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Abstract: This study investigates the effectiveness of swarm intelligence—based optimization methods for
improving energy efficiency and minimizing mission duration in multi-unmanned aerial vehicle (UAV) swarms.
The problem is formulated as a route-sequencing optimization task in which the visiting order of target points is
optimized to reduce total energy consumption while ensuring complete mission feasibility. A classical nearest-
neighbor assignment serves as the baseline and is compared against two evolutionary approaches: the single-
objective Particle Swarm Optimization (PSO) and the multi-objective Non-dominated Sorting Genetic Algorithm
II (NSGA-II). A Python-based simulation environment was developed to evaluate algorithmic performance under
varying payload and wind conditions, including Zero, Constant, and Ornstein—Uhlenbeck (OU) stochastic wind
models. Experimental results indicate that route sequencing optimization substantially decreases overall energy
demand. NSGA-II, in particular, successfully constructs a well-defined Pareto front for the energy—time
objectives, offering mission planners a flexible spectrum of trade-off solutions. In the OU + 150 g scenario, the
Knee-point solution (E =26.8 Wh, T = 93 s) achieved approximately 13% lower energy consumption at the cost
of only a 7% increase in mission duration relative to the baseline. Across all methods, mission completion
remained at 100%, and coverage ratios improved notably. These findings confirm that swarm intelligence—based
optimization techniques provide robust and efficient tools for balancing energy consumption and operational time
in UAV swarm mission planning.

Keywords: UAV swarm, Swarm intelligence algorithms, Metaheuristic optimization, Mission planning, Energy
efficiency

Introduction

Recent advancements in unmanned aerial vehicle (UAV) technologies have facilitated their widespread adoption
across military, industrial, and civilian applications. Cooperative UAV systems operating under swarm
intelligence principles offer significant advantages in scalability, robustness, and mission adaptability for tasks
such as wide-area surveillance, disaster response, logistics, and environmental monitoring (Cosar, 2023a). Despite
these benefits, one of the most persistent challenges remains energy efficiency. Limited battery capacity directly
constrains flight endurance and mission feasibility, highlighting the need for advanced energy management and
mission planning strategies (Abeywickrama et al., 2018; Michel et al., 2022).

Swarm intelligence, inspired by the collective and self-organized behaviors of natural organisms such as bird
flocks, ant colonies, and bee swarms (Beni & Wang, 1993; Lones, 2014), has been effectively adapted to multi-
agent robotic systems. Algorithms including Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO), and Artificial Bee Colony (ABC) have demonstrated robust convergence and flexibility in solving route
planning, task allocation, and coordination problems under environmental uncertainty (Cosar, 2023b). These bio-
inspired approaches provide decentralized, scalable, and adaptive mechanisms that make them well-suited to the
complexities of UAV swarm operations.

Although artificial intelligence (AI) and machine learning (ML) have enabled substantial progress in autonomous
control and navigation (Na et al., 2023; Lin et al., 2024), several limitations remain. Energy constraints, wind-
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induced perturbations, and dynamic payload variations continue to influence flight stability and mission duration
(Guo et al., 2023; Cabuk et al., 2024). Different control architectures-centralized, decentralized, or distributed-
introduce trade-offs between communication overhead, scalability, and computational load (Alqudsi & Makaraci,
2025). Meanwhile, recent studies have proposed physics-based aerodynamic models (Opazo et al., 2023; Jacewicz
et al.,, 2023), yet the integration of such models into multi-objective optimization frameworks remains
comparatively underexplored. Parallel research directions employing deep reinforcement learning have also
shown promise in enhancing swarm-level decision-making and energy-aware coordination (Giiven & Yanmaz,
2024; Arranz et al., 2023).

Despite advancements in heuristic and metaheuristic optimization for collision avoidance, coverage planning, and
path generation, many studies treat energy consumption and mission duration as independent objectives or rely
on simplified power models that neglect aerodynamic drag, turbulence, and payload-dependent variations (Di
Franco & Buttazzo, 2016; Gamil et al., 2023). To address these gaps, the present study proposes an integrated
multi-objective optimization framework that incorporates dynamic environmental factors—specifically wind and
payload variability—while jointly optimizing energy consumption and task completion time using PSO and Non-
dominated Sorting Genetic Algorithm IT (NSGA-II). The proposed Python-based simulation environment enables
reproducible evaluations of UAV swarm performance under realistic mission constraints and supports the
development of adaptive energy—time trade-off strategies.

Literature Review

UAYV swarm research has rapidly evolved, particularly in mission planning, task allocation, and energy-efficiency
optimization (Guo et al., 2023; Cabuk et al., 2024). Swarm robotics, rooted in the collective intelligence principles
observed in natural systems, promotes decentralized coordination through local sensing and inter-agent
communication (Beni, 1989; Beni & Wang, 1993). With the integration of Al-driven perception and machine
learning—based decision models, swarm UAVs can exhibit adaptive, cooperative, and resilient behaviors under
diverse mission conditions (Cosar, 2023a; Na et al., 2023; Lin et al., 2024).

Energy consumption remains a critical performance determinant for UAV swarms. High-fidelity models such as
the 6-DOF quadrotor framework by Jacewicz et al. (2023)-which jointly considers aecrodynamics, propulsion, and
battery discharge-have demonstrated the importance of comprehensive physical modeling. Similarly, Michel et
al. (2022) provided a system-level energy framework capable of simulating transient power variations. These
models surpass simplified parametric formulations like v?+ 1/ +Cpayioas, commonly used in UAV literature (Gong
etal., 2022). Abeywickrama et al. (2018) further emphasized the necessity for empirical calibration and real-world
validation in battery-aware energy modeling.

Complementing these findings, aerodynamic studies by Opazo et al. (2023) and Morbidi et al. (2016) highlighted
the intricate coupling between induced and profile drag. Opazo et al. (2023) examined power consumption in
coaxial rotor configurations under controlled hover conditions, while Morbidi et al. (2016) presented an optimal
control framework combining rotor-induced power with aerodynamic drag to generate energy-efficient
trajectories. These results underscore that energy-aware trajectory design must incorporate full vehicle dynamics
rather than rely solely on kinematic simplifications.

PSO-based methods have been widely applied in UAV swarm optimization, particularly for improving energy
efficiency and route sequencing (Cosar, 2023b). Enhanced variants such as KPSO, adaptive PSO, and hybrid
PSO-ABC have demonstrated superior convergence and smoother trajectories under environmental disturbances
(Rosas-Carrillo et al., 2025; Baidya et al., 2024; Tang et al., 2024). Na et al. (2023) showed that PSO with adaptive
inertia weights improves robustness in turbulent wind and variable payload settings. These findings emphasize
PSO’s strengths for single-objective optimization in swarm coordination.

For multi-objective optimization, NSGA-II remains the dominant approach due to its efficiency in maintaining
Pareto diversity and achieving fast convergence (Duan et al., 2024; Hohmann et al., 2021). Xue et al. (2024)
applied NSGA-II to complex 3D terrain navigation, balancing stability, energy, and path length. Zhang (2024)
demonstrated its cross-domain applicability in multi-agent energy-aware design systems. In UAV swarm
scenarios, NSGA-II naturally supports flexible trade-offs between energy minimization and mission duration,
offering operational adaptability for dynamic environments.

Task allocation methods have also progressed from centralized Hungarian and auction-based frameworks to
scalable and distributed systems. Galati et al. (2023) proposed an auction-based motion-planning model enabling
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dynamic re-planning under human supervision. Wang et al. (2024) developed a two-stage greedy auction system
tailored for large-scale swarms. Chen et al. (2024) introduced a distributed benefit-optimization framework to
enhance responsiveness, while Jiang et al. (2025) combined cluster analysis with differential PSO to improve
convergence in large multi-UAV missions.

Energy-efficient coverage path planning (CPP) represents another critical research area. Di Franco and Buttazzo
(2016) introduced one of the earliest energy-aware CPP models integrating empirical power consumption into
geometric optimization. More recently, Gamil et al. (2023) incorporated wind effects and battery constraints,
while Giiven and Yanmaz (2024) demonstrated that realistic environmental modeling significantly improves
coverage stability and energy management across UAV teams.

Despite this progress, the literature still lacks an integrated framework that simultaneously incorporates
aerodynamic realism, dynamic environmental variability, and multi-objective optimization. Addressing this gap,
the present study introduces a reproducible simulation environment combining physics-based energy modeling,
PSO-based heuristic optimization, and NSGA-II-driven Pareto analysis. By systematically evaluating the energy—
time balance across wind and payload conditions, the framework provides a comprehensive foundation for future
UAYV swarm optimization research.

Method

This study utilizes a hybrid methodology integrating a single-objective heuristic approach (PSO) and a multi-
objective evolutionary algorithm (NSGA-II) to evaluate how route sequencing influences the energy consumption
of UAV swarms. PSO ensures rapid convergence through a normalized scalarized fitness function, whereas
NSGA-II identifies Pareto-optimal solutions that balance total energy consumption and mission duration. This
dual-framework design aligns with findings by Hohmann et al. (2021) and Zhang (2024), demonstrating that
combining heuristic and evolutionary strategies improves convergence reliability and decision-space diversity.
All evaluations were conducted within a two-dimensional Python-based simulation environment incorporating
UAYV motion dynamics and an empirically validated energy model (Abeywickrama et al., 2018; Jacewicz et al.,
2023). Key simulation parameters—including maximum velocity, hover power, and payload mass-were derived
from experimental datasets to ensure realistic acrodynamic representation (Opazo et al., 2023; Michel et al., 2022).

Three wind conditions were modeled: zero wind, constant wind, and Ornstein—Uhlenbeck (OU) stochastic
turbulence (Gong et al., 2022). The energy consumption model combines hover power, parasitic drag, induced
power, and payload-related lift demand, consistent with analytical principles presented in Morbidi et al. (2016).
To ensure statistical reliability, each scenario was simulated using five independent random seeds, with results
reported as Median (IQR).

The optimization algorithms were configured based on best practices reported in recent UAV optimization
literature (Na et al., 2023; Tang et al., 2024). PSO used 16 particles over 20 iterations with ¢ = ¢2 = 1.4, while
NSGA-II employed a population of 40 over 30 generations, using simulated binary crossover (SBX) and
polynomial mutation (Xue et al., 2024). From the resulting Pareto front, three representative solutions were
extracted: minimum energy, minimum time, and the knee point. To limit computational cost while focusing on
the most realistic and challenging operating condition, NSGA-II was applied only to the OU + 150 g scenario.
For all remaining wind—payload combinations, comparisons were restricted to the Baseline and PSO approaches.

Simulation Setup

The simulation is executed within a 300 x300 m mission area using n=8 UAVs and 20 Points of Interest (POIs).
The time step is set to A4¢=0.5s, with a maximum mission duration of 7=600s. Each UAV generates a desired
velocity vector toward its assigned target, and a wind perturbation term is incorporated into the motion model.
The UAV’s ground velocity v; is calculated as Formula 1.

Vi (t) = Limitspeed(vdesired (t) +y W(t)' Umax) (1)
where y=0.2 and v.x=7 m/s. The coefficient y presents an empirical scaling factor that models the corrective

effort required to counteract wind drift. The UAV’s position is then updated at each time step by integrating the
velocity as Formula 2.
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pi(t + At) = p;(t) + v;(t) . At (2)

This simplified kinematic model is widely adopted in swarm simulations to reduce control complexity and
enhance computational efficiency (Gong et al., 2022). A collision-avoidance term is activated whenever the inter-
UAYV distance falls below the safe threshold dy,»=5m and boundary reflections prevent UAVs from exiting the
mission area. The simulation integrates verified energy models drawn from empirical studies (Abeywickrama et
al., 2018; Jacewicz et al., 2023) and aerodynamic validation frameworks (Michel et al., 2022; Opazo et al., 2023).

Wind Modeling

To represent realistic turbulence, the OU process was applied, consistent with aerodynamic modeling studies
(Gong et al., 2022). Three wind models were employed;

= Zero Wind: (0,0) m/s
=  Constant Wind: (0.8, —0.4) m/s
= OU Stochastic Wind, defined by Formula 3:

Xep1 = x¢ +0(u —x)At + U\/A_t &t (3)

where typical values are 6=0.4, u=(0.5—0.2), 6=0.2. The OU process generates a more realistic, continuously
fluctuating disturbance than the constant wind model.

Energy Model
The instantaneous power consumption P(v) (in Watts) of a multi-rotor UAV is computed as Formula 4:

k,

P(v) =P ki v? + ————
(U) hover + K1.V +max (U,O.l)

+ kload (mbase + mpayload) (4’)

where, P(v), total instantaneous power at velocity v. Phover, base hovering power required to sustain flight and
operate onboard electronics (independent of wind/load). k,v?2, ower loss due to aerodynamic drag and parasitic
k2
max (v, 0.1)
coefficient accounting for increased lift demand. m; 45, UAV base mass. My, 4,44 additional payload mass during
flight.

resistance. induced power losses at low speeds (vortex and rotor drag). k;,.4, load-dependent

The following parameter values were used: Pjove=95 W, k;/=0.6, ks=1.2, kioae=5.5k and mpae=1.25 kg and payload
scenarios of 0/150/300g. The total mission energy is then computed as Formula 5.

Euowa = ) ) Pi(£)4t/3600 (5)

i

The wind indirectly affects Eyw by modifying the UAV’s motion dynamics, which alter instantaneous velocity
and thus power demand. For instance, in the constant-wind scenario (w= (0.8, —0.4) m/s), the external wind vector
is superimposed onto the UAV’s desired velocity, resulting in additional energy expenditure. Each scenario aims
for all POIs to be visited by at least one UAV. A nearest-neighbor assignment followed by greedy sequencing is
used for baseline initialization. Simulations terminate when either all POIs are visited or any UAV exhausts its
battery capacity. The Table 1 performance metrics are recorded:

Table 1. Task assignment and performance metrics

Metric Definition

Total Energy Consumption Total energy used during the mission (in watt-hours, Wh).

Makespan Total mission duration until completion (in seconds, s).

Coverage Percentage of area visited (based on 20 m grid resolution).

Visit Rate Percentage of POIs successfully visited by UAVs.

Dead UAV Rate Percentage of UAVs that depleted their battery before completing the mission.
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Dataset

The dataset used in this study was synthetically generated using a Python-based simulator specifically developed
for UAV swarm energy efficiency and coverage optimization. A controlled simulation environment was preferred
over field experiments due to the inherent difficulty of controlling environmental variables such as wind and
battery variation. This approach enables systematic, repeatable, and parametric evaluation of algorithmic
performance across different environmental conditions. The simulator integrates validated aerodynamic and
power consumption models from the literature, offering a reliable experimental framework to analyze the
sensitivity of optimization algorithms to the energy—time trade-off. Consequently, the effects of payload and wind
variations on UAV energy efficiency can be observed independently from external noise.

Algorithms

PSO

PSO was selected for its high convergence speed and robustness in single-objective optimization problems. The
Random Keys PSO approach was adopted to handle the route sequencing task. The objective function is

formulated as a normalized weighted sum in Formula 6:

where E, = % and T, = TTms , with E,.;=50Wh, T,,,=150 s, and weighting factor A=0.3. This ensures that the

ref ref
objectives are balanced despite differing units. PSO parameters: 16 particles, 20 iterations, w=0.72, c¢;=c>=1.4.

NSGA-II

NSGA-II was employed for multi-objective optimization to identify Pareto-optimal trade-offs between total
energy consumption and mission duration, as expressed in Equation 7:

minFysca-ir = (Etotatr Tms) 7

The core mechanisms of NSGA-II-including non-dominated sorting, crowding distance preservation, SBX, and
polynomial mutation-ensure both convergence and population diversity throughout the optimization process.
Typical parameters include a population of 40 and 30 generations. From the resulting Pareto front, three
representative solutions are selected:

=  Min-E: Lowest energy consumption.

*  Min-T: Shortest mission time.

= Khnee Point: The solution closest to the ideal point (0, 0) in normalized energy—time space,
representing the best trade-off.

This framework enables PSO to produce a single best solution while NSGA-II offers a flexible spectrum of
energy—time balanced strategies adaptable to mission priorities. To limit computational cost and focus on the most
realistic and challenging mission condition, NSGA-II was executed only for the OU_P150 configuration. For all
other wind—payload scenarios, comparisons were restricted to the Baseline and PSO methods.

Experimental Procedure

Each wind—payload scenario was executed over five independent random seeds to ensure statistical reliability,
with outcomes reported as Median (IQR). The Baseline method (nearest-neighbor assignment followed by greedy
sequencing) served as the primary benchmark. For the representative OU + 150 g configuration, comprehensive
visual diagnostics—including energy—time trajectories, spatial coverage maps, and PSO/NSGA-II convergence
curves—were generated. Baseline and PSO solutions were projected onto the NSGA-II Pareto front to enable
direct comparative assessment. All algorithmic and simulation parameters adhered to established best practices in
UAYV energy-optimization literature, ensuring methodological rigor and reproducibility.
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Table 2. Simulation and optimization parameters

Category Parameter Symbol/Variable  Value Unit Description
Mission Area Area width x height area w, area h 300 x 300 m Dimensions of the simulation area

Number of targets n_targets 20 - Number of Points of Interest (POIs) to be

visited

Maximum simulation time T max 600 s Total mission duration limit

Time step dt 0.5 s Simulation update interval
UAYV Properties Number of UAVs n drones 8 - Number of UAVs in the swarm

Maximum speed v max 7.0 m/s  Speed limit for UAV motion

Safe distance safe_dist 5.0 m Minimum separation for collision avoidance

Target tolerance arrival tol 3.5 m Distance threshold for successful target visit
Energy Model  Battery capacity battery Wh 40.0 Wh Initial battery capacity

Hover power hover power 95.0 W Power consumption during hovering

Base mass m base 1.25 kg Empty UAV weight

Payload (variant) m_ payload 0/150/300 g Additional load depending on scenario

Aerodynamic coefficient 1 k1 0.6 - Drag-related power coefficient

Aerodynamic coefficient2 k2 1.2 - Induced power coefficient

Load coefficient k load 55 - Power increase factor due to mass
Environmental Wind model wind_type Const/ OU/ — Constant, OU, or calm conditions
Effects Zero

Wind vector wind u, wind v 0.8,-0.4 m/s  Constant wind components (x and y)

OU process mean n 0.0 - Mean wind component

OU process variance o 0.2 - Randomness (stochasticity) parameter
Optimization Number of particles n_particles 16 - Population size
(PSO)

Iterations iters 20 - Optimization loop count

Inertia weight w 0.72 - Tendency to preserve velocity

Cognitive coefficient cl 1.4 - Tendency toward personal best

Social coefficient c2 1.4 - Tendency toward global best

Weighting factor A 0.3 - Balances energy—time trade-off
Optimization Population size pop_size 40 - Number of individuals per generation
(NSGA-II)

Number of generations gens 30 - Evolutionary iteration count

Crossover rate crossover_rate 0.9 - Probability of genetic information exchange

Mutation rate mutation_rate 0.2 - Probability of diversity preservation

Table 2 summarizes the physical, environmental, and algorithmic parameters employed throughout the simulation
and optimization pipeline. All values were implemented as fixed defaults within the Python-based framework to
ensure consistency across experimental runs. These parameter selections follow widely accepted conventions in
UAV energy modeling and optimization research, supporting both reproducibility and methodological
transparency.

Results

This section presents the performance of the optimization algorithms (PSO and NSGA-II) under different wind
and payload configurations. The analysis focuses on total energy consumption Eoa1, mission completion time Trs,
coverage ratio, visit rate, and dead UAV ratio, which together characterize the energy—time efficiency and
reliability of the swarm. Single-run trajectories and energy—time profiles are provided for visual interpretation of
representative missions, whereas the quantitative comparisons are based on five independent runs per scenario.
Aggregated results are reported using Median [IQR] to capture cross-run variability.

Comparison of Baseline, PSO, and NSGA-II

The simulations were conducted to comparatively evaluate the energy—time performance of PSO and NSGA-II
under three wind conditions (Zero, Constant, OU) and three payload levels (0 g, 150 g, 300 g). Each wind—payload
configuration was repeated over five random seeds, and the results were summarized in Median [IQR] format.
The evaluation metrics include total energy consumption (Wh), mission completion time (s), coverage ratio (%),
visit rate (%), and dead UAV ratio (%). Table 3 reports the statistical outcomes across all scenarios. NSGA-II
results are provided only for the OU P150 configuration, as the multi-objective optimization was applied
exclusively to this representative and operationally realistic case.

Across all scenarios, the Baseline method (nearest-neighbor assignment + greedy sequencing) serves as a

reference. PSO consistently reduces median energy consumption relative to Baseline but at the cost of longer
mission times, due to more explexploration aggressive maneuvers. For example, in the OU_P150 configuration:
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Table 3. Median (IQR) performance results across wind and payload conditions (five seeds per scenario).
NSGA-II was applied only to the OU + 150 g scenario.

Scenario Wind Payload (g) Method E_total (Wh) T ms (s) Coverage (%) Visit (%) Dead UAV (%)
Zero-P0 Zero 0 Baseline 39.34[3.26] 86.0[5.5] 38.67 [4.89] 100.0 [0.0] 0.0[0.0]
PSO 31.75[12.73] 111.5[32.0] 43.11 [7.56] 100.0 [0.0] 0.0 [0.0]
Zero-P150  Zero 150 Baseline 39.50[3.26]  86.0[5.5] 38.67 [4.89] 100.0 [0.0] 0.0[0.0]
PSO 31.95[12.79] 111.5[32.0] 43.11 [7.56] 100.0 [0.0] 0.0[0.0]
Zero-P300  Zero 300 Baseline 39.65[3.27]  86.0[5.5] 38.67 [4.89] 100.0 [0.0] 0.0 [0.0]
PSO 32.85[12.04] 114.5[32.0] 43.11 [8.45] 100.0 [0.0] 0.0[0.0]
Const-P0 Constant 0 Baseline 31.38[2.88]  86.5[6.5] 38.22 [3.55] 100.0 [0.0] 0.0[0.0]
PSO 28.98 [10.11] 106.0 [30.0] 43.56 [6.66] 100.0 [0.0] 0.0 [0.0]
Const-P150 Constant 150 Baseline 31.54[2.89] 86.5[6.5] 38.22 [3.55] 100.0 [0.0] 0.0[0.0]
PSO 29.18 [10.17] 106.0 [30.0] 43.56 [6.66] 100.0 [0.0] 0.0[0.0]
Const-P300 Constant 300 Baseline 31.69[2.89]  86.5[6.5] 38.22 [3.55] 100.0 [0.0] 0.0 [0.0]
PSO 29.37[10.22] 106.0 [30.0] 43.56 [6.66] 100.0 [0.0] 0.0[0.0]
OU-PO ou 0 Baseline 30.82[2.41] 86.5[5.0] 38.67 [4.44] 100.0 [0.0] 0.0[0.0]
PSO 28.79 [9.98]  106.0 [34.0] 43.56 [6.66] 100.0 [0.0] 0.0[0.0]
OU-P150 ou 150 Baseline 30.98 [2.42]  86.5[5.0] 38.67 [4.44] 100.0 [0.0] 0.0[0.0]
PSO 28.98 [10.05] 106.0 [34.0] 43.56 [6.66] 100.0 [0.0] 0.0[0.0]
NSGA-II Min E) 26.82[0.00]  93.0[0.0] 34.67 [0.0] 100.0 [0.0] 0.0[0.0]
NSGA-II (Min T) 26.82[0.00] 93.0[0.0] 34.67[0.0] 100.0 [0.0] 0.0[0.0]
NSGA-II (Knee)  26.82[0.00] 93.0[0.0] 34.67[0.0] 100.0 [0.0] 0.0[0.0]
OU-P300 ou 300 Baseline 31.14[2.43] 86.5[5.0] 38.67 [4.44] 100.0 [0.0] 0.0[0.0]
PSO 29.18 [10.11] 106.0 [34.0] 43.56 [6.66] 100.0 [0.0] 0.0[0.0]

»  Baseline: Eio =30.98 [2.42] Wh, Tuns=86.5[5.0] s
*  PSO: B =28.98 [10.05] Wh, Tums=106.0 [34.0] s
»  NSGA-II (Knee): Eiu=26.82 [0.00] Wh, Trs=93.0[0.0] s

Compared to the Baseline, the NSGA-II Knee solution achieves approximately 13% lower total energy
consumption with only about a 7% increase in mission time. This indicates that the Knee point provides an
effective balance between energy efficiency and mission duration, representing a practically attractive trade-off.

Across all methods and scenarios, the visit rate remains at 100%, and no UAV failures are observed (Dead UAV
Ratio = 0%), confirming that all compared solutions maintain full mission success and safety. While PSO
occasionally yields lower median energy values than the Baseline, its relatively large IQR reflects higher
variability and less consistent performance across runs. In contrast, NSGA-II provides more stable and balanced
energy—time trade-offs in the OU + 150 g scenario, illustrating the advantages of a multi-objective evolutionary
approach.

Overall, the OU + 150 g configuration emerges as the most informative and realistic test case: it combines
environmental variability (stochastic wind) with payload-induced mass changes while preserving mission
stability. Within this setting, the NSGA-II Knee solution stands out as the most efficient and reliable configuration.
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Figure 1. Coverage density maps for the OU_P150 scenario
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Figure 1a presents the coverage density obtained in the OU P150/PSO scenario using a spatial resolution of 20
m per grid cell. Warmer color tones represent regions with higher visitation frequency, indicating areas where
UAYV trajectories overlapped more frequently. The coverage pattern shows that the swarm tends to cluster near
the mission center, while peripheral regions receive fewer visits. The discontinuities observed between the starting
(©) and target (®) points reflect the perturbations induced by the OU stochastic wind model, demonstrating how
environmental turbulence affects trajectory deviation and spatial distribution.

Figure 1b illustrates the coverage density produced by the OU P150/NSGA-II Knee solution under identical
environmental and mission conditions. Compared to PSO, the coverage pattern is more uniformly distributed,
showing reduced redundant overlaps and more balanced spatial exploration. Despite lower path redundancy, all
Points of Interest (POIs) remain fully visited, indicating that NSGA-II’s multi-objective optimization strategy
successfully balances energy efficiency and spatial coverage under stochastic wind dynamics.
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Figure 2. Comparison of instantaneous power and cumulative energy consumption for PSO and NSGA-II Knee
solutions in the OU_P150 scenario (single representative runs).

Figure 2a and Figure 2b show the instantaneous power (W) and cumulative energy (Wh) profiles for representative
PSO and NSGA-II Knee solutions in the OU_P150 scenario. In both cases, power demand remains relatively
stable with low variance during the initial phase of the mission, indicating steady cruise behavior with limited
wind-compensation effort.

In Figure 2a (PSO), a pronounced increase in power consumption appears after approximately 100 s. This rise is
primarily associated with the more aggressive maