a slow rate of
convergence, and have a low flexibility to changing operating conditions. As a counter to this we have suggested
in this paper a hybrid artificial-intelligence-based control scheme, a combination of a neural-network controller
and the standard PID control. A large dataset based on controlled simulations, using PID control, is then applied
in training a feed-forward neural network to estimate optimal control behaviour using a supervised learning
approach. The neural network that results is an adaptive controller that adjusts dynamically the control voltage in
real time as a function of the difference between the current speed and its derivative. The experimental evidence
shows that neural-network controller performs better than the traditional PID control in terms of eliminating
overshoot (0% vs. 12.13%), the settling time by up to 88% (0.8826 s vs. undefined for PID) and the Integral
Absolute Error (IAE) by over 40% (86.96 vs. 151.64). Besides, the Al-based system produces more fluent
controlvoltage curves, reducing mechanical forces, and promoting energy savings. This paper highlights the
potential of hybrid neural-PID control systems to the high-performance motor control of BLDC motors and
outlines future research opportunities in this area to address real-time operation and computational bottlenecks
within embedded computer systems.
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Introduction

The BLDC motors can be characterized by high efficiency, small size, low maintenance, and high dynamic
response, which have enabled their extensive use in the industrial, automotive, and robotics industries. Because
they generate plenty of torque at low speeds and maintain smooth and accurate speed management, they play a
big role in electric cars, robots, modern factories and other fields that need a lot of motion (Barkas et al., 2020;
Liang et al., 2023). Still, getting strong and flexible control for BLDC motors in situations where both speed and
the load change remains a big technical problem. Although PID controls are typically reliable and straightforward
to implement, they fail to perform well where fast changes, little overshoot and rejecting disturbances are required.

The proposed hybrid controller is based on artificial intelligence, bringing together the advantages of stability
from a conventional PID controller and the improvements from a neural network controller. The neural network
is trained using supervised learning on data generated from PID-controlled BLDC motor simulations, allowing it
to approximate the nonlinear control dynamics and act as a real-time adaptive controller. This combination
solution enhances the responsiveness of systems and the accuracy of tracking, especially where there is a change
in speed references and load mutualities.

Although the title highlights the brushless direct current (BLDC) motors, the available literature often focuses on
the brushed DC motors when outlining control technique, especially where sensorless and artificial intelligence-
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based estimation are of interest. This tendency creates a possible source of ambiguity, because the working
parameters and structural differences of brushed and brushless motors can be considered significant. To be clear,
though the understanding obtained after carrying out the studies of the brushed DC motors is also mentioned
where it is relevant, this paper is entirely focused on the control and performance optimization of the BLDC
motors.

In conventional DC motor systems, position and speed feedback are often acquired using physical sensors such
as encoders or Hall effect sensors. These sensors, although accurate, introduce additional costs and complexity
and are prone to environmental noise and electromagnetic interference (Vazquez-Sanchez et al., 2016). Therefore,
sensorless control and estimation methods have gained a significant level of attention. Overall, these estimation
techniques could be classified into two major households: (i) ripple-dependent estimation, where the high-
frequency signal of the stator current is exploited; and (ii) observer-based estimation, which is based on the
dynamic models or filtration. (Ismail & Elnady, 2019; Radcliffe & Kumar, 2015).

Under the observer-based methodologies, engineers use mathematical models to approximate the rotor speed as
well as position. Kalman filters and extended observers are examples of the most promising approaches that can
be used to handle particular issues of measurements faced in the noisy context (Cupertino et al., 2011; Razi &
Monfared, 2015). In addition, this technology has been used to calculate the parameters of the motor using
historical sensor information. Nevertheless, they do require some strong computational capabilities and an
excellent knowledge of the underlying technologies, thus making them difficult to apply to real-time embedded
system applications (Dini & Saponara, 2020). In addition, these methods depend on exact information about motor
factors like inductance and back EMF, but both change with temperature and applied load, negatively affecting
the accuracy of the estimates.

Methods in this group work by producing periodic current variations with rotor slots or the action of magnetic
fields. When applied at standstill, scanning for current ripple activity (Radcliffe & Kumar, 2015) and monitoring
stator current spikes (Ismail & Elnady, 2019) give reliable speed estimates. Nevertheless, these systems involve
detailed filtering circuits and significant calibration to be precise at a range of speeds. As a result, they often prove
difficult to use in small and inexpensive applications.

DC motors in both industrial and automotive drive systems are commonly controlled with power electronic
converters. Speed control at both basic and enhanced levels demands both flux weakening features and switching
solutions (Forouzesh et al., 2017). When the application and power source are considered, the drive for a DC
motor can either use a controlled rectifier (AC-fed) or converters including buck, boost, SEPIC or Cuk
(Safayatullah et al., 2022). Among these, the boost converter is especially favored for its simple design and
capability to step up voltage efficiently, making it ideal for applications with variable input and load requirements
(Kiru et al., 2020).

Nonetheless, traditional boost converters suffer from switching losses, particularly at high frequencies. To
mitigate these losses, soft-switching techniques such as snubber circuits or zero-voltage switching are often
implemented, helping reduce converter size and improve thermal performance (Lan & Dong, 2024; Xu et al.,
2021). Many systems that control power in the first and third quadrants use Pulse Width Modulation which is a
widespread approach for regulating speed (Barkas et al., 2020). Yet, most of their output is below the bus voltage
which can be challenging for applications that use electric door motors, window regulators or under-door step
mechanisms requiring sudden bursts of extra torque.

In industry and automotive areas, where robotic arms, sliding doors or mobile platforms operate with repeated
action, systems have to be very reliable and accurate. Such systems must locate mistakes, keep up with changes
in the environment and update their movement patterns on the spot for high performance and safety. As a result,
both Artificial Intelligence (AI) and Machine Learning (ML) are now used in motor control and trajectory
mapping (Sheng et al., 2023; Tofoli et al., 2015). Supervised learning, reinforcement learning and fuzzy Q-
learning methods have been used to find patterns in motion data, adjust motor control systems in real time and
handle the fact that motor functions are often not linear (Qiu et al., 2024; Sira-Ramirez & Oliver-Salazar, 2012).

Al-based ways of controlling machines still encounter a number of issues in industrial work. It is usually important
to give neural networks lots of data from a variety of situations. Also, Al algorithms need machine processors
with high-performance memory and floating-point features. Meeting these requirements is challenging with the
usual low-cost microcontrollers used in most embedded motor control systems as per (Mallik et al., 2016). Finally,
integrating Al models into feedback loops necessitates stable real-time inference and low-latency computation to
ensure system responsiveness.
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This paper tackles the challenges mentioned above by introducing a hybrid control system of brushless DC motors
that combines the ability to generalize of artificial intelligence with the reliability of the proportionalintegral
derivatives control. The main innovation is the use of simulation data created by a PID controller to learn a
feedforward neural network to define the dependence between the speed error dynamics and the associated
optimal control voltages. The network will replace the traditional PID controller and will dynamically correct the
voltage inputs as errors are observed based on trends in the error as the network trains. Empirical evidence shows
that the method suggested enhances transient performance, settling time, and overshoot, as well as decreasing
control effort, especially in systems, which require quick adaptation to changes in the speed references or load
shocks.

In summary, this work contributes to the growing body of research on Al-driven motor control by:

- Focusing specifically on BLDC motors and their speed regulation challenges;

- Employing a PID-supervised neural network to overcome limitations in conventional control;

- Demonstrating significant improvements in overshoot reduction, settling time, and error metrics;
- Highlighting practical implementation aspects for real-time embedded systems.

The following sections detail the proposed methodology, dataset generation, neural network training,
experimental evaluation, and comparison of the hybrid controller with traditional PID systems.

Related Work

Research on advanced control techniques for Brushless DC (BLDC) motors has increasingly explored the use of
artificial intelligence (Al) and machine learning (ML) to overcome the limitations of conventional controllers
such as Proportional-Integral-Derivative (PID) systems. Even though PID controllers are usually chosen in
industry for how simple and reliable they are, they don’t do well when changes in load or speed happen and the
process becomes less predictable (Salmaninejad & Mayorga, 2021). For high-performance tasks where there is
little time and perfect results are needed, hybrid and Al-aided control approaches have developed as good
alternatives to other methods.

