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Abstract: This study investigates the effectiveness of swarm intelligence–based optimization methods for 

improving energy efficiency and minimizing mission duration in multi–unmanned aerial vehicle (UAV) swarms. 

The problem is formulated as a route-sequencing optimization task in which the visiting order of target points is 

optimized to reduce total energy consumption while ensuring complete mission feasibility. A classical nearest-

neighbor assignment serves as the baseline and is compared against two evolutionary approaches: the single-

objective Particle Swarm Optimization (PSO) and the multi-objective Non-dominated Sorting Genetic Algorithm 

II (NSGA-II). A Python-based simulation environment was developed to evaluate algorithmic performance under 

varying payload and wind conditions, including Zero, Constant, and Ornstein–Uhlenbeck (OU) stochastic wind 

models. Experimental results indicate that route sequencing optimization substantially decreases overall energy 

demand. NSGA-II, in particular, successfully constructs a well-defined Pareto front for the energy–time 

objectives, offering mission planners a flexible spectrum of trade-off solutions. In the OU + 150 g scenario, the 

Knee-point solution (E = 26.8 Wh, T = 93 s) achieved approximately 13% lower energy consumption at the cost 

of only a 7% increase in mission duration relative to the baseline. Across all methods, mission completion 

remained at 100%, and coverage ratios improved notably. These findings confirm that swarm intelligence–based 

optimization techniques provide robust and efficient tools for balancing energy consumption and operational time 

in UAV swarm mission planning. 

 

Keywords: UAV swarm, Swarm intelligence algorithms, Metaheuristic optimization, Mission planning, Energy 

efficiency 

 

 

Introduction 

 

Recent advancements in unmanned aerial vehicle (UAV) technologies have facilitated their widespread adoption 

across military, industrial, and civilian applications. Cooperative UAV systems operating under swarm 

intelligence principles offer significant advantages in scalability, robustness, and mission adaptability for tasks 

such as wide-area surveillance, disaster response, logistics, and environmental monitoring (Coşar, 2023a). Despite 

these benefits, one of the most persistent challenges remains energy efficiency. Limited battery capacity directly 

constrains flight endurance and mission feasibility, highlighting the need for advanced energy management and 

mission planning strategies (Abeywickrama et al., 2018; Michel et al., 2022). 

 

Swarm intelligence, inspired by the collective and self-organized behaviors of natural organisms such as bird 

flocks, ant colonies, and bee swarms (Beni & Wang, 1993; Lones, 2014), has been effectively adapted to multi-

agent robotic systems. Algorithms including Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), and Artificial Bee Colony (ABC) have demonstrated robust convergence and flexibility in solving route 

planning, task allocation, and coordination problems under environmental uncertainty (Coşar, 2023b). These bio-

inspired approaches provide decentralized, scalable, and adaptive mechanisms that make them well-suited to the 

complexities of UAV swarm operations. 

 

Although artificial intelligence (AI) and machine learning (ML) have enabled substantial progress in autonomous 

control and navigation (Na et al., 2023; Lin et al., 2024), several limitations remain. Energy constraints, wind-
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induced perturbations, and dynamic payload variations continue to influence flight stability and mission duration 

(Guo et al., 2023; Cabuk et al., 2024). Different control architectures-centralized, decentralized, or distributed-

introduce trade-offs between communication overhead, scalability, and computational load (Alqudsi & Makaraci, 

2025). Meanwhile, recent studies have proposed physics-based aerodynamic models (Opazo et al., 2023; Jacewicz 

et al., 2023), yet the integration of such models into multi-objective optimization frameworks remains 

comparatively underexplored. Parallel research directions employing deep reinforcement learning have also 

shown promise in enhancing swarm-level decision-making and energy-aware coordination (Güven & Yanmaz, 

2024; Arranz et al., 2023). 

 

Despite advancements in heuristic and metaheuristic optimization for collision avoidance, coverage planning, and 

path generation, many studies treat energy consumption and mission duration as independent objectives or rely 

on simplified power models that neglect aerodynamic drag, turbulence, and payload-dependent variations (Di 

Franco & Buttazzo, 2016; Gamil et al., 2023). To address these gaps, the present study proposes an integrated 

multi-objective optimization framework that incorporates dynamic environmental factors—specifically wind and 

payload variability—while jointly optimizing energy consumption and task completion time using PSO and Non-

dominated Sorting Genetic Algorithm II (NSGA-II). The proposed Python-based simulation environment enables 

reproducible evaluations of UAV swarm performance under realistic mission constraints and supports the 

development of adaptive energy–time trade-off strategies. 

 

 

Literature Review  
 

UAV swarm research has rapidly evolved, particularly in mission planning, task allocation, and energy-efficiency 

optimization (Guo et al., 2023; Cabuk et al., 2024). Swarm robotics, rooted in the collective intelligence principles 

observed in natural systems, promotes decentralized coordination through local sensing and inter-agent 

communication (Beni, 1989; Beni & Wang, 1993). With the integration of AI-driven perception and machine 

learning–based decision models, swarm UAVs can exhibit adaptive, cooperative, and resilient behaviors under 

diverse mission conditions (Coşar, 2023a; Na et al., 2023; Lin et al., 2024). 

 

Energy consumption remains a critical performance determinant for UAV swarms. High-fidelity models such as 

the 6-DOF quadrotor framework by Jacewicz et al. (2023)-which jointly considers aerodynamics, propulsion, and 

battery discharge-have demonstrated the importance of comprehensive physical modeling. Similarly, Michel et 

al. (2022) provided a system-level energy framework capable of simulating transient power variations. These 

models surpass simplified parametric formulations like v2+1/v+Cpayload, commonly used in UAV literature (Gong 

et al., 2022). Abeywickrama et al. (2018) further emphasized the necessity for empirical calibration and real-world 

validation in battery-aware energy modeling. 

 

Complementing these findings, aerodynamic studies by Opazo et al. (2023) and Morbidi et al. (2016) highlighted 

the intricate coupling between induced and profile drag. Opazo et al. (2023) examined power consumption in 

coaxial rotor configurations under controlled hover conditions, while Morbidi et al. (2016) presented an optimal 

control framework combining rotor-induced power with aerodynamic drag to generate energy-efficient 

trajectories. These results underscore that energy-aware trajectory design must incorporate full vehicle dynamics 

rather than rely solely on kinematic simplifications. 

 

PSO-based methods have been widely applied in UAV swarm optimization, particularly for improving energy 

efficiency and route sequencing (Coşar, 2023b). Enhanced variants such as KPSO, adaptive PSO, and hybrid 

PSO-ABC have demonstrated superior convergence and smoother trajectories under environmental disturbances 

(Rosas-Carrillo et al., 2025; Baidya et al., 2024; Tang et al., 2024). Na et al. (2023) showed that PSO with adaptive 

inertia weights improves robustness in turbulent wind and variable payload settings. These findings emphasize 

PSO’s strengths for single-objective optimization in swarm coordination. 

 

For multi-objective optimization, NSGA-II remains the dominant approach due to its efficiency in maintaining 

Pareto diversity and achieving fast convergence (Duan et al., 2024; Hohmann et al., 2021). Xue et al. (2024) 

applied NSGA-II to complex 3D terrain navigation, balancing stability, energy, and path length. Zhang (2024) 

demonstrated its cross-domain applicability in multi-agent energy-aware design systems. In UAV swarm 

scenarios, NSGA-II naturally supports flexible trade-offs between energy minimization and mission duration, 

offering operational adaptability for dynamic environments. 

 

Task allocation methods have also progressed from centralized Hungarian and auction-based frameworks to 

scalable and distributed systems. Galati et al. (2023) proposed an auction-based motion-planning model enabling 
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dynamic re-planning under human supervision. Wang et al. (2024) developed a two-stage greedy auction system 

tailored for large-scale swarms. Chen et al. (2024) introduced a distributed benefit-optimization framework to 

enhance responsiveness, while Jiang et al. (2025) combined cluster analysis with differential PSO to improve 

convergence in large multi-UAV missions. 

 

Energy-efficient coverage path planning (CPP) represents another critical research area. Di Franco and Buttazzo 

(2016) introduced one of the earliest energy-aware CPP models integrating empirical power consumption into 

geometric optimization. More recently, Gamil et al. (2023) incorporated wind effects and battery constraints, 

while Güven and Yanmaz (2024) demonstrated that realistic environmental modeling significantly improves 

coverage stability and energy management across UAV teams. 

 

Despite this progress, the literature still lacks an integrated framework that simultaneously incorporates 

aerodynamic realism, dynamic environmental variability, and multi-objective optimization. Addressing this gap, 

the present study introduces a reproducible simulation environment combining physics-based energy modeling, 

PSO-based heuristic optimization, and NSGA-II-driven Pareto analysis. By systematically evaluating the energy–

time balance across wind and payload conditions, the framework provides a comprehensive foundation for future 

UAV swarm optimization research. 

 

 

Method 
 
This study utilizes a hybrid methodology integrating a single-objective heuristic approach (PSO) and a multi-

objective evolutionary algorithm (NSGA-II) to evaluate how route sequencing influences the energy consumption 

of UAV swarms. PSO ensures rapid convergence through a normalized scalarized fitness function, whereas 

NSGA-II identifies Pareto-optimal solutions that balance total energy consumption and mission duration. This 

dual-framework design aligns with findings by Hohmann et al. (2021) and Zhang (2024), demonstrating that 

combining heuristic and evolutionary strategies improves convergence reliability and decision-space diversity. 

All evaluations were conducted within a two-dimensional Python-based simulation environment incorporating 

UAV motion dynamics and an empirically validated energy model (Abeywickrama et al., 2018; Jacewicz et al., 

2023). Key simulation parameters—including maximum velocity, hover power, and payload mass-were derived 

from experimental datasets to ensure realistic aerodynamic representation (Opazo et al., 2023; Michel et al., 2022). 

 

Three wind conditions were modeled: zero wind, constant wind, and Ornstein–Uhlenbeck (OU) stochastic 

turbulence (Gong et al., 2022). The energy consumption model combines hover power, parasitic drag, induced 

power, and payload-related lift demand, consistent with analytical principles presented in Morbidi et al. (2016). 

To ensure statistical reliability, each scenario was simulated using five independent random seeds, with results 

reported as Median (IQR). 

 

The optimization algorithms were configured based on best practices reported in recent UAV optimization 

literature (Na et al., 2023; Tang et al., 2024). PSO used 16 particles over 20 iterations with c₁ = c₂ = 1.4, while 

NSGA-II employed a population of 40 over 30 generations, using simulated binary crossover (SBX) and 

polynomial mutation (Xue et al., 2024). From the resulting Pareto front, three representative solutions were 

extracted: minimum energy, minimum time, and the knee point. To limit computational cost while focusing on 

the most realistic and challenging operating condition, NSGA-II was applied only to the OU + 150 g scenario. 

For all remaining wind–payload combinations, comparisons were restricted to the Baseline and PSO approaches. 

 

 

Simulation Setup 

 

The simulation is executed within a 300×300 m mission area using n=8 UAVs and 20 Points of Interest (POIs). 

The time step is set to 𝛥t=0.5s, with a maximum mission duration of T=600s. Each UAV generates a desired 

velocity vector toward its assigned target, and a wind perturbation term is incorporated into the motion model. 

The UAV’s ground velocity vi is calculated as Formula 1. 

 

𝑣𝑖(𝑡) = 𝐿𝑖𝑚𝑖𝑡𝑆𝑝𝑒𝑒𝑑(𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑡) + 𝛾 𝑤(𝑡), 𝑣𝑚𝑎𝑥) (1) 

 

where γ=0.2 and vmax=7 m/s. The coefficient γ presents an empirical scaling factor that models the corrective 

effort required to counteract wind drift. The UAV’s position is then updated at each time step by integrating the 

velocity as Formula 2. 
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𝑝𝑖(𝑡 + 𝛥𝑡) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡) . 𝛥𝑡 (2) 

 

 

This simplified kinematic model is widely adopted in swarm simulations to reduce control complexity and 

enhance computational efficiency (Gong et al., 2022). A collision-avoidance term is activated whenever the inter-

UAV distance falls below the safe threshold dsafe=5m and boundary reflections prevent UAVs from exiting the 

mission area. The simulation integrates verified energy models drawn from empirical studies (Abeywickrama et 

al., 2018; Jacewicz et al., 2023) and aerodynamic validation frameworks (Michel et al., 2022; Opazo et al., 2023). 

 

 

Wind Modeling 

 

To represent realistic turbulence, the OU process was applied, consistent with aerodynamic modeling studies 

(Gong et al., 2022). Three wind models were employed; 

 

▪ Zero Wind: (0,0) m/s 

▪ Constant Wind: (0.8, −0.4) m/s 

▪ OU Stochastic Wind, defined by Formula 3: 

 

𝑥𝑡+1 = 𝑥𝑡 + 𝜃(𝜇 − 𝑥𝑡)𝛥𝑡 + 𝜎√𝛥𝑡  𝜀𝑡  (3) 

 

where typical values are θ=0.4, μ=(0.5−0.2), σ=0.2. The OU process generates a more realistic, continuously 

fluctuating disturbance than the constant wind model. 

 

 

Energy Model 

 

The instantaneous power consumption P(v) (in Watts) of a multi-rotor UAV is computed as Formula 4: 

 

𝑃(𝑣) = 𝑃ℎ𝑜𝑣𝑒𝑟 + 𝑘1. 𝑣2 +
𝑘2

max (𝑣, 0.1)
+ 𝑘𝑙𝑜𝑎𝑑(𝑚𝑏𝑎𝑠𝑒 + 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑) (4) 

 

where, P(v), total instantaneous power at velocity 𝑣. Phover, base hovering power required to sustain flight and 

operate onboard electronics (independent of wind/load). 𝑘1𝑣2, ower loss due to aerodynamic drag and parasitic 

resistance. 
𝑘2

𝑚𝑎𝑥 (𝑣,   0.1)
  induced power losses at low speeds (vortex and rotor drag). 𝑘𝑙𝑜𝑎𝑑 , load-dependent 

coefficient accounting for increased lift demand. 𝑚𝑏𝑎𝑠𝑒 UAV base mass. 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 additional payload mass during 

flight. 

 

The following parameter values were used: Phover=95 W, k1=0.6, k2=1.2, kload=5.5k and mbase=1.25 kg and payload 

scenarios of 0/150/300g. The total mission energy is then computed as Formula 5. 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑃𝑖(𝑡)𝛥𝑡/3600

𝑡𝑖

 (5) 

 

The wind indirectly affects Etotal by modifying the UAV’s motion dynamics, which alter instantaneous velocity 

and thus power demand. For instance, in the constant-wind scenario (w= (0.8, −0.4) m/s), the external wind vector 

is superimposed onto the UAV’s desired velocity, resulting in additional energy expenditure. Each scenario aims 

for all POIs to be visited by at least one UAV. A nearest-neighbor assignment followed by greedy sequencing is 

used for baseline initialization. Simulations terminate when either all POIs are visited or any UAV exhausts its 

battery capacity. The Table 1 performance metrics are recorded: 

 

Table 1. Task assignment and performance metrics 

Metric Definition 

Total Energy Consumption Total energy used during the mission (in watt-hours, Wh). 

Makespan Total mission duration until completion (in seconds, s). 

Coverage Percentage of area visited (based on 20 m grid resolution). 

Visit Rate Percentage of POIs successfully visited by UAVs. 

Dead UAV Rate Percentage of UAVs that depleted their battery before completing the mission. 
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Dataset 

 

The dataset used in this study was synthetically generated using a Python-based simulator specifically developed 

for UAV swarm energy efficiency and coverage optimization. A controlled simulation environment was preferred 

over field experiments due to the inherent difficulty of controlling environmental variables such as wind and 

battery variation. This approach enables systematic, repeatable, and parametric evaluation of algorithmic 

performance across different environmental conditions. The simulator integrates validated aerodynamic and 

power consumption models from the literature, offering a reliable experimental framework to analyze the 

sensitivity of optimization algorithms to the energy–time trade-off. Consequently, the effects of payload and wind 

variations on UAV energy efficiency can be observed independently from external noise. 

 

 

Algorithms 

 

PSO 

 

PSO was selected for its high convergence speed and robustness in single-objective optimization problems. The 

Random Keys PSO approach was adopted to handle the route sequencing task. The objective function is 

formulated as a normalized weighted sum in Formula 6: 

 

min𝐹𝑃𝑆𝑂 = 𝐸𝑛 + 𝜆𝑇𝑛  (6) 

 

where  𝐸𝑛 =
𝐸𝑡𝑜𝑡𝑎𝑙

𝐸𝑟𝑒𝑓
  and  𝑇𝑛 =

𝑇𝑚𝑠

𝑇𝑟𝑒𝑓
, with Eref =50Wh, Tref =150 s, and weighting factor λ=0.3. This ensures that the 

objectives are balanced despite differing units. PSO parameters: 16 particles, 20 iterations, w=0.72, c1=c2=1.4. 

 

 

NSGA-II 

 

NSGA-II was employed for multi-objective optimization to identify Pareto-optimal trade-offs between total 

energy consumption and mission duration, as expressed in Equation 7: 

 

min𝐹𝑁𝑆𝐺𝐴−𝐼𝐼 = (𝐸𝑡𝑜𝑡𝑎𝑙 , 𝑇𝑚𝑠) (7) 

 

The core mechanisms of NSGA-II-including non-dominated sorting, crowding distance preservation, SBX, and 

polynomial mutation-ensure both convergence and population diversity throughout the optimization process. 

Typical parameters include a population of 40 and 30 generations. From the resulting Pareto front, three 

representative solutions are selected: 

 

▪ Min-E: Lowest energy consumption. 

▪ Min-T: Shortest mission time. 

▪ Knee Point: The solution closest to the ideal point (0, 0) in normalized energy–time space, 

representing the best trade-off. 

 

This framework enables PSO to produce a single best solution while NSGA-II offers a flexible spectrum of 

energy–time balanced strategies adaptable to mission priorities. To limit computational cost and focus on the most 

realistic and challenging mission condition, NSGA-II was executed only for the OU_P150 configuration. For all 

other wind–payload scenarios, comparisons were restricted to the Baseline and PSO methods. 

 

 

Experimental Procedure 

 

Each wind–payload scenario was executed over five independent random seeds to ensure statistical reliability, 

with outcomes reported as Median (IQR). The Baseline method (nearest-neighbor assignment followed by greedy 

sequencing) served as the primary benchmark. For the representative OU + 150 g configuration, comprehensive 

visual diagnostics—including energy–time trajectories, spatial coverage maps, and PSO/NSGA-II convergence 

curves—were generated. Baseline and PSO solutions were projected onto the NSGA-II Pareto front to enable 

direct comparative assessment. All algorithmic and simulation parameters adhered to established best practices in 

UAV energy-optimization literature, ensuring methodological rigor and reproducibility. 

 



International Conference on Technology, Engineering and Science (IConTES), November 12-15, 2025, Antalya/Türkiye 

249 

 

Table 2. Simulation and optimization parameters 
Category Parameter Symbol/Variable Value Unit Description 

Mission Area Area width × height area_w, area_h 300 × 300 m Dimensions of the simulation area  
Number of targets n_targets 20 – Number of Points of Interest (POIs) to be 

visited  
Maximum simulation time T_max 600 s Total mission duration limit  
Time step dt 0.5 s Simulation update interval 

UAV Properties Number of UAVs n_drones 8 – Number of UAVs in the swarm  
Maximum speed v_max 7.0 m/s Speed limit for UAV motion  
Safe distance safe_dist 5.0 m Minimum separation for collision avoidance  
Target tolerance arrival_tol 3.5 m Distance threshold for successful target visit 

Energy Model Battery capacity battery_Wh 40.0 Wh Initial battery capacity  
Hover power hover_power 95.0 W Power consumption during hovering  
Base mass m_base 1.25 kg Empty UAV weight  
Payload (variant) m_payload 0 / 150 / 300 g Additional load depending on scenario  
Aerodynamic coefficient 1 k1 0.6 – Drag-related power coefficient  
Aerodynamic coefficient 2 k2 1.2 – Induced power coefficient  
Load coefficient k_load 5.5 – Power increase factor due to mass 

Environmental 

Effects 

Wind model wind_type Const / OU / 

Zero 

– Constant, OU, or calm conditions 

 
Wind vector wind_u, wind_v 0.8, −0.4 m/s Constant wind components (x and y)  
OU process mean μ 0.0 – Mean wind component  
OU process variance σ 0.2 – Randomness (stochasticity) parameter 

Optimization 

(PSO) 

Number of particles n_particles 16 – Population size 

 
Iterations iters 20 – Optimization loop count  
Inertia weight w 0.72 – Tendency to preserve velocity  
Cognitive coefficient c1 1.4 – Tendency toward personal best  
Social coefficient c2 1.4 – Tendency toward global best  
Weighting factor λ 0.3 – Balances energy–time trade-off 

Optimization 

(NSGA-II) 

Population size pop_size 40 – Number of individuals per generation 

 
Number of generations gens 30 – Evolutionary iteration count  
Crossover rate crossover_rate 0.9 – Probability of genetic information exchange  
Mutation rate mutation_rate 0.2 – Probability of diversity preservation 

 

Table 2 summarizes the physical, environmental, and algorithmic parameters employed throughout the simulation 

and optimization pipeline. All values were implemented as fixed defaults within the Python-based framework to 

ensure consistency across experimental runs. These parameter selections follow widely accepted conventions in 

UAV energy modeling and optimization research, supporting both reproducibility and methodological 

transparency. 

 

 

Results 
 

This section presents the performance of the optimization algorithms (PSO and NSGA-II) under different wind 

and payload configurations. The analysis focuses on total energy consumption Etotal, mission completion time Tms, 

coverage ratio, visit rate, and dead UAV ratio, which together characterize the energy–time efficiency and 

reliability of the swarm. Single-run trajectories and energy–time profiles are provided for visual interpretation of 

representative missions, whereas the quantitative comparisons are based on five independent runs per scenario. 

Aggregated results are reported using Median [IQR] to capture cross-run variability. 

 

 

Comparison of Baseline, PSO, and NSGA-II 

 

The simulations were conducted to comparatively evaluate the energy–time performance of PSO and NSGA-II 

under three wind conditions (Zero, Constant, OU) and three payload levels (0 g, 150 g, 300 g). Each wind–payload 

configuration was repeated over five random seeds, and the results were summarized in Median [IQR] format. 

The evaluation metrics include total energy consumption (Wh), mission completion time (s), coverage ratio (%), 

visit rate (%), and dead UAV ratio (%). Table 3 reports the statistical outcomes across all scenarios. NSGA-II 

results are provided only for the OU_P150 configuration, as the multi-objective optimization was applied 

exclusively to this representative and operationally realistic case. 

 

Across all scenarios, the Baseline method (nearest-neighbor assignment + greedy sequencing) serves as a 

reference. PSO consistently reduces median energy consumption relative to Baseline but at the cost of longer 

mission times, due to more explexploration aggressive maneuvers. For example, in the OU_P150 configuration: 
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Table 3. Median (IQR) performance results across wind and payload conditions (five seeds per scenario). 

NSGA-II was applied only to the OU + 150 g scenario. 
Scenario Wind Payload (g) Method E_total (Wh) T_ms (s) Coverage (%) Visit (%) Dead UAV (%) 

Zero-P0 Zero 0 Baseline 39.34 [3.26] 86.0 [5.5] 38.67 [4.89] 100.0 [0.0] 0.0 [0.0]    
PSO 31.75 [12.73] 111.5 [32.0] 43.11 [7.56] 100.0 [0.0] 0.0 [0.0] 

Zero-P150 Zero 150 Baseline 39.50 [3.26] 86.0 [5.5] 38.67 [4.89] 100.0 [0.0] 0.0 [0.0]    
PSO 31.95 [12.79] 111.5 [32.0] 43.11 [7.56] 100.0 [0.0] 0.0 [0.0] 

Zero-P300 Zero 300 Baseline 39.65 [3.27] 86.0 [5.5] 38.67 [4.89] 100.0 [0.0] 0.0 [0.0]    
PSO 32.85 [12.04] 114.5 [32.0] 43.11 [8.45] 100.0 [0.0] 0.0 [0.0] 

Const-P0 Constant 0 Baseline 31.38 [2.88] 86.5 [6.5] 38.22 [3.55] 100.0 [0.0] 0.0 [0.0]    
PSO 28.98 [10.11] 106.0 [30.0] 43.56 [6.66] 100.0 [0.0] 0.0 [0.0] 

Const-P150 Constant 150 Baseline 31.54 [2.89] 86.5 [6.5] 38.22 [3.55] 100.0 [0.0] 0.0 [0.0]    
PSO 29.18 [10.17] 106.0 [30.0] 43.56 [6.66] 100.0 [0.0] 0.0 [0.0] 

Const-P300 Constant 300 Baseline 31.69 [2.89] 86.5 [6.5] 38.22 [3.55] 100.0 [0.0] 0.0 [0.0]    
PSO 29.37 [10.22] 106.0 [30.0] 43.56 [6.66] 100.0 [0.0] 0.0 [0.0] 

OU-P0 OU 0 Baseline 30.82 [2.41] 86.5 [5.0] 38.67 [4.44] 100.0 [0.0] 0.0 [0.0]    
PSO 28.79 [9.98] 106.0 [34.0] 43.56 [6.66] 100.0 [0.0] 0.0 [0.0] 

OU-P150 OU 150 Baseline 30.98 [2.42] 86.5 [5.0] 38.67 [4.44] 100.0 [0.0] 0.0 [0.0]    
PSO 28.98 [10.05] 106.0 [34.0] 43.56 [6.66] 100.0 [0.0] 0.0 [0.0]    
NSGA-II (Min E) 26.82 [0.00] 93.0 [0.0] 34.67 [0.0] 100.0 [0.0] 0.0 [0.0]    
NSGA-II (Min T) 26.82 [0.00] 93.0 [0.0] 34.67 [0.0] 100.0 [0.0] 0.0 [0.0]    
NSGA-II (Knee) 26.82 [0.00] 93.0 [0.0] 34.67 [0.0] 100.0 [0.0] 0.0 [0.0] 

OU-P300 OU 300 Baseline 31.14 [2.43] 86.5 [5.0] 38.67 [4.44] 100.0 [0.0] 0.0 [0.0]    
PSO 29.18 [10.11] 106.0 [34.0] 43.56 [6.66] 100.0 [0.0] 0.0 [0.0] 

 

▪ Baseline: Etotal =30.98 [2.42] Wh, Tms =86.5 [5.0] s 

▪ PSO: Etotal =28.98 [10.05] Wh, Tms =106.0 [34.0] s 

▪ NSGA-II (Knee): Etotal=26.82 [0.00] Wh, Tms =93.0 [0.0] s 

 

Compared to the Baseline, the NSGA-II Knee solution achieves approximately 13% lower total energy 

consumption with only about a 7% increase in mission time. This indicates that the Knee point provides an 

effective balance between energy efficiency and mission duration, representing a practically attractive trade-off. 

 

Across all methods and scenarios, the visit rate remains at 100%, and no UAV failures are observed (Dead UAV 

Ratio = 0%), confirming that all compared solutions maintain full mission success and safety. While PSO 

occasionally yields lower median energy values than the Baseline, its relatively large IQR reflects higher 

variability and less consistent performance across runs. In contrast, NSGA-II provides more stable and balanced 

energy–time trade-offs in the OU + 150 g scenario, illustrating the advantages of a multi-objective evolutionary 

approach. 

 

Overall, the OU + 150 g configuration emerges as the most informative and realistic test case: it combines 

environmental variability (stochastic wind) with payload-induced mass changes while preserving mission 

stability. Within this setting, the NSGA-II Knee solution stands out as the most efficient and reliable configuration. 

 

 
Figure 1. Coverage density maps for the OU_P150 scenario 
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Figure 1a presents the coverage density obtained in the OU_P150/PSO scenario using a spatial resolution of 20 

m per grid cell. Warmer color tones represent regions with higher visitation frequency, indicating areas where 

UAV trajectories overlapped more frequently. The coverage pattern shows that the swarm tends to cluster near 

the mission center, while peripheral regions receive fewer visits. The discontinuities observed between the starting 

(○) and target (●) points reflect the perturbations induced by the OU stochastic wind model, demonstrating how 

environmental turbulence affects trajectory deviation and spatial distribution. 

 

Figure 1b illustrates the coverage density produced by the OU_P150/NSGA-II Knee solution under identical 

environmental and mission conditions. Compared to PSO, the coverage pattern is more uniformly distributed, 

showing reduced redundant overlaps and more balanced spatial exploration. Despite lower path redundancy, all 

Points of Interest (POIs) remain fully visited, indicating that NSGA-II’s multi-objective optimization strategy 

successfully balances energy efficiency and spatial coverage under stochastic wind dynamics. 

 

 
Figure 2. Comparison of instantaneous power and cumulative energy consumption for PSO and NSGA-II Knee 

solutions in the OU_P150 scenario (single representative runs). 

 

Figure 2a and Figure 2b show the instantaneous power (W) and cumulative energy (Wh) profiles for representative 

PSO and NSGA-II Knee solutions in the OU_P150 scenario. In both cases, power demand remains relatively 

stable with low variance during the initial phase of the mission, indicating steady cruise behavior with limited 

wind-compensation effort. 

 

In Figure 2a (PSO), a pronounced increase in power consumption appears after approximately 100 s. This rise is 

primarily associated with the more aggressive maneuvering behavior of the PSO-generated trajectory, which 

requires stronger control inputs to counteract OU wind perturbations. In this representative run, the PSO solution 

reaches a total energy consumption of approximately 35.6 Wh and completes the mission in about 125 s, making 

it comparatively more expensive in both energy and time. 

 

In contrast, Figure 2b (NSGA-II Knee) exhibits a more stable power profile with fewer and smaller peaks. The 

smoother trajectory geometry produced by multi-objective optimization reduces unnecessary accelerations and 

sharp turns, lowering total energy consumption to 26.82 Wh and shortening the mission duration to 93 s in the 
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illustrated run. This behavior is consistent with the aggregated statistics in Table 3, where the NSGA-II Knee 

solution demonstrates substantially improved energy efficiency and a shorter median mission time relative to 

PSO. Taken together, the two plots highlight that PSO tends to induce higher energy fluctuations due to aggressive 

corrective maneuvers, whereas the NSGA-II Knee solution produces a more balanced and energy-efficient flight 

profile under stochastic wind dynamics. 

 
Figure 3. PSO convergence curve for the OU_P150 scenario. 

 

Figure 3 illustrates the convergence behavior of the PSO algorithm with respect to the single-objective function 

En+0.3Tn. A sharp improvement is observed within the first few iterations, where the objective value drops from 

approximately 1.28 to around 1.10. After roughly the 8th–10th iteration, the curve begins to stabilize, indicating 

that the swarm is converging toward a local optimum. By the final iteration, the objective value decreases to about 

0.96, corresponding to an overall improvement of roughly 25% relative to the initial state. This pattern confirms 

that PSO performs rapid early-stage exploitation followed by a controlled convergence phase with limited 

oscillations, which is typical of well-tuned PSO configurations. 

 

 
Figure 4. NSGA-II convergence curves showing average first-front energy and mission time across generations. 

 

Figure 4 presents the generational evolution of the first Pareto front, tracking the average total energy and mission 

time of non-dominated solutions across successive generations. Both metrics exhibit rapid improvement during 

the initial generations, followed by stabilization after approximately the 15th generation, converging near 27 Wh 

for energy and 94 s for mission time. This convergence pattern shows that NSGA-II effectively approaches a 

stable Pareto-optimal region in the energy–time objective space. The smooth trajectories of the curves indicate 
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robust convergence behavior and a well-balanced exploration–exploitation trade-off, avoiding both stagnation and 

excessive randomness. 

 

 
Figure 5. NSGA-II Pareto-optimal solutions in the Energy–Time objective space for the OU_P150 scenario 

 

Figure 5 presents the Pareto front obtained by NSGA-II in the energy–time objective space. Each point represents 

a non-dominated solution reflecting a different trade-off between total energy consumption and mission duration. 

The highlighted Knee point (E=26.8 Wh,T=93 s) corresponds to the solution closest to the ideal point after min–

max normalization, representing the most balanced compromise between the two objectives. 

 

Compared with the Baseline (×) and PSO (△) reference points, the Knee solution dominates both methods by 

achieving lower energy consumption and shorter mission time. In the representative OU_P150/PSO run shown in 

the figure, PSO requires approximately 35.6 Wh and 125 s to complete the mission, whereas the NSGA-II Knee 

solution completes the same task with significantly reduced energy and time. This analysis confirms that the Knee 

point provides a practical and well-balanced operating condition for UAV swarm mission planning under OU 

wind perturbations. 

 

 
Figure 6. UAV swarm trajectories in the OU_P150 scenario. 
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Figure 6 shows the flight trajectories of the eight UAVs in the OU_P150 scenario, where each colored line 

represents the time-evolving path of an individual vehicle. The trajectories clearly reflect the influence of OU 

stochastic wind, producing small deviations and local fluctuations around nominal routes. Despite these 

perturbations, the swarm maintains safe spatial separation, preventing inter-UAV collisions while ensuring that 

all target points (●) are visited as assigned. The spatial organization of the paths indicates that the underlying 

coordination strategy distributes tasks effectively among UAVs, avoiding excessive path overlap and preserving 

coverage quality across the mission area. 

 

 

Cross-Scenario Observations 

 

Across all wind and payload configurations, the Baseline method consistently yields the shortest mission times 

but with relatively higher energy usage and less structured coverage. PSO reduces energy consumption compared 

to the Baseline in most scenarios but increases mission duration due to its more exploratory, single-objective 

search behavior. 

 

Under Constant and OU wind conditions, total energy consumption increases with payload mass, as additional 

lift is required to counteract both gravitational and wind-induced forces. Among all evaluated conditions, the OU 

+ 150 g configuration provides the most representative operational setting by combining realistic wind 

disturbances with moderate payload, while still maintaining mission stability. 

 

In the OU_P150 scenario, the NSGA-II Knee solution not only reduces energy consumption by approximately 

7% relative to the PSO median (28.98 Wh → 26.82 Wh), but also shortens the median mission time from 106 s 

to 93 s (≈12% reduction). This leads to a higher overall task efficiency while preserving full mission success and 

safety. These results demonstrate that swarm intelligence–based optimization, particularly when formulated as a 

multi-objective problem, can substantially improve the energy–time balance in UAV swarm mission planning. 

 

 

Conclusion 
 
This study evaluated swarm intelligence–based optimization methods for improving the energy–time performance 

of UAV swarms operating under varying wind and payload conditions. Leveraging a Python-based simulation 

environment with a physics-informed energy model, two optimization paradigms—single-objective PSO and 

multi-objective NSGA-II—were systematically compared against a greedy baseline. 

 

The results demonstrated that both algorithms significantly improved energy efficiency relative to the baseline 

strategy. Among all test conditions, the OU + 150 g scenario emerged as the most realistic operational case, 

reflecting the combined effects of stochastic wind fluctuations and moderate payload loading. In this 

configuration, the NSGA-II Knee solution achieved approximately 13% lower total energy consumption than the 

baseline while incurring only a 7% increase in mission duration. This confirms the practical utility of Pareto-based 

optimization in providing flexible and operationally meaningful trade-offs between energy efficiency and task 

duration. 

 

While PSO exhibited rapid convergence and occasionally produced competitive energy values, its single-objective 

formulation led to higher variability across repeated runs and a greater tendency toward premature convergence. 

Conversely, NSGA-II maintained population diversity and generated more stable, balanced solutions-particularly 

under turbulent wind dynamics—highlighting its suitability for multi-objective UAV mission planning. 

 

Overall, the findings indicate that: 

▪ multi-objective optimization considerably enhances the energy–time balance in UAV swarm missions; 

▪ knee-point selection offers a practical compromise, supporting mission planners in choosing balanced 

operating points; and 

▪ stochastic wind modeling is essential for realistically assessing UAV behavior under environmental 

disturbances. 

 

This study is limited by its use of a 2D kinematic flight model, a fixed swarm size, and the application of NSGA-

II only to the representative OU + 150 g scenario due to computational considerations. Future research will address 

these limitations by: 
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▪ Extending the simulation to full 3D flight dynamics, incorporating altitude control and vertical wind 

components; 

▪ Modeling intra-swarm energy-sharing and cooperative power management; 

▪ Exploring hybrid evolutionary–reinforcement learning frameworks for adaptive multi-agent coordination; 

▪ Incorporating advanced multi-objective optimizers such as NSGA-III, MOEA/D, or SPEA2 for higher-

dimensional trade spaces; and 

▪ Developing real-time adaptive optimization pipelines using live flight telemetry for deployment in real-

world UAV operations. 
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