
 

 

The Eurasia Proceedings of Science, Technology, 

Engineering & Mathematics (EPSTEM) 

ISSN: 2602-3199 

 

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, 

permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

- Selection and peer-review under responsibility of the Organizing Committee of the Conference 

© 2025 Published by ISRES Publishing: www.isres.org 

 

 

 

The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 2025 

  

Volume 37, Pages 180-193 

 

ICEAT 2025: International Conference on Engineering and Advanced Technology 

 

 

Supervised Learning for Adaptive BLDC Motor Control: Integrating 

Classical PID with Neural Networks 
 

Ekraam H. Al-Zaidi 

Thi Qar University 

 

 

Abstract: BLDC motors require a high level of precision and efficiency in controlling speed, which is needed 

in a wide range of applications, such as electric vehicle, robotics, and industrial automation. The classical 

proportional-integral-derivative (PID) controllers are often characterized by overshoot, a slow rate of 

convergence, and have a low flexibility to changing operating conditions. As a counter to this we have suggested 

in this paper a hybrid artificial-intelligence-based control scheme, a combination of a neural-network controller 

and the standard PID control. A large dataset based on controlled simulations, using PID control, is then applied 

in training a feed-forward neural network to estimate optimal control behaviour using a supervised learning 

approach. The neural network that results is an adaptive controller that adjusts dynamically the control voltage in 

real time as a function of the difference between the current speed and its derivative. The experimental evidence 

shows that neural-network controller performs better than the traditional PID control in terms of eliminating 

overshoot (0% vs. 12.13%), the settling time by up to 88% (0.8826 s vs. undefined for PID) and the Integral 

Absolute Error (IAE) by over 40% (86.96 vs. 151.64). Besides, the AI-based system produces more fluent 

controlvoltage curves, reducing mechanical forces, and promoting energy savings. This paper highlights the 

potential of hybrid neural-PID control systems to the high-performance motor control of BLDC motors and 

outlines future research opportunities in this area to address real-time operation and computational bottlenecks 

within embedded computer systems.  

 

Keywords: AI-based control, BLDC motor, Neural network controller, PID control, Speed regulation  

 

 

Introduction 

 

The BLDC motors can be characterized by high efficiency, small size, low maintenance, and high dynamic 

response, which have enabled their extensive use in the industrial, automotive, and robotics industries. Because 

they generate plenty of torque at low speeds and maintain smooth and accurate speed management, they play a 

big role in electric cars, robots, modern factories and other fields that need a lot of motion (Barkas et al., 2020; 

Liang et al., 2023). Still, getting strong and flexible control for BLDC motors in situations where both speed and 

the load change remains a big technical problem. Although PID controls are typically reliable and straightforward 

to implement, they fail to perform well where fast changes, little overshoot and rejecting disturbances are required. 

 

The proposed hybrid controller is based on artificial intelligence, bringing together the advantages of stability 

from a conventional PID controller and the improvements from a neural network controller. The neural network 

is trained using supervised learning on data generated from PID-controlled BLDC motor simulations, allowing it 

to approximate the nonlinear control dynamics and act as a real-time adaptive controller. This combination 

solution enhances the responsiveness of systems and the accuracy of tracking, especially where there is a change 

in speed references and load mutualities. 

 

Although the title highlights the brushless direct current (BLDC) motors, the available literature often focuses on 

the brushed DC motors when outlining control technique, especially where sensorless and artificial intelligence-
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based estimation are of interest. This tendency creates a possible source of ambiguity, because the working 

parameters and structural differences of brushed and brushless motors can be considered significant. To be clear, 

though the understanding obtained after carrying out the studies of the brushed DC motors is also mentioned 

where it is relevant, this paper is entirely focused on the control and performance optimization of the BLDC 

motors. 

 

In conventional DC motor systems, position and speed feedback are often acquired using physical sensors such 

as encoders or Hall effect sensors. These sensors, although accurate, introduce additional costs and complexity 

and are prone to environmental noise and electromagnetic interference (Vazquez-Sanchez et al., 2016). Therefore, 

sensorless control and estimation methods have gained a significant level of attention. Overall, these estimation 

techniques could be classified into two major households: (i) ripple-dependent estimation, where the high-

frequency signal of the stator current is exploited; and (ii) observer-based estimation, which is based on the 

dynamic models or filtration. (Ismail & Elnady, 2019; Radcliffe & Kumar, 2015). 

 

Under the observer-based methodologies, engineers use mathematical models to approximate the rotor speed as 

well as position. Kalman filters and extended observers are examples of the most promising approaches that can 

be used to handle particular issues of measurements faced in the noisy context (Cupertino et al., 2011; Razi & 

Monfared, 2015). In addition, this technology has been used to calculate the parameters of the motor using 

historical sensor information. Nevertheless, they do require some strong computational capabilities and an 

excellent knowledge of the underlying technologies, thus making them difficult to apply to real-time embedded 

system applications (Dini & Saponara, 2020). In addition, these methods depend on exact information about motor 

factors like inductance and back EMF, but both change with temperature and applied load, negatively affecting 

the accuracy of the estimates. 