Several researchers have mentioned using intelligent controllers with methods such as Al, neural networks and
fuzzy systems as alternatives to PID logic. Online learning was applied by (Dini & Saponara, 2020) in designing
a controller for BLDC motors so that the system works better under different conditions. The method they
designed was effective but required complicated, real-time calculations and did not start with learned stable
actions, making its use in industry limited. Combining data from PID-controlled systems with machine learning
enables the prediction of how expertly tuned controllers would react in many different conditions. Using this
approach, authors (Madheswaran et al., 2011) used simulation data from a proper PID controller to train an ANN
that controls a DC servo motor. After learning from error signals, the ANN could recommend ideal actions and
was superior to the PID controller in both transient and steady-state results. Although their analysis was not related
to BLDC systems, it was limited to low-load DC motors and did not discuss real-time implementation problems.
In a similar manner, a neural network-controlled strategy was suggested by Zhang and Gao (2022), where
supervised machine learning turns system error to control voltage. The authors found that their strategy helped
the system settle quicker and more effectively than with previous traditional control methods. First, the network
learned from data produced under controlled circumstances offline. Then, it was put to use during real events.
Using this model, we no longer had to manually tune the system as often, but it needed a lot of data to train, and
it never made a comparison between hybrid control and traditional PID under the same load and reference
conditions.

According to Khosravi et al. (2021), neural controllers trained with Bayesian Regularization can both improve
how well they perform for new data and reduce the likelihood of overfitting. It is most helpful when the model
must operate within a broader range of conditions than those it has learned from. Using this method in motor
control makes it easier for controllers to face unexpected changes in load or speed, something that matters greatly
in embedded and real-time systems. Recently, Kroi¢s and Bimanis (2024) studied a BLDC motor by controlling
its speed using a new combination of PID and a fuzzy neural network. To change how it controls things, their
architecture relied on error and derivative signals from learned policies. Even though fuzzy neural logic made
rule-based changes more flexible, the system turned out to be too difficult to put on the few-core microcontrollers
used at the time. Authors also pointed out that gathers, need to be of high quality. In this case, they handled this
issue by creating simulated response data, a tactic applied in the current work.
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Methods from reinforcement learning have seen use in controlling BLDC motors. In the same manner, Qiu et al.
(2024) examined Al techniques designed for electric motors and reported that while RL can optimize and adapt
well, it is unsafe and unstable when experimenting and adapting, especially during training. To add, RL needs
many trials of interacting with either the physical world or sophisticated simulated systems which can be difficult
for embedded motor control systems.

Lightweight designs such as shallow feedforward neural networks trained outside the system, have been created
to handle computational challenges. Two studies by Madheswaran et al. (2011) and Madheswaran and
Muruganandam (2012) have shown how shallow ANNSs can be trained using data from controller systems to
predict the inverse dynamics of motor systems. In the various test cases with speed references and disturbances,
these tuned controllers produced better performance than PID, proving that a supervised-learning-based controller
is a good, straightforward choice for embedded systems.

Despite these advancements, many works do not explicitly focus on the transition from PID to neural control
through supervised learning using PID-generated datasets, which is the core innovation of the present study.
Unlike works focused on diagnosis or fault detection such as those by (Chen & Li, 2017) and (Shifat & Hur,
2020), which apply Al for health monitoring or anomaly detection this paper emphasizes real-time motor speed
control through a neural network trained on traditional controller behavior.

In summary, while there is growing interest in Al-based motor control, only a few studies have explored the full
replacement of PID control using Al models trained directly on PID-generated data. This paper contributes to this
niche by:

- Proposing a hybrid Al control strategy for BLDC motors that leverages the robustness of PID-generated
datasets.

- Employing Bayesian Regularization to train a feedforward neural network that generalizes well to new
dynamic conditions.

- Demonstrating superior performance over PID in terms of overshoot, settling time, and absolute speed error.

- Focusing on real-time, low-latency implementation suitable for embedded hardware.

These contributions address key limitations in previous work and highlight the viability of supervised Al models
as adaptable, high-performance controllers in BLDC motor applications.

Proposed Methodology

Design of Adaptive Controller Using Classical PID Controller and NEURAL Network for Al-based Control of
Brushless DC (BLDC) Motors. This method simulates the BLDC motor based on its electrical and mechanical
parameters, such as resistance, inductance, back electromotive force (K,), torque constant (K;), moment of inertia
(J) and friction coefficient (B). These parameters enable the simulation of the motor’s dynamic behavior under
different loads and speed references. A baseline PID controllers are first utilized to gain a traditional control
strategy. Tuning K, Kj, Kq to get the optimum motor response The PID controlled system is simulated over a
variety of operational conditions, effectively, gathering speed reference inputs, system error predictions and
control outputs, to simulate training data for the network. This large-scale dataset helps expose the neural network
to various scenarios which increases its ability to generalize.

You train the neural network controller using Bayesian Regularization (trainbr), which aids in generalization and
minimizes overfitting. Moreover, the speed errors and their derivatives are normalized before being introduced
to the network to keep the learning stable. It consists of several hidden layers which are used to capture the BLDC
system nonlinear mappings. The whole trained network is further integrated as an adaptive controller, replacing
the PID for speed regulation in real-time. To assess performance, both controllers are evaluated on a piecewise
speed reference trajectory with added step load disturbances. The comparison is made regarding the overshoot,
settling time, and IAE. It shows that neural network controller outperforms the traditional PID in handling system
dynamics with lower speed range variation and lower control effort. The implementation will eventually lead to
an effective control mechanism for BLDC motors that makes use of Al techniques to enhance stability and
response characteristics of the system. Figure 1 shows the proposed flowchart.
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Figure 1. Proposed flowchart

Dataset Generation
We generate a large dataset using a simulated PID controlled BLDC motor and use it to design a strong neural

network-based controller. We feed it a dataset composed of motor Input-Output pairs that simultaneously collect
the response of the motor with differing speed references and load. The following defines the motor state:

=] g

w

Where i is the current through the motor, and w denotes the rotor-speed. The control input v is the applied voltage
and the system is updated for each discrete time step dt.

The reference speed w,, is sampled uniformly within a specified range:
W, ~ U(30,400)  rad/s )
Where U(a, b) denotes a uniform distribution between a and b. The load torque T}, is also varied randomly:
Tioad ~ U(0,0.05) Nm 3)

The PID controller calculates the control signal at each time step according to the following equation with the
speed error:

e(t) = w,y(t) — w(t) (4)

Where the PID control law is defined as follows:
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de(t)

r )

v(t) = Kye(t) + K; [ e(t)dt + K,

Where Kp, K;, K, being the proportional, integral and derivative gains respectively. The voltage is saturated in
the operational limits:

Ve = max(—l/;mx, min(v, l/;,m)) (6)
Where V.. = 24V is the motor’s voltage constraint.
The system is simulated for N episodes, with each episode consisting of a sequence of state-action pairs:
D = {(ex € Vi) Yi=1 (7
Where the total number of data points gathered is denoted by M. This dataset is normalized before being used to
train the neural network, preventing overfitting and learning instability. In Table 1, simulation parameters for

BLDC motor control.

Table 1. Simulation parameters for BLDC motor control

Parameter Symbol Value

Motor Resistance R 050

Motor Inductance L 0.01 H

Back EMF Constant K, 0.02 V/rad/s
Torque Constant K, 0.02 Nm/A
Rotor Inertia Ji 0.001 kg:m?
Friction Coefficient B 1x 10™* Nm - s/rad
Proportional Gain K, 0.8

Integral Gain K; 15.0
Derivative Gain K, 0.0

Voltage Limit Vax 24V
Number of Episodes N 50

Episode Duration Tepisode 03s

Time Step dt 1x107*s
Speed Reference Range Wref 30 - 400 rad/s
Load Torque Range Tload 0-0.05 Nm

Neural Network Training
After generating the dataset, the neural network learns the optimal control policy for controlling BLDC motor.

To do this, the network learns a function approximately mapping the nonlinear relationship between the error
signals to the needed control voltage. The inputs to the neural network are the speed error and its derivative:

= 0

Where e is the speed error and € its time derivative. Our next step is to integrate some neural networks to generate
this control voltage:

vy = fun(x; 6) (€))

Where fyy(+) is the neural network function and 6 is the configuration of weights and biases.
Network Architecture

The neural network is a feedforward one with three hidden layers containing a different number of neurons tuned
to the complexity of the system dynamics. The architecture is defined as follows:
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Layers = {2,30,15,5,1} (10)

Where the first layer contains 2 neurons for each input features, and the output layer contains a single neuron for
the control voltage. All hidden layers have the hyperbolic tangent (tanh) activation function:

hi = tanh(Wihi_l + bl) (11)

Where the weight matrix and bias vector at layer i are represented by W; and b;.

Procedure for Training

The Bayesian Regularization algorithm (trainbr), which minimizes the mean squared error (MSE) while avoiding
overfitting, is used to train the network:

M
1
J©) =32 (v = vi)” + All0112 (12)
k=1

Where vy, is the actual control voltage, vy is the output predicted by the network, and M is the number of
training samples. The regularization term ||6||“ penalizes large weights to improve generalization. The training
dataset is normalized to improve convergence:

X = Hy V=l
Xnorm = . Vnorm = p (13)
x v

Where u,, o, and p,, 0,, are the means and standard deviations of the input and output variables, respectively.

Validation and Testing
The dataset is split into training and testing sets with an 85:15 ratio:

Dirain = 85%, Dy = 15% (14)
After training, the model is evaluated on the test set using the mean squared error:

N, test

1 2
MSE ey = 7— > (v = vange) (15)
test k=1

Where N, is the number of test samples. A lower test error indicates better generalization.

Controller Implementation
After training the neural network, the controller is passed through the BLDC motor system to control the speed

and improve dynamism. This implementation needs real-time calculation of the control voltage based on the
current error of speed and the derivative of this error of speed.

Control Law
The neural network-based controller computes the control voltage vy using the trained model:

van(®) = fin(e(®), e(®)) (16)
Where e(t) is the instantaneous speed error, and é(t) is its rate of change. The control voltage is then applied to

the motor, ensuring that the speed converges to the desired reference value. To maintain system stability, the
control voltage is constrained within operational limits:
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vls\;l]\t/ = max(_Vmax' min(vNN' Vmax)) (17)

Where V.., = 24V represents the motor’s maximum allowable voltage.

Real-Time Execution

The controller operates in discrete time with a sampling interval dt, ensuring timely updates of the control signal.
The state update equations for the motor are given by:

Kk+n=i@yﬁ?ww)—mw)—&w@n (18)

wk+1) =wlk) + # [Kei(k) — Bow (k) = Tipea(k)] (19)

Where i(k) and w(k) represent the motor current and speed at time step k, while T},,,(k) is the external load
torque.

Comparison with PID Control

The neural network controller contrasts with the traditional PID controller in order to evaluate performance gains.
The following provides the PID control law:

de(t)

7 (20)

vpp(t) = Kpe(t) + K; [ e()dt + Ky

The unit performance of both controllers is evaluated using the same reference speed trajectories and load
disturbances. Comparison with below the performance metrics:

- Overshoot (%): Reflects the maximum deviation over the reference speed.
- Settling Time (T): The period needed for speed to converge within 2% of the reference.
- Integral Absolute Error (IAE): Assesses System Overall Control Accuracy:

T
ME:jldﬂMt 1)
0

Where T is the total time used in simulation.

A few methodological elucidations and improvements have been added to improve the credibility and
reproducibility of the suggested neural network controller. To begin with, the chosen neural-network architecture
the feed-forward network with three hidden layers that consist of 30, 15 and 5 neurons was not selected randomly.
Instead, it was found with the help of empirical testing and hyperparameter optimization with the grid search
where several configurations were evaluated on the basis of training-loss convergence, generalization error, and
computation efficiency. Less complex networks are likely to underfit the system dynamics and more complex
networks add unnecessary latency and may overfit.

The input features to the network, specifically the speed error e(t) = w,s(t) — w(t) and its derivative dote(t),
were computed using finite difference approximations over a discrete time step dt = 10™* seconds. The outputs
of the network correspond to the desired control voltage vyy(t). These inputs and outputs reflect the same
functional mapping as the traditional PID controller, thus ensuring fair comparative evaluation.

In order to make the training data complete, the training data were based on the simulation with a variety of speed
references (30 to 400 2rad/s) and randomly selected load torques (0 to 0.05Nm). This method was intended to
reflect a wide range of real world operating conditions in order to improve the generalization ability of the neural
network. Although a simplified model of a BLDC was used to conduct initial experiments, the approach can be
extended to more realistic nonlinear models which include the effect of magnetic saturation, temperature-
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dependent parameters, and asymmetry of the back-EMF. Additional features could be added in the future to have
a simulation whose fidelity is more accurate and one that evaluates controller robustness more rigorously.

The analytical work of the computational complexity of the trained model was performed with a perspective of
practical implementation. Embedded systems It was reported that the inference latency of the conventional
embedded system (including the STM32H7 and the Raspberry PI 4) could be below one millisecond, thus
confirming its practicality in a real-time control system. However, the adaptation of the model to fixed-point or
quantized environments is a topic that needs future research.

To conduct benchmarking, future experiments will consider the use of additional control baselines such as the
fuzzy-PID, reinforcement learning-based policies, and LQR controllers. The comparative evaluations will
consider both the integral absolute error (IAE), overshoot and settling time, as well as the execution time and the
memory consumption.

Lastly, the controller has been trained offline up until now but studies are being done to add an online learning or
incremental update mechanism. This would enable the network to evolve such things as unmodeled dynamics or
hardware failures with time. Further, stability analysis of the closed loop system is being sought by employing
Lyapunov based methods and time domain analysis to ensure boundedness and convergence of the system under
nominal functions.

Experimental Results

The experimental results are discussed and evaluated in the context of comparing the performance and efficacy
of a neural network-based controller versus the traditional PID controller approach for speed control of the BLDC
motor. In the first phase of the experiment, a large dataset was generated based on the motor simulation controlled
by PID. This was done by varying the speed reference and load conditions over several episodes, thus recording
the system behavior under different conditions. Overall, we were able to collect 149,950 samples obtained to
train the neural network. This data collection effort was a prerequisite for improving the generalization of the Al-
based controller.

After generating data, the dataset was normalized, and the neural network was trained in a pre-processing method
trainbr. The loss function was set to be the mean squared error (MSE), with a condition in place to avoid
overfitting. The training set MSE obtained by the final model was 0.488438 and the test set MSE was equal to
0.457191 (the MSE on the test set is used to measure how well the model predicts the unseen data). As can be
seen from these values, the neural network has successfully learnt the underlying dynamics of the BLDC motor
and has generalised well to new scenarios. The small difference between training and test errors further indicates
that the model has not overfit the training data. The controller tuning was complemented by test runs with both
the PID and the neural network controller in the same condition, featuring both piecewise speed reference and
step load disturbances. State of the art results of both controllers have been computed in terms of the control
metrics: overshoot, settling time, and integral absolute error (IAE). The controller based on neural network
yielded the best performance in the mentioned work. There is a 12.13% overshoot in the PID controller showing
that it is more than the required reference in terms of the speed oscillations. As opposed to the Neural Network
controller, which completely reduced overshoot, obtained a smooth, steady response. The Al-based control
system potentially predicts and compensates for speed changes faster compared to the PID counterpart.

A third important observation was the discrepancy in settling times. Not a Number (NaN) in the result indicates
that the PID controller was not able to reach a stable settling time, implying either instability or slow convergence
in the given test conditions. However, the neural network controller had a clearly defined settling time of 0.8826
seconds, indicating that it was able to regulate the speed over a very short period. The Al-based controller reduces
the oscillation and gets a better response time which indicates that it adjusts dynamically to the change in external
disturbance and reference speed.

The same conclusion can be observed from Figure 2, which presents the integral absolute error (IAE) as well.
The TAE value for the PID controller was found to be 151.6351, while the IAE value corresponding to the neural
network controller was found to be 86.9570, which was substantially lower. Minimum IAE indicates a more
accurate control response that brings the system output swiftly back to the target speed within the test period.
This lead to better energy efficiency and mechanical stress on the motor which is required for real time application
where accurate speed tracking is extremely important.
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Figure 2. Comparison of motor speed and control voltage for PID and neural network controllers

To conclude, the experimental evidence in the above figures confirms the hypothesis that neural network-based
controller outperforms the traditional PID controller. The Al-driven system has a shorter settling time and
improved tracking accuracy besides removing overshoot. These results highlight the possibilities of machine-
learning techniques in the context of motor control, which means that methods can be superior to traditional
control systems in their versatility and stability.

As detailed in Table 2, the experimental results demonstrate a performance comparison of the PID and neural
network controllers in controlling the speed of the BLDC motor. In total, the dataset used to train both controllers
consists of 149.950 samples, covering all possible operating conditions. The mean squared error (MSE) values
for training and test sets suggest that the neural network was trained successfully without overfitting, because the
test error is close to training error. There was a notable reduction in overshoot. As indicated, the PID controller
leads to 12.13% overshoot, compared to the neural network-based controller which results in a zero overshoot,
thus it further minimize the resonant magnitude of the system response. This is especially useful for applications
where accurate speed tracking without spikes is needed. The settling time results also highlight the better
performance of Al-based control system. Under the same system conditions and as you can see in the table above,
the PID controller would not yield a proper settling time according to the NaN value, while the neural network
controller stabilized the output in 0.8826 seconds. The reduction in settling time emphasizes the superiority of the
findings of each neural for the adaptation of capability to speed references and external disturbances. Similar
results can be obtained using the IAE (Integral Absolute Error) metric which further confirms the superior
accuracy of the neural network controller. The system based on Al surpassed a PID controller with an IAE of
151.6351, its IAE was 86.9570. A smaller error means that the code has better tracking precision, leading to lesser
deviations from the intended speed for the duration of the test. The performance comparison as reported in Table
2 confirms the suitability of neural network-based control for BLDC motors. The implementation of large gain
overshoot elimination, settling time reduction, and accuracy enhancement positions the Al or machine learning
drives as a solid alternative to conventional PID control methods, indicating significant potential for advancing
high-performance motor control standards.

Table 2. Performance comparison between PID and neural network controllers

Performance Metric PID Controller Neural Network Controller
Number of Training Samples 149,950 149,950

Training MSE 0.488438 0.488438

Test MSE 0.457191 0.457191

Overshoot (%) 12.13% 0.00%

Settling Time (s) Not Applicable (NA) 0.8826

Integral Absolute Error (IAE) 151.6351 86.9570

Figure 3 shows the absolute speed error for the BLDC motor driven by a classical PID controller and a neural
network-based controller. Time is on x-axis in seconds, Absolute Error in Speed (radians/sec) is on y-axis. The
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plot compares the control strategies based on their ability to bound speed deviations towards the reference
trajectory.

200 Absolute Speed Error: PID vs. NN
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Figure 3. Comparison of absolute speed error between PID controller and Artificial Neural Network (ANN)
controller

The PID controller has a speed error sign in red, while the neural network-based approach has it in blue. It can
be seen that PID controller experience more speed error than proposed method, especially around 0.6 s it has an
extreme value around 250 rad/s deviation. In contrast, the neural network controller demonstrates significantly
reduced error values, showing more stability and a quicker convergence to minimal error levels.

Over the whole period of the simulation, the proportional-integral-derivative controller had high oscillations and
also a slow sensitivity to the measured alterations in the commanded speed, but the neural-network controller
managed to decrease those changes especially in the final part of the simulation. The fact that the neural-network-
based controller has the ability to reduce the absolute speed error also shows that it is more adaptable and better
in dynamic performance when compared to the PID controller. These results support the benefits of implementing
Al-based control methods to regulate the speed of brushless DC motors, particularly those with strict and fast
requirements and reduced error.

Figure 2 is a comparison of motor speed and controlvoltage responses of PID and neuralnetwork controllers. The
upper subplot illustrates time dependent motor-speed response curve, whereby the dashed black line represents
the reference speed curve. Both the PID and the neural-network methods have red and blue curves, respectively,
as their response profiles. The bottom subplot demonstrates the way every controller controls the speed of the
motors. Looking at the speed-response plot the overshoot is very high, it forms around a time around 0.6s upon
passing through the reference point on the speed curve. In addition, the reference trajectory approach is delayed,
and the PID controller is characterized by apparent high-frequency oscillations. On the other hand, the neural
network controller shows a more stable response, with less overshoot and a faster settling time, following closely
the reference speed. Additionally, the motor controller output is regulated more effectively as the neural network
controller is enabled to dynamically adapt to speed changes.

Similarly, the control voltage plot in the lower subplot shows how the controllers actuate. However, the rapid
dynamics of the PID controller produces discontinuous and high-magnitude values of the voltage during reference
speed changes. Such sudden fluctuations can cause system instability and cause an extra mechanical load to the
motor. Conversely, the neural network controller uses an increasing control voltage in response to disturbances in
a non-transient fashion. It is observed that the behaviour is showing the Al-based controller is learning a better
control strategy, low amplitude voltage spikes and shows a more desirable control response.

Overall, Figure 2 proves that neural network-based control is better than traditional PID control. This Al-based
solution reduces the settling time and overshoot, needs less control, and consequently, is a more flexible and
resilient solution in the regulation of the speed of BLDC motors.

In order to increase the performance comparison performance, statistical validation was also added with ten
repetitions of the simulation (n = 10) with different initial conditions and load profiles. The average of the results
was obtained and standard deviations of the performance measures were determined. This methodology facilitated
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that improvements noted in the overshoot, settling time and IAE could not be credited to random positive
conditions. Future research would involve formal significance tests (e.g., t-tests or ANOVA), to strictly measure
the improvements.

Regarding the undefined settling time (NaN) of the PID controller, it is necessary to add that in a number of test
cases, the system stabilized outside of a 2% tolerance threshold throughout the simulation period. This can be
explained in two ways: oscillatory or unstable to step disturbances, which in turn makes the case of adaptive
control. An extended simulation horizon or tuning value would give a specific value but it would not represent a
realistic control response.

The experiments were mostly focused on the piecewise constant reference signal, but as a measure of robustness,
future experiments will include edge conditions, i.e. the sudden pulse of load torque and the high rate of change
of reference velocity. Initial experiments of a sudden action disturbance of 0.05 nm at t = 0.5 s to stabilize showed
that the neural-network controller stabilized faster and with a lower error compared to a PID controller, but are
also to be discussed in a future extension.

The effort of control in terms of the amplitude and variability of the driven voltage signals was measured.
Although the PID controller observed high-magnitude oscillations and spontaneous voltage transients, the neural
network controller presented smoother voltage traces, which is why acted as an indicator of smaller mechanical
stress and better actuator efficiency. Quantitative metrics such as RMS voltage and peak-to-peak variation will be
included in future revisions for completeness. Although the current model was trained offline, ongoing work
explores integrating online learning mechanisms to allow the controller to adapt to unmodeled dynamics or
hardware drift. This would be particularly valuable in long-term or safety-critical deployments. Real-time fine-
tuning using incremental updates or experience replay buffers is under investigation as a practical path forward.

Conclusion

The framework proposed in this study connects a feedforward neural network to conventional PID control for
Brushless DC (BLDC) motors. Using PID-simulated motor response data, the neural network was able to discover
the best controls for the robot in real time. The tests demonstrated that compared to the PID controller, the Al-
based controller improved the system by not overshooting (0% vs. 12.13%), reaching stability fast (settling time
< 0.9 seconds) and decreasing IAE by over 40%. Improved response was seen along with a smoother power signal,
less load placed on the system and better overall energy use. The results have confirmed that the neural controller
improves accuracy and helps to maintain stability and continue operations over time.

The controller’s performance shows it can deal well with changes to speed and load when the system is simulated.
Even so, its current structure is not online based, so further training might be needed to address real-world
challenges that are not in the training data. On top of that, using simulations confirms the system can remain
stable, but more research is needed to formally assess this through Lyapunov-based methods or by calculating
robustness margins.

Although profiling and initial measurements suggest that this is possible on small platforms, the remaining work
is to apply it in real-time on actual hardware. In addition, real-time hardware implementation is needed for use in
electric vehicles, robotics and industrial automation. These sectors are required to be reliable and this
demonstration under practical limitations and changing conditions. Overall, the framework created here improves
the speed control of BLDC motors with data and computations. It supports the development of smart and flexible
muscle control and makes possible further study of light neural architectures, adaptable behavior and stability in
practical situations.
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