

The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 2025

Volume 38, Pages 20-29

IConTES 2025: International Conference on Technology, Engineering and Science

Stock Price Forecasting Model Using Short Cross Association of Logical Fuzzy Relations in Fuzzy Time Series

Fitri Cahyani
Gadjah Mada University

Akhmad Sultoni
Gadjah Mada University

Chyntia Meininda Anjanni
Gadjah Mada University

Abstract: Forecasting stock prices plays a crucial role in financial engineering and data-driven decision-making systems in the industrial world. The accuracy of stock price predictions is essential for investors, financial analysts, and infrastructure project managers to mitigate investment risks and optimize business strategies. Fuzzy Time Series (FTS) has become one of the popular methods for time series forecasting due to its ability to handle uncertainty and nonlinear patterns that often arise in financial and engineering systems. However, conventional FTS methods still face challenges in forming Fuzzy Logical Relationships (FLR), which can affect the accuracy of prediction results. This study proposes the Short Cross-Association Fuzzy Logical Relationship (SCA-FLR) approach to improve forecasting accuracy by considering influential factors in FLR formation. This method is applied to stock price data of PT Wijaya Karya (Persero) Tbk (WIKA.JK), using the stock closing price as the main factor and the highest stock price as the influencing factor. The forecasting results show an Average Forecasting Error Rate (AFER) of 2.97%, indicating excellent prediction accuracy. The findings of this study contribute to the development of forecasting systems in financial engineering, risk management, and industrial decision-making optimization. The application of this method can be extended to various engineering fields involving time series analysis.

Keywords: Fuzzy time series, Short cross-association, Stock price forecasting, Financial engineering, Data-driven prediction system

Introduction

Forecasting concepts in mathematics are used to predict future conditions. This concept is applied in various aspects of human life, as it aids in preparing policies that need to be implemented in the future. One crucial aspect that requires forecasting is the financial sector. Stock prices in the construction sector fluctuate due to global economic factors, government policies, and market conditions (Indonesia Stock Exchange, 2023). This instability creates uncertainty for investors, necessitating accurate forecasting methods to understand stock price movement patterns.

Fuzzy Time Series (FTS) is a forecasting method introduced by Song and Chissom (1993) that is used to predict problems where actual data is represented in linguistic values (Husain et al., 2021). The fuzzy time series forecasting method has become widely used by researchers as an extension of traditional time series forecasting. Several fuzzy time series forecasting methods include frequency density-based partitioning (Jilani & Burney, 2008) and percentage change from year to year as the universe of discourse (Husain et al., 2021).

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the Conference

In this study, the fuzzy time series forecasting method is modified into a multi-factor fuzzy time series forecasting approach, which predicts data based on multiple variables, namely the main factor and the influence factor. In multi-factor fuzzy time series forecasting, the predicted data is the main factor. Previous studies on multi-factor fuzzy time series forecasting have been conducted by several researchers, including Tsai et al. (2019), who used this method to forecast stock indices. Dong et al., (2019) applied multi-factor fuzzy time series forecasting by constructing fuzzy logical relationships and cloud models to predict aircraft surface control failures. Furthermore, Li & Yu (2020) employed first-order multi-factor fuzzy time series forecasting using cross-association of fuzzy logical relationships in the formation stage.

In multi-factor fuzzy time series forecasting, the formation of Fuzzy Logical Relationships (FLR) requires further development. In the existing multi-factor fuzzy time series models, the FLR formation often results in multiple premises being matched, leading to cases where no FLR exists, making prediction values indeterminate. Therefore, constructing FLR based on the short cross-association of fuzzy logical relationships, as proposed by Li and Yu, can help address this issue. This study explores a modified multi-factor fuzzy time series forecasting method using the short cross-association approach in the formation stage of fuzzy logical relationships. Additionally, the defuzzification process follows the method used by Li et al., with the universe of discourse divided into ten intervals. The subinterval determination is based on frequency density-based partitioning. The membership function used in this study is the triangular membership function, while forecasting accuracy is evaluated using the Average Forecasting Error Rate (AFER).