 

Methods in this group work by producing periodic current variations with rotor slots or the action of magnetic 

fields. When applied at standstill, scanning for current ripple activity (Radcliffe & Kumar, 2015) and monitoring 

stator current spikes (Ismail & Elnady, 2019) give reliable speed estimates. Nevertheless, these systems involve 

detailed filtering circuits and significant calibration to be precise at a range of speeds. As a result, they often prove 

difficult to use in small and inexpensive applications. 

 

DC motors in both industrial and automotive drive systems are commonly controlled with power electronic 

converters. Speed control at both basic and enhanced levels demands both flux weakening features and switching 

solutions (Forouzesh et al., 2017). When the application and power source are considered, the drive for a DC 

motor can either use a controlled rectifier (AC-fed) or converters including buck, boost, SEPIC or Cuk 

(Safayatullah et al., 2022). Among these, the boost converter is especially favored for its simple design and 

capability to step up voltage efficiently, making it ideal for applications with variable input and load requirements 

(Kiru et al., 2020). 

 

Nonetheless, traditional boost converters suffer from switching losses, particularly at high frequencies. To 

mitigate these losses, soft-switching techniques such as snubber circuits or zero-voltage switching are often 

implemented, helping reduce converter size and improve thermal performance (Lan & Dong, 2024; Xu et al., 

2021). Many systems that control power in the first and third quadrants use Pulse Width Modulation which is a 

widespread approach for regulating speed (Barkas et al., 2020). Yet, most of their output is below the bus voltage 

which can be challenging for applications that use electric door motors, window regulators or under-door step 

mechanisms requiring sudden bursts of extra torque. 

 

In industry and automotive areas, where robotic arms, sliding doors or mobile platforms operate with repeated 

action, systems have to be very reliable and accurate. Such systems must locate mistakes, keep up with changes 

in the environment and update their movement patterns on the spot for high performance and safety. As a result, 

both Artificial Intelligence (AI) and Machine Learning (ML) are now used in motor control and trajectory 

mapping (Sheng et al., 2023; Tofoli et al., 2015). Supervised learning, reinforcement learning and fuzzy Q-

learning methods have been used to find patterns in motion data, adjust motor control systems in real time and 

handle the fact that motor functions are often not linear (Qiu et al., 2024; Sira-Ramirez & Oliver-Salazar, 2012). 

 

AI-based ways of controlling machines still encounter a number of issues in industrial work. It is usually important 

to give neural networks lots of data from a variety of situations. Also, AI algorithms need machine processors 

with high-performance memory and floating-point features. Meeting these requirements is challenging with the 

usual low-cost microcontrollers used in most embedded motor control systems as per (Mallik et al., 2016). Finally, 

integrating AI models into feedback loops necessitates stable real-time inference and low-latency computation to 

ensure system responsiveness. 
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This paper tackles the challenges mentioned above by introducing a hybrid control system of brushless DC motors 

that combines the ability to generalize of artificial intelligence with the reliability of the proportionalintegral 

derivatives control. The main innovation is the use of simulation data created by a PID controller to learn a 

feedforward neural network to define the dependence between the speed error dynamics and the associated 

optimal control voltages. The network will replace the traditional PID controller and will dynamically correct the 

voltage inputs as errors are observed based on trends in the error as the network trains. Empirical evidence shows 

that the method suggested enhances transient performance, settling time, and overshoot, as well as decreasing 

control effort, especially in systems, which require quick adaptation to changes in the speed references or load 

shocks. 

 

In summary, this work contributes to the growing body of research on AI-driven motor control by: 

 

- Focusing specifically on BLDC motors and their speed regulation challenges; 

- Employing a PID-supervised neural network to overcome limitations in conventional control; 

- Demonstrating significant improvements in overshoot reduction, settling time, and error metrics; 

- Highlighting practical implementation aspects for real-time embedded systems. 

 

The following sections detail the proposed methodology, dataset generation, neural network training, 

experimental evaluation, and comparison of the hybrid controller with traditional PID systems. 

 

 

Related Work 
 

Research on advanced control techniques for Brushless DC (BLDC) motors has increasingly explored the use of 

artificial intelligence (AI) and machine learning (ML) to overcome the limitations of conventional controllers 

such as Proportional-Integral-Derivative (PID) systems. Even though PID controllers are usually chosen in 

industry for how simple and reliable they are, they don’t do well when changes in load or speed happen and the 

process becomes less predictable (Salmaninejad & Mayorga, 2021). For high-performance tasks where there is 

little time and perfect results are needed, hybrid and AI-aided control approaches have developed as good 

alternatives to other methods. 

 

Several researchers have mentioned using intelligent controllers with methods such as AI, neural networks and 

fuzzy systems as alternatives to PID logic. Online learning was applied by (Dini & Saponara, 2020) in designing 

a controller for BLDC motors so that the system works better under different conditions. The method they 

designed was effective but required complicated, real-time calculations and did not start with learned stable 

actions, making its use in industry limited. Combining data from PID-controlled systems with machine learning 

enables the prediction of how expertly tuned controllers would react in many different conditions. Using this 

approach, authors (Madheswaran et al., 2011) used simulation data from a proper PID controller to train an ANN 

that controls a DC servo motor. After learning from error signals, the ANN could recommend ideal actions and 

was superior to the PID controller in both transient and steady-state results. Although their analysis was not related 

to BLDC systems, it was limited to low-load DC motors and did not discuss real-time implementation problems. 

In a similar manner, a neural network-controlled strategy was suggested by Zhang and Gao (2022), where 

supervised machine learning turns system error to control voltage. The authors found that their strategy helped 

the system settle quicker and more effectively than with previous traditional control methods. First, the network 

learned from data produced under controlled circumstances offline. Then, it was put to use during real events. 

Using this model, we no longer had to manually tune the system as often, but it needed a lot of data to train, and 

it never made a comparison between hybrid control and traditional PID under the same load and reference 

conditions. 

  

According to Khosravi et al. (2021), neural controllers trained with Bayesian Regularization can both improve 

how well they perform for new data and reduce the likelihood of overfitting. It is most helpful when the model 

must operate within a broader range of conditions than those it has learned from. Using this method in motor 

control makes it easier for controllers to face unexpected changes in load or speed, something that matters greatly 

in embedded and real-time systems. Recently, Kroičs and Būmanis (2024) studied a BLDC motor by controlling 

its speed using a new combination of PID and a fuzzy neural network. To change how it controls things, their 

architecture relied on error and derivative signals from learned policies. Even though fuzzy neural logic made 

rule-based changes more flexible, the system turned out to be too difficult to put on the few-core microcontrollers 

used at the time. Authors also pointed out that gathers, need to be of high quality. In this case, they handled this 

issue by creating simulated response data, a tactic applied in the current work. 
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Methods from reinforcement learning have seen use in controlling BLDC motors. In the same manner, Qiu et al. 

(2024) examined AI techniques designed for electric motors and reported that while RL can optimize and adapt 

well, it is unsafe and unstable when experimenting and adapting, especially during training. To add, RL needs 

many trials of interacting with either the physical world or sophisticated simulated systems which can be difficult 

for embedded motor control systems. 

 

Lightweight designs such as shallow feedforward neural networks trained outside the system, have been created 

to handle computational challenges. Two studies by Madheswaran et al. (2011) and Madheswaran and 

Muruganandam (2012) have shown how shallow ANNs can be trained using data from controller systems to 

predict the inverse dynamics of motor systems. In the various test cases with speed references and disturbances, 

these tuned controllers produced better performance than PID, proving that a supervised-learning-based controller 

is a good, straightforward choice for embedded systems. 

 

Despite these advancements, many works do not explicitly focus on the transition from PID to neural control 

through supervised learning using PID-generated datasets, which is the core innovation of the present study. 

Unlike works focused on diagnosis or fault detection such as those by (Chen & Li, 2017) and (Shifat & Hur, 

2020), which apply AI for health monitoring or anomaly detection this paper emphasizes real-time motor speed 

control through a neural network trained on traditional controller behavior. 

 

In summary, while there is growing interest in AI-based motor control, only a few studies have explored the full 

replacement of PID control using AI models trained directly on PID-generated data. This paper contributes to this 

niche by: 

 

- Proposing a hybrid AI control strategy for BLDC motors that leverages the robustness of PID-generated 

datasets. 

- Employing Bayesian Regularization to train a feedforward neural network that generalizes well to new 

dynamic conditions. 

- Demonstrating superior performance over PID in terms of overshoot, settling time, and absolute speed error. 

- Focusing on real-time, low-latency implementation suitable for embedded hardware. 

 

These contributions address key limitations in previous work and highlight the viability of supervised AI models 

as adaptable, high-performance controllers in BLDC motor applications. 

 

 

Proposed Methodology 
 

Design of Adaptive Controller Using Classical PID Controller and NEURAL Network for AI-based Control of 

Brushless DC (BLDC) Motors. This method simulates the BLDC motor based on its electrical and mechanical 

parameters, such as resistance, inductance, back electromotive force (Ke), torque constant (Kt), moment of inertia 

(J) and friction coefficient (B). These parameters enable the simulation of the motor’s dynamic behavior under 

different loads and speed references. A baseline PID controllers are first utilized to gain a traditional control 

strategy. Tuning Kp, Ki, Kd to get the optimum motor response The PID controlled system is simulated over a 

variety of operational conditions, effectively, gathering speed reference inputs, system error predictions and 

control outputs, to simulate training data for the network. This large-scale dataset helps expose the neural network 

to various scenarios which increases its ability to generalize. 

 

You train the neural network controller using Bayesian Regularization (trainbr), which aids in generalization and 

minimizes overfitting. Moreover, the speed errors and their derivatives are normalized before being introduced 

to the network to keep the learning stable. It consists of several hidden layers which are used to capture the BLDC 

system nonlinear mappings. The whole trained network is further integrated as an adaptive controller, replacing 

the PID for speed regulation in real-time. To assess performance, both controllers are evaluated on a piecewise 

speed reference trajectory with added step load disturbances. The comparison is made regarding the overshoot, 

settling time, and IAE. It shows that neural network controller outperforms the traditional PID in handling system 

dynamics with lower speed range variation and lower control effort. The implementation will eventually lead to 

an effective control mechanism for BLDC motors that makes use of AI techniques to enhance stability and 

response characteristics of the system. Figure 1 shows the proposed flowchart. 
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Figure 1. Proposed flowchart 

 

 

Dataset Generation 

 

We generate a large dataset using a simulated PID controlled BLDC motor and use it to design a strong neural 

network-based controller. We feed it a dataset composed of motor Input-Output pairs that simultaneously collect 

the response of the motor with differing speed references and load. The following defines the motor state: 

 

𝑥 = [
𝑖
𝜔
] (1) 

 

Where 𝑖 is the current through the motor, and 𝜔 denotes the rotor-speed. The control input 𝑣 is the applied voltage 

and the system is updated for each discrete time step 𝑑𝑡. 
 

The reference speed 𝜔ref is sampled uniformly within a specified range: 

 

𝜔ref ∼ 𝒰(30,400) rad/s (2) 

 

Where 𝒰(𝑎, 𝑏) denotes a uniform distribution between 𝑎 and 𝑏. The load torque 𝑇load is also varied randomly: 

 

𝑇load ∼ 𝒰(0,0.05) Nm (3) 

 

The PID controller calculates the control signal at each time step according to the following equation with the 

speed error: 

 

𝑒(𝑡) = 𝜔ref(𝑡) − 𝜔(𝑡) (4) 

 

Where the PID control law is defined as follows: 

 



International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia 

185 

 

𝑣(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 (5) 

 

Where 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 being the proportional, integral and derivative gains respectively. The voltage is saturated in 

the operational limits: 

 

𝑣sat = max(−𝑉max, min(𝑣, 𝑉max)) (6) 

 

Where 𝑉max = 24𝑉 is the motor’s voltage constraint. 

 

The system is simulated for 𝑁 episodes, with each episode consisting of a sequence of state-action pairs: 

 

𝒟 = {(𝑒𝑘 , 𝑒̇𝑘, 𝑣𝑘)}𝑘=1
𝑀  (7) 

 

Where the total number of data points gathered is denoted by 𝑀. This dataset is normalized before being used to 

train the neural network, preventing overfitting and learning instability. In Table 1, simulation parameters for 

BLDC motor control. 

 

Table 1. Simulation parameters for BLDC motor control 

Parameter Symbol Value 

Motor Resistance 𝑅 0.5 𝛺 

Motor Inductance 𝐿 0.01 H 

Back EMF Constant 𝐾𝑒 0.02 V/rad/s 

Torque Constant 𝐾𝑡 0.02 Nm/A 

Rotor Inertia 𝐽 0.001 kg⋅m2 

Friction Coefficient 𝐵 1 × 10−4 Nm ⋅ s/rad 

Proportional Gain 𝐾𝑝 0.8 

Integral Gain 𝐾𝑖 15.0 

Derivative Gain 𝐾𝑑 0.0 

Voltage Limit 𝑉max 24 V 

Number of Episodes 𝑁 50 

Episode Duration 𝑇episode 0.3 s 

Time Step 𝑑𝑡 1 × 10−4 s 

Speed Reference Range 𝜔ref 30 - 400 rad/s 

Load Torque Range 𝑇load 0 - 0.05 Nm 

 

 

Neural Network Training 

 

After generating the dataset, the neural network learns the optimal control policy for controlling BLDC motor. 

To do this, the network learns a function approximately mapping the nonlinear relationship between the error 

signals to the needed control voltage. The inputs to the neural network are the speed error and its derivative: 

 

𝑥 = [
𝑒
𝑒̇
] (8) 

 

Where 𝑒 is the speed error and 𝑒̇ its time derivative. Our next step is to integrate some neural networks to generate 

this control voltage: 

 

𝑣NN = 𝑓NN(𝑥; 𝜃) (9) 

 

Where 𝑓NN(⋅) is the neural network function and 𝜃 is the configuration of weights and biases. 

 

 

Network Architecture 

 

The neural network is a feedforward one with three hidden layers containing a different number of neurons tuned 

to the complexity of the system dynamics. The architecture is defined as follows: 
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Layers = {2,30,15,5,1} (10) 

 

Where the first layer contains 2 neurons for each input features, and the output layer contains a single neuron for 

the control voltage. All hidden layers have the hyperbolic tangent (tanh) activation function: 

 

ℎ𝑖 = tanh(𝑊𝑖ℎ𝑖−1 + 𝑏𝑖) (11) 

 

Where the weight matrix and bias vector at layer 𝑖 are represented by 𝑊𝑖 and 𝑏𝑖. 
 

 

Procedure for Training 

 

The Bayesian Regularization algorithm (trainbr), which minimizes the mean squared error (MSE) while avoiding 

overfitting, is used to train the network: 

 

𝐽(𝜃) =
1

𝑀
∑(𝑣𝑘 − 𝑣NN,𝑘)

2
𝑀

𝑘=1

+ 𝜆||𝜃||2 (12) 

 

Where 𝑣𝑘 is the actual control voltage, 𝑣NN,𝑘 is the output predicted by the network, and 𝑀 is the number of 

training samples. The regularization term ||𝜃||2 penalizes large weights to improve generalization. The training 

dataset is normalized to improve convergence: 

 

𝑥norm =
𝑥 − 𝜇𝑥
𝜎𝑥

, 𝑣norm =
𝑣 − 𝜇𝑣
𝜎𝑣

 (13) 

 

Where 𝜇𝑥, 𝜎𝑥 and 𝜇𝑣, 𝜎𝑣  are the means and standard deviations of the input and output variables, respectively. 

 

 

Validation and Testing 

 

The dataset is split into training and testing sets with an 85:15 ratio: 

 

𝒟train = 85%, 𝒟test = 15% (14) 

 

After training, the model is evaluated on the test set using the mean squared error: 

 

MSEtest =
1

𝑁test

∑(𝑣𝑘 − 𝑣NN,𝑘)
2

𝑁test

𝑘=1

 (15) 

 

Where 𝑁test is the number of test samples. A lower test error indicates better generalization. 

 

 

Controller Implementation 

 

After training the neural network, the controller is passed through the BLDC motor system to control the speed 

and improve dynamism. This implementation needs real-time calculation of the control voltage based on the 

current error of speed and the derivative of this error of speed. 

 

 

Control Law 

 

The neural network-based controller computes the control voltage 𝑣NN using the trained model: 

 

𝑣NN(𝑡) = 𝑓NN(𝑒(𝑡), 𝑒̇(𝑡)) (16) 

 

Where 𝑒(𝑡) is the instantaneous speed error, and 𝑒̇(𝑡) is its rate of change. The control voltage is then applied to 

the motor, ensuring that the speed converges to the desired reference value. To maintain system stability, the 

control voltage is constrained within operational limits: 
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𝑣NN
sat = max(−𝑉𝑚𝑎𝑥 , min(𝑣NN, 𝑉𝑚𝑎𝑥)) (17) 

 

Where 𝑉𝑚𝑎𝑥 = 24𝑉 represents the motor’s maximum allowable voltage. 

 

 

Real-Time Execution 

 

The controller operates in discrete time with a sampling interval 𝑑𝑡, ensuring timely updates of the control signal. 

The state update equations for the motor are given by: 

 

𝑖(𝑘 + 1) = 𝑖(𝑘) +
𝑑𝑡

𝐿
[𝑣(𝑘) − 𝑅𝑖(𝑘) − 𝐾𝑒𝜔(𝑘)] (18) 

  

𝜔(𝑘 + 1) = 𝜔(𝑘) +
𝑑𝑡

𝐽
[𝐾𝑡𝑖(𝑘) − 𝐵𝜔(𝑘) − 𝑇load(𝑘)] (19) 

 

Where 𝑖(𝑘) and 𝜔(𝑘) represent the motor current and speed at time step 𝑘, while 𝑇load(𝑘) is the external load 

torque. 

 

 

Comparison with PID Control 

 

The neural network controller contrasts with the traditional PID controller in order to evaluate performance gains. 

The following provides the PID control law: 

 

𝑣PID(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 (20) 

 

The unit performance of both controllers is evaluated using the same reference speed trajectories and load 

disturbances. Comparison with below the performance metrics: 

 

- Overshoot (%): Reflects the maximum deviation over the reference speed. 

- Settling Time (𝑇𝑠): The period needed for speed to converge within 2% of the reference. 

- Integral Absolute Error (IAE): Assesses System Overall Control Accuracy: 

 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|
𝑇

0

𝑑𝑡 (21) 

 

Where 𝑇 is the total time used in simulation. 

 

A few methodological elucidations and improvements have been added to improve the credibility and 

reproducibility of the suggested neural network controller. To begin with, the chosen neural-network architecture 

the feed-forward network with three hidden layers that consist of 30, 15 and 5 neurons was not selected randomly. 

Instead, it was found with the help of empirical testing and hyperparameter optimization with the grid search 

where several configurations were evaluated on the basis of training-loss convergence, generalization error, and 

computation efficiency. Less complex networks are likely to underfit the system dynamics and more complex 

networks add unnecessary latency and may overfit. 

 

The input features to the network, specifically the speed error  𝑒(𝑡) = ωref(𝑡) − ω(𝑡) and its derivative 𝑑𝑜𝑡𝑒(𝑡), 
were computed using finite difference approximations over a discrete time step  𝑑𝑡 = 10−4 seconds. The outputs 

of the network correspond to the desired control voltage 𝑣NN(𝑡). These inputs and outputs reflect the same 

functional mapping as the traditional PID controller, thus ensuring fair comparative evaluation. 

 

In order to make the training data complete, the training data were based on the simulation with a variety of speed 

references (30 to 400 2rad/s) and randomly selected load torques (0 to 0.05Nm). This method was intended to 

reflect a wide range of real world operating conditions in order to improve the generalization ability of the neural 

network. Although a simplified model of a BLDC was used to conduct initial experiments, the approach can be 

extended to more realistic nonlinear models which include the effect of magnetic saturation, temperature-
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dependent parameters, and asymmetry of the back-EMF. Additional features could be added in the future to have 

a simulation whose fidelity is more accurate and one that evaluates controller robustness more rigorously. 

  

The analytical work of the computational complexity of the trained model was performed with a perspective of 

practical implementation. Embedded systems It was reported that the inference latency of the conventional 

embedded system (including the STM32H7 and the Raspberry PI 4) could be below one millisecond, thus 

confirming its practicality in a real-time control system. However, the adaptation of the model to fixed-point or 

quantized environments is a topic that needs future research. 

  

To conduct benchmarking, future experiments will consider the use of additional control baselines such as the 

fuzzy-PID, reinforcement learning-based policies, and LQR controllers. The comparative evaluations will 

consider both the integral absolute error (IAE), overshoot and settling time, as well as the execution time and the 

memory consumption. 

 

Lastly, the controller has been trained offline up until now but studies are being done to add an online learning or 

incremental update mechanism. This would enable the network to evolve such things as unmodeled dynamics or 

hardware failures with time. Further, stability analysis of the closed loop system is being sought by employing 

Lyapunov based methods and time domain analysis to ensure boundedness and convergence of the system under 

nominal functions. 

 

 

Experimental Results 
 

The experimental results are discussed and evaluated in the context of comparing the performance and efficacy 

of a neural network-based controller versus the traditional PID controller approach for speed control of the BLDC 

motor. In the first phase of the experiment, a large dataset was generated based on the motor simulation controlled 

by PID. This was done by varying the speed reference and load conditions over several episodes, thus recording 

the system behavior under different conditions. Overall, we were able to collect 149,950 samples obtained to 

train the neural network. This data collection effort was a prerequisite for improving the generalization of the AI-

based controller. 

 

After generating data, the dataset was normalized, and the neural network was trained in a pre-processing method 

trainbr. The loss function was set to be the mean squared error (MSE), with a condition in place to avoid 

overfitting. The training set MSE obtained by the final model was 0.488438 and the test set MSE was equal to 

0.457191 (the MSE on the test set is used to measure how well the model predicts the unseen data). As can be 

seen from these values, the neural network has successfully learnt the underlying dynamics of the BLDC motor 

and has generalised well to new scenarios. The small difference between training and test errors further indicates 

that the model has not overfit the training data.  The controller tuning was complemented by test runs with both 

the PID and the neural network controller in the same condition, featuring both piecewise speed reference and 

step load disturbances. State of the art results of both controllers have been computed in terms of the control 

metrics: overshoot, settling time, and integral absolute error (IAE). The controller based on neural network 

yielded the best performance in the mentioned work. There is a 12.13% overshoot in the PID controller showing 

that it is more than the required reference in terms of the speed oscillations. As opposed to the Neural Network 

controller, which completely reduced overshoot, obtained a smooth, steady response. The AI-based control 

system potentially predicts and compensates for speed changes faster compared to the PID counterpart. 

 

A third important observation was the discrepancy in settling times. Not a Number (NaN) in the result indicates 

that the PID controller was not able to reach a stable settling time, implying either instability or slow convergence 

in the given test conditions. However, the neural network controller had a clearly defined settling time of 0.8826 

seconds, indicating that it was able to regulate the speed over a very short period. The AI-based controller reduces 

the oscillation and gets a better response time which indicates that it adjusts dynamically to the change in external 

disturbance and reference speed. 

 

The same conclusion can be observed from Figure 2, which presents the integral absolute error (IAE) as well. 

The IAE value for the PID controller was found to be 151.6351, while the IAE value corresponding to the neural 

network controller was found to be 86.9570, which was substantially lower. Minimum IAE indicates a more 

accurate control response that brings the system output swiftly back to the target speed within the test period. 

This lead to better energy efficiency and mechanical stress on the motor which is required for real time application 

where accurate speed tracking is extremely important. 
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Figure 2. Comparison of motor speed and control voltage for PID and neural network controllers 

 

To conclude, the experimental evidence in the above figures confirms the hypothesis that neural network-based 

controller outperforms the traditional PID controller. The AI-driven system has a shorter settling time and 

improved tracking accuracy besides removing overshoot. These results highlight the possibilities of machine-

learning techniques in the context of motor control, which means that methods can be superior to traditional 

control systems in their versatility and stability. 

 

As detailed in Table 2, the experimental results demonstrate a performance comparison of the PID and neural 

network controllers in controlling the speed of the BLDC motor. In total, the dataset used to train both controllers 

consists of 149.950 samples, covering all possible operating conditions. The mean squared error (MSE) values 

for training and test sets suggest that the neural network was trained successfully without overfitting, because the 

test error is close to training error.  There was a notable reduction in overshoot. As indicated, the PID controller 

leads to 12.13% overshoot, compared to the neural network-based controller which results in a zero overshoot, 

thus it further minimize the resonant magnitude of the system response. This is especially useful for applications 

where accurate speed tracking without spikes is needed.  The settling time results also highlight the better 

performance of AI-based control system. Under the same system conditions and as you can see in the table above, 

the PID controller would not yield a proper settling time according to the NaN value, while the neural network 

controller stabilized the output in 0.8826 seconds. The reduction in settling time emphasizes the superiority of the 

findings of each neural for the adaptation of capability to speed references and external disturbances.  Similar 

results can be obtained using the IAE (Integral Absolute Error) metric which further confirms the superior 

accuracy of the neural network controller. The system based on AI surpassed a PID controller with an IAE of 

151.6351, its IAE was 86.9570. A smaller error means that the code has better tracking precision, leading to lesser 

deviations from the intended speed for the duration of the test.  The performance comparison as reported in Table 

2 confirms the suitability of neural network-based control for BLDC motors. The implementation of large gain 

overshoot elimination, settling time reduction, and accuracy enhancement positions the AI or machine learning 

drives as a solid alternative to conventional PID control methods, indicating significant potential for advancing 

high-performance motor control standards. 

 

Table 2. Performance comparison between PID and neural network controllers 

Performance Metric PID Controller Neural Network Controller 

Number of Training Samples 149,950 149,950 

Training MSE 0.488438 0.488438 

Test MSE 0.457191 0.457191 

Overshoot (%) 12.13% 0.00% 

Settling Time (s) Not Applicable (NA) 0.8826 

Integral Absolute Error (IAE) 151.6351 86.9570 

 

Figure 3 shows the absolute speed error for the BLDC motor driven by a classical PID controller and a neural 

network-based controller. Time is on x-axis in seconds, Absolute Error in Speed (radians/sec) is on y-axis. The 
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plot compares the control strategies based on their ability to bound speed deviations towards the reference 

trajectory. 

 

 
Figure 3. Comparison of absolute speed error between PID controller and Artificial Neural Network (ANN) 

controller 

 

The PID controller has a speed error sign in red, while the neural network-based approach has it in blue. It can 

be seen that PID controller experience more speed error than proposed method, especially around 0.6 s it has an 

extreme value around 250 rad/s deviation. In contrast, the neural network controller demonstrates significantly 

reduced error values, showing more stability and a quicker convergence to minimal error levels. 

 

Over the whole period of the simulation, the proportional-integral-derivative controller had high oscillations and 

also a slow sensitivity to the measured alterations in the commanded speed, but the neural-network controller 

managed to decrease those changes especially in the final part of the simulation. The fact that the neural-network-

based controller has the ability to reduce the absolute speed error also shows that it is more adaptable and better 

in dynamic performance when compared to the PID controller. These results support the benefits of implementing 

AI-based control methods to regulate the speed of brushless DC motors, particularly those with strict and fast 

requirements and reduced error. 

 

Figure 2 is a comparison of motor speed and controlvoltage responses of PID and neuralnetwork controllers. The 

upper subplot illustrates time dependent motor-speed response curve, whereby the dashed black line represents 

the reference speed curve. Both the PID and the neural-network methods have red and blue curves, respectively, 

as their response profiles. The bottom subplot demonstrates the way every controller controls the speed of the 

motors. Looking at the speed-response plot the overshoot is very high, it forms around a time around 0.6s upon 

passing through the reference point on the speed curve. In addition, the reference trajectory approach is delayed, 

and the PID controller is characterized by apparent high-frequency oscillations. On the other hand, the neural 

network controller shows a more stable response, with less overshoot and a faster settling time, following closely 

the reference speed. Additionally, the motor controller output is regulated more effectively as the neural network 

controller is enabled to dynamically adapt to speed changes. 

 

Similarly, the control voltage plot in the lower subplot shows how the controllers actuate. However, the rapid 

dynamics of the PID controller produces discontinuous and high-magnitude values of the voltage during reference 

speed changes. Such sudden fluctuations can cause system instability and cause an extra mechanical load to the 

motor. Conversely, the neural network controller uses an increasing control voltage in response to disturbances in 

a non-transient fashion. It is observed that the behaviour is showing the AI-based controller is learning a better 

control strategy, low amplitude voltage spikes and shows a more desirable control response. 

 

Overall, Figure 2 proves that neural network-based control is better than traditional PID control. This AI-based 

solution reduces the settling time and overshoot, needs less control, and consequently, is a more flexible and 

resilient solution in the regulation of the speed of BLDC motors. 

 

In order to increase the performance comparison performance, statistical validation was also added with ten 

repetitions of the simulation (n = 10) with different initial conditions and load profiles. The average of the results 

was obtained and standard deviations of the performance measures were determined. This methodology facilitated 
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that improvements noted in the overshoot, settling time and IAE could not be credited to random positive 

conditions. Future research would involve formal significance tests (e.g., t-tests or ANOVA), to strictly measure 

the improvements. 

 

Regarding the undefined settling time (NaN) of the PID controller, it is necessary to add that in a number of test 

cases, the system stabilized outside of a 2% tolerance threshold throughout the simulation period. This can be 

explained in two ways: oscillatory or unstable to step disturbances, which in turn makes the case of adaptive 

control. An extended simulation horizon or tuning value would give a specific value but it would not represent a 

realistic control response. 

 

The experiments were mostly focused on the piecewise constant reference signal, but as a measure of robustness, 

future experiments will include edge conditions, i.e. the sudden pulse of load torque and the high rate of change 

of reference velocity. Initial experiments of a sudden action disturbance of 0.05 nm at t = 0.5 s to stabilize showed 

that the neural-network controller stabilized faster and with a lower error compared to a PID controller, but are 

also to be discussed in a future extension. 

  

The effort of control in terms of the amplitude and variability of the driven voltage signals was measured. 

Although the PID controller observed high-magnitude oscillations and spontaneous voltage transients, the neural 

network controller presented smoother voltage traces, which is why acted as an indicator of smaller mechanical 

stress and better actuator efficiency. Quantitative metrics such as RMS voltage and peak-to-peak variation will be 

included in future revisions for completeness. Although the current model was trained offline, ongoing work 

explores integrating online learning mechanisms to allow the controller to adapt to unmodeled dynamics or 

hardware drift. This would be particularly valuable in long-term or safety-critical deployments. Real-time fine-

tuning using incremental updates or experience replay buffers is under investigation as a practical path forward. 

 

 

Conclusion  
 

The framework proposed in this study connects a feedforward neural network to conventional PID control for 

Brushless DC (BLDC) motors. Using PID-simulated motor response data, the neural network was able to discover 

the best controls for the robot in real time. The tests demonstrated that compared to the PID controller, the AI-

based controller improved the system by not overshooting (0% vs. 12.13%), reaching stability fast (settling time 

< 0.9 seconds) and decreasing IAE by over 40%. Improved response was seen along with a smoother power signal, 

less load placed on the system and better overall energy use. The results have confirmed that the neural controller 

improves accuracy and helps to maintain stability and continue operations over time. 

  

The controller’s performance shows it can deal well with changes to speed and load when the system is simulated. 

Even so, its current structure is not online based, so further training might be needed to address real-world 

challenges that are not in the training data. On top of that, using simulations confirms the system can remain 

stable, but more research is needed to formally assess this through Lyapunov-based methods or by calculating 

robustness margins. 

 

Although profiling and initial measurements suggest that this is possible on small platforms, the remaining work 

is to apply it in real-time on actual hardware. In addition, real-time hardware implementation is needed for use in 

electric vehicles, robotics and industrial automation. These sectors are required to be reliable and this 

demonstration under practical limitations and changing conditions. Overall, the framework created here improves 

the speed control of BLDC motors with data and computations. It supports the development of smart and flexible 

muscle control and makes possible further study of light neural architectures, adaptable behavior and stability in 

practical situations.  
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