This method is applied to forecast the closing stock price of PT Wijaya Karya (Persero) Tbk, which serves as the main factor, while the highest stock price is used as the influence factor (referred to as the second factor). PT Wijaya Karya (Persero) Tbk is one of Indonesia's largest construction companies, engaged in construction services, engineering, investment, energy, and property. The company has an extensive track record in national infrastructure development, including toll roads, bridges, and energy projects that contribute to Indonesia's economic growth.

Fuzzy Time Series

Definition 1 (Guler Dincer & Akkus, 2018)

Given $Y(t) (t = 1, 2, \dots)$, which is a subset of the set of all real numbers, it represents the universal set defined by the fuzzy set $f_i(t) (i = 1, 2, \dots)$. If $F(t)$ is the universe of discourse for $f_i(t) (i = 1, 2, \dots)$ then $F(t)$ is referred to as a fuzzy time series on $Y(t)$.

Definition 2 (Jilani & Burney, 2008)

If given $A_{j_1}, A_{j_2}, A_{j_3}, \dots, A_{j_m} \in F(t)$ and $A_i \in F(t-1)$ such that the following fuzzy logical relationships (FLR) are formed :

$$\begin{aligned} A_i &\rightarrow A_{j_1} \\ A_i &\rightarrow A_{j_2} \\ A_i &\rightarrow A_{j_3} \\ &\dots \\ A_i &\rightarrow A_{j_m} \end{aligned}$$

From these FLR, a fuzzy logical relationship group (FLRG) can be constructed as follows: $A_i \rightarrow A_{j_1}, A_{j_2}, A_{j_3}, \dots, A_{j_m}$

Multi-Factor Fuzzy Time Series

Definition 3 (Guler Dincer & Akkus, 2018)

Let $F(t)$ be a fuzzy time series where $t = 1, 2, 3, \dots, n$ and $F(t)$ is a fuzzy set. If $F(t)$ is obtained from $F(t-1), F(t-2), \dots, F(t-n)$, then fuzzy logical relationship (FLR) can be represented as

$$(F_1(t-n), \dots, F_1(t-2), F_1(t-1)) \rightarrow F(t)$$

Which is referred to as an n-th order one-factor fuzzy time series. Here, $F(t)$ is called the next state, while $F_1(t-n), \dots, F_1(t-2), F_1(t-1)$ are called the current state.

Definition 4 (Efendi et al., 2015)

Let $F(t)$ be a fuzzy time series where $(t = 1, 2, 3, \dots, n)$. The value of $F(t)$ is a fuzzy set. If $F_1(t)$ is obtained from $(F_1(t-n), F_2(t-n), F_3(t-n), \dots, F_k(t-n)), \dots, (F_1(t-1), F_2(t-1), F_3(t-1), \dots, F_k(t-1))$, then $F_1(t)$ can be represented as $(F_1(t-n), \dots, F_k(t-n)), \dots, (F_1(t-1), \dots, F_k(t-1)) \rightarrow F_1(t)$ which is called a multi-factor fuzzy time series of order-n.

Definition 5 (Li & Yu, 2020)

In 1-order multi-factor fuzzy time series forecasting, there are two defuzzification rules as follows:

Rule 1: If $N \neq 0$, meaning that there exists a fuzzy logical relationship (FLR) in the forecasting process, the forecasted value can be determined using equation (1).

$$x(a) = \begin{cases} \frac{0,5m(1) + Q(1)}{1,5}, & \text{if } a = 1 \\ \frac{0,5m(a-1) + Q(a) + 0,5m(a+1)}{2}, & \text{if } 2 \leq a \leq k \\ \frac{0,5m(a-1) + Q(a-1) + q}{1,5}, & \text{if } a = k+1 \end{cases} \quad (1)$$

$$x' = \frac{v_1 \times \bar{x}(l_1) + v_2 \times \bar{x}(l_2) + v_3 \times \bar{x}(l_3) + \dots + v_N \times \bar{x}(l_N)}{v_1 + v_2 + \dots + v_N} \quad (2)$$

where:

$m(a)$ represents the midpoint of the fuzzy interval u_a

$Q(a)$ denotes the lower bound of the fuzzy interval u_a

q is the distance between $m(a)$ and $Q(a)$ within the fuzzy interval u_a

$\bar{x}(l_r)$ ($r = 1, 2, 3, \dots, N$) refers to the forecasted values obtained using equation 1. v_r ($r = 1, 2, 3, \dots, N$) represents the number of next states corresponding to the same current state in the fuzzy logical relationship (FLR).

Thus, the forecasted value at time x_t^* can be computed using:

$$x_t^* = 0,5(\bar{x}(p) + x') \quad (3)$$

where $\bar{x}(p)$ represents the forecasted value at $a = k+1$

Rule 2: If $N = 0$, meaning that no fuzzy logical relationship (FLR) is present in the forecasting process, the forecasted value at the next time step is given by:

$$x_t^* = \bar{x}(p) \quad (4)$$

Definition 6 (Vamitha & Vanitha, 2022)

The forecasting error or deviation can be measured using AFER (Average Forecast Error Rate) (Vamitha & Vanitha, 2022):

$$AFER = \frac{\sum_{i=1}^n \left(\frac{|X_i - Y_i|}{X_i} \right)}{n} \times 100\% \quad (5)$$

where:

X_i represents the actual value at time i

Y_i represents the forecasted value at time i

n is the number of forecasting time periods involved.

The AFER value can be used as an indicator for determining the performance criteria of the forecasting method employed. The following are AFER values along with their corresponding forecasting performance criteria (Irawanto et al., 2019)

Table 1. Forecasting criteria based on AFER values

AFER Value	Forecasting Performance Criteria
<10%	Excellent
10% - 20%	Good
20% - 50%	Fair
>50%	Poor

Method

Determining the forecasted value using short cross-association of fuzzy logical relationships consists of three parts, as follows:

Part 1: Fuzzification Process for the Main Factor

The steps are as follows:

Step 1: Determine the universe of discourse U based on the historical data of the main factor.

Step 2: Partition the universe into ten intervals (Li et al., 2021) and further divide the intervals into subintervals using frequency density-based partitioning (Jilani & Burney, 2008).

Step 3: Define fuzzy sets based on the determined intervals and input the data according to the fuzzy sets.

Part 2: Fuzzification Process for the Second Factor

The steps are as follows:

Step 1: Determine the universe of discourse V based on the historical data of the second factor.

Step 2: Partition the universe into ten intervals (Li et al., 2021) and further divide the intervals into subintervals using frequency density-based partitioning (Jilani & Burney, 2008).

Step 3: Define fuzzy sets based on the determined intervals and input the data according to the fuzzy sets.

Part 3: Defuzzification Process for the Main Factor and Second Factor

The steps are as follows:

Step 1: Construct the Fuzzy Logical Relationship (FLR) and Fuzzy Logical Relationship Group (FLRG).

Step 2: Determine the forecasted value based on defuzzification rules and calculate the error using AFER.

Results and Discussion

The stock price of PT Wijaya Karya (Persero) Tbk exhibits unstable movements due to fluctuations in stock prices across different periods. In this study, the author utilizes closing price data and highest price data of PT Wijaya Karya (Persero) Tbk, comprising 41 data points collected from May 3, 2024, to February 7, 2025, with a weekly period. As shown in Figure 1, the data is non-stationary with respect to the mean due to the presence of a trend in the data pattern itself. Therefore, stationarization is necessary for further analysis.

Using the short cross-association of fuzzy logical relationships method in the fuzzy logical relationship (FLR) formation stage, the predicted closing stock price for the following week, with the closing stock price as the main factor, is 226,091 IDR. This forecast indicates an increase of 10.8% compared to the closing stock price in the last observed week.

Figure 1. Stock price of PT Wijaya Karya (Persero) Tbk

Short Cross Association Fuzzy Logical Relationship Simulation

The method for forecasting the closing stock price of PT Wijaya Karya (Persero) Tbk using short cross-association in the defuzzification stage of the closing stock price data of PT Wijaya Karya (Persero) Tbk will be explained below.

Part 1: Fuzzification Process for the Main Factor

[Step 1] : The universal set (U) is defined as equal to $U = [D_{min} - c_1, D_{max} + c_2]$ (Bose & Mali, 2018). c_1 and c_2 are corresponding positive numbers. We know that based on the maximum and minimum available data, to obtain integers, $c_1 = 6$ and $c_2 = 10$ are used so that the universal set is obtained $U = [460 - 80]$.

[Step 2] : The universe set U is initially partitioned into 10 equal-length intervals u_1, u_2, \dots, u_{10} . These intervals are then further subdivided using frequency density-based partitioning. The three intervals with the highest frequencies are divided into four, three, and two subintervals, respectively. Intervals with zero frequency are removed. As a result, a total of 17 final intervals is obtained.

[Step 3] : Defining real data into fuzzy sets $A_1, A_2, A_3, \dots, A_n$. Next, find the membership value using a triangular membership function as in (Stevenson & Porter, 2009).

Part 2: Fuzzification Process for the Second Factor

[Step 1] : The universal set (V) is defined as equal to $V = [D_{min} - c_1, D_{max} + c_2]$ (Bose & Mali, 2018). c_1 and c_2 are corresponding positive numbers. We know that based on the maximum and minimum available data, to obtain integers, $c_1 = 9$ and $c_2 = 10$ are used so that the universal set is obtained $U = [490 - 80]$.

[Step 2] : The universe set V is initially partitioned into 10 equal-length intervals v_1, v_2, \dots, v_{10} . These intervals are then further subdivided using frequency density-based partitioning. The three intervals with the highest frequencies are divided into four, three, and two subintervals, respectively. Intervals with zero frequency are removed. As a result, a total of 20 final intervals is obtained.

[Step 3] : Defining real data into fuzzy sets $B_1, B_2, B_3, \dots, B_n$. This step is called fuzzification. Next, find the membership value using a triangular membership function as in (Stevenson & Porter, 2009)

Table 2. The result of part 1 and part 2

Week	Actual data of main factor	Fuzzification	Actual data of second factor	Fuzzification
1	158	A4	200	B6
2	145	A3	158	B5
3	133	A3	145	B4
4	113	A2	135	B4
5	112	A2	132	B3
6	111	A2	118	B2
7	88	A1	113	B2
8	86	A1	89	B1
9	86	A1	90	B1
10	141	A3	160	B5
11	236	A8	238	B9
12	226	A7	250	B10
13	204	A5	236	B9
14	208	A5	226	B8
15	212	A5	220	B7
16	338	A12	380	B16
17	332	A12	364	B15
18	390	A14	390	B17
19	450	A17	480	B20
20	402	A15	474	B20
21	388	A14	410	B19
22	384	A13	406	B18
23	370	A13	394	B17
24	398	A15	426	B19
25	412	A16	424	B19
26	372	A13	420	B19
27	386	A14	404	B18
28	320	A11	390	B17
29	290	A10	328	B14
30	314	A11	358	B15
31	294	A10	328	B14
32	296	A10	312	B13
33	292	A10	322	B13
34	250	A9	298	B13
35	246	A9	258	B11
36	248	A9	268	B12
37	224	A7	260	B11
38	242	A8	268	B12
39	234	A8	256	B11
40	220	A6	240	B9
41	204	A5	228	B8

Part 3: Defuzzification Process for the Main Factor and Second Factor

[Step 1]: Construct the Fuzzy Logical Relationship (FLR) and Fuzzy Logical Relationship Group (FLRG). According to the obtained Fuzzy Logical Relationship (FLR), Fuzzy Logical Relationship Groups (FLRG) can also be formed according to the concept of short cross-association in fuzzy logical relationships. That is, current states and next states that are the same in the previously established FLR can be grouped together. The result of the FLR and FLRG is shown in Table 3.

[Step 2] : Due to the fact that there exists a Fuzzy Logical Relationship (FLR) ($N \neq 0$), the forecasted data values can be determined based on Rule 1 of defuzzification in multi-factor fuzzy time series forecasting using Equation (1). The forecasted data values for future time periods can be calculated using Equation (3), and the error can be computed using Equation (5). As a result, the defuzzification values for each fuzzy set are obtained, as presented in Table 4.

Table 3. FLR and FLRG

FLR and FLRG			
FLR	B6 → A3	B9 → A7	B19 → A13
	B5 → A3	B10 → A5	B18 → A13
	B4 → A2	B9 → A5	B17 → A15
	B4 → A2	B8 → A5	B19 → A16
	B3 → A2	B7 → A12	B19 → A13
	B2 → A1	B16 → A12	B19 → A14
	B2 → A1	B15 → A14	B18 → A11
	B1 → A1	B17 → A17	B17 → A10
	B1 → A3	B20 → A15	B14 → A11
	B5 → A8	B20 → A14	B15 → A10
FLRG	B1 → A1 (1)	B9 → A5 (1)	B13 → A10 (1)
	B1 → A3 (1)	B9 → A7 (1)	B14 → A10 (1)
	B2 → A1 (2)	B9 → A5 (1)	B14 → A11 (1)
	B3 → A2 (1)	B10 → A5 (1)	B15 → A10 (1)
	B4 → A2 (2)	B11 → A6 (1)	B15 → A14 (1)
	B5 → A3 (1)	B11 → A8 (1)	B16 → A12 (1)
	B5 → A8 (1)	B11 → A9 (1)	B17 → A10 (1)
	B6 → A3 (1)	B12 → A7 (1)	B17 → A17 (1)
	B7 → A12 (1)	B12 → A8 (1)	B17 → A15 (1)
	B8 → A5 (1)	B13 → A9 (2)	B20 → A15 (1)

Table 4. Forecasting result and AFER value

Week	Actual data (X_i)	Forecasting data (Y_i)	$ X_i - Y_i /X_i$
1	158	164.3125	0.03995253165
2	145	130.6666667	0.09885057471
3	133	130.6666667	0.01754385965
4	113	108.5	0.03982300885
5	112	108.5	0.03125
6	111	108.5	0.02252252252
7	88	82.11111111	0.06691919192
8	86	82.11111111	0.04521963824
9	86	82.11111111	0.04521963824
10	141	130.6666667	0.07328605201
11	236	235.5625	0.001853813559
12	226	225.2708333	0.00322640118
13	204	199.9375	0.01991421569
14	208	199.9375	0.03876201923
15	212	199.9375	0.05689858491
16	338	334.125	0.01146449704
17	332	334.125	0.00640060241
18	390	382.8125	0.01842948718
19	450	417.25	0.07277777778
20	402	395.875	0.01523631841
21	388	382.8125	0.01336984536
22	384	354.3125	0.07731119792
23	370	354.3125	0.04239864865
24	398	395.875	0.00533919598
25	412	411.3125	0.00166868932
26	372	354.3125	0.04754704301
27	386	382.8125	0.008257772021

28	320	312.75	0.02265625
29	290	286.625	0.01163793103
30	314	312.75	0.00398089172
31	294	286.625	0.02508503401
32	296	286.625	0.0316722973
33	292	286.625	0.01840753425
34	250	256.5416667	0.02616666667
35	246	256.5416667	0.04285230352
36	248	256.5416667	0.0344422043
37	224	225.2708333	0.005673363095
38	242	235.5625	0.02660123967
39	234	235.5625	0.006677350427
40	220	215.375	0.02102272727
41	204	199.9375	0.01991421569
AFER			2.97130033%

Based on the results presented in Table 4, the comparison can be visualized in the following graph.

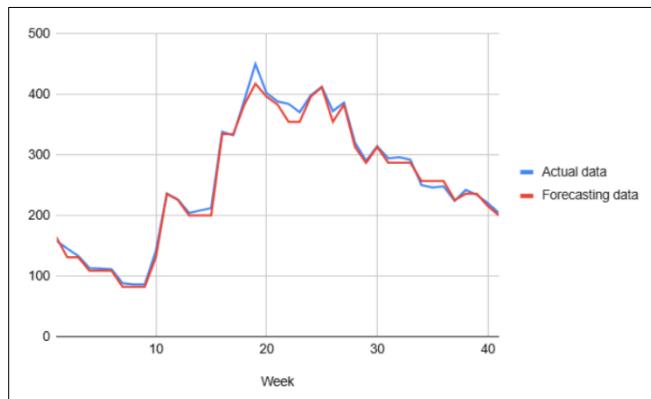


Figure 2. Graph of the forecasting and actual data

The graph above illustrates a comparison between two datasets: the blue line represents the actual data, while the orange line represents the forecasted data. By applying the short cross-association fuzzy logical relationship method and its defuzzification process, the forecasted value for the future is obtained as 226.091 IDR. Furthermore, the accuracy level, based on the Absolute Forecast Error Rate (AFER), results in an error of 2.97%, which is less than 10%. This indicates that the short cross-association fuzzy logical relationship method demonstrates a highly effective criterion for modeling the stock closing price forecast of PT Wijaya Karya (Persero) Tbk Indonesia.

Conclusion

The application of the multi-factor fuzzy time series (FTS) forecasting method can effectively predict the stock closing prices of construction companies, particularly PT Wijaya Karya (Persero) Tbk. This method is utilized because forecasting a dataset is inherently influenced by various supporting factors. In this case, the data used includes the highest stock price as the influence factor (second factor) in addition to the closing stock price, which serves as the main factor for the forecasted data.

The short cross-association method applied during the defuzzification stage in the analysis helps optimize the determination of forecast values. Specifically, this method is employed to predict the closing stock price of PT Wijaya Karya (Persero) Tbk based on time series data. The forecasting results obtained from this method predict the next week's stock closing price to be 226.091 IDR, with an accuracy level measured using the Average

Forecasting Error Rate (AFER) of 2.97%. Since the AFER value is less than 10%, based on AFER criteria, this forecasting method demonstrates a highly accurate performance.

However, when using the conventional multi-factor fuzzy time series method, the Fuzzy Logical Relationships (FLR) premises become excessively large, particularly in high-order multi-factor fuzzy time series models. In such cases, no available FLRs can be identified, as the number of premises to be matched becomes too extensive, rendering the prediction values indeterminable. Therefore, the Short Cross-Association Fuzzy Logical Relationship (SCAFLR) method is employed to increase the likelihood of identifying available FLRs in forecasting. The presence of short cross-association influences implies that the forecast is affected by influence factors. Hence, when constructing FLRs in forecasting models, it is essential to consider the SCAFLR approach.

Recommendations

For future research, it is recommended to develop a more optimal short association method by modifying the interval and its fuzzification components. Furthermore, a comparative analysis between the short association method used in this study and other methods could be conducted to evaluate the accuracy level.

Scientific Ethics Declaration

* The authors declare that the scientific ethical and legal responsibility of this article published in EPSTEM journal belongs to the authors.

Conflict of Interest

* The authors have no conflicts of interest in any area.

Funding

* This study was funded by the Indonesia Endowment Fund for Education (LPDP) under the Ministry of Finance of the Republic of Indonesia

Acknowledgements or Notes

* This article was presented as an oral presentation at the International Conference on Technology, Engineering and Science (www.icontes.net) held in Antalya/Türkiye on November 12-15, 2025.

* The author would like to express sincere gratitude to the Indonesia Endowment Fund for Education (LPDP) under the Ministry of Finance of the Republic of Indonesia for providing financial support for this research.

*The author also appreciates the guidance and insightful discussions from the academic supervisor, as well as the encouragement and support from colleagues and family throughout this study

References

Bose, M., & Mali, K. (2018). A novel data partitioning and rule selection technique for modeling high-order fuzzy time series. *Applied Soft Computing Journal*, 63, 87-96.

Dong, L., Wang, P., & Yan, F. (2019). Damage forecasting based on multi-factor fuzzy time series and cloud model. *Journal of Intelligent Manufacturing*, 30(2), 521-538.

Efendi, R., Ismail, Z., & Deris, M. M. (2015). A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand. *Applied Soft Computing Journal*, 28, 422-430.

Guler Dincer, N., & Akkus, O. (2018). A new fuzzy time series model based on robust clustering for forecasting of air pollution. *Ecological Informatics*, 43, 157–164.

Husain, A. A., Surarso, B., Farikhin, & Irawanto, B. (2021). Forecasting model of Covid-19 cases using fuzzy time series using percentage change. *Journal of Physics: Conference Series*, 1943(1).

Indonesia Stock Exchange. (2023, November 24). *Opportunities and Challenges for the Indonesian Capital Market 2024*. Retrieved from <https://Idx.Co.Id/Id/Berita/Artikel?Id=37636060-29aa-Ee11-B808-005056aec3a4>.

Irawanto, B., Ningrum, R. W., Wulandari, R., Surarso, B., & Farikhin. (2019). Frequency density-based partitioning (FDP) for forecasting IHSG. *Journal of Physics: Conference Series*, 1321(2).

Jilani, T. A., & Burney, S. M. A. (2008). A refined fuzzy time series model for stock market forecasting. *Physica A: Statistical Mechanics and Its Applications*, 387(12), 2857-2862.

Li, F., & Yu, F. (2020). Multi-factor one-order cross-association fuzzy logical relationships based forecasting models of time series. *Information Sciences*, 508, 309–328.

Li, F., Yu, F., Wang, X., Yang, X., Liu, S., & Liu, Y. (2021). Integrate new cross association fuzzy logical relationships to multi-factor high-order forecasting model of time series. *International Journal of Machine Learning and Cybernetics*, 12(8), 2297–2315.

Stevenson, M., & Porter, J. E. (n.d.). *Fuzzy time series forecasting using percentage change as the universe of discourse*.

Tsai, M.-C., Cheng, C.-H., & Tsai, M.-I. (2019). A multifactor fuzzy time-series fitting model for forecasting the stock index. *Symmetry*, 11(12).

Vamitha, V., & Vanitha, V. (2022). Intuitionistic fuzzy time series forecasting model: Aesthetic approach on temperature prediction. *AIP Conference Proceedings*, 2473.

Author(s) Information

Fitri Cahyani

Gadjah Mada University
Yogyakarta, Indonesia
Contact e-mail: fitricahyani192@gmail.com

Akhmad Sultoni

Gadjah Mada University
Yogyakarta, Indonesia

Chyntia Meininda Anjanni

Gadjah Mada University
Yogyakarta, Indonesia

To cite this article:

Cahyani, F., Sultoni, A., & Anjanni, C. M. (2025). Stock price forecasting model using short cross association of logical fuzzy relations in fuzzy time series. *The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM)*, 38, 20-29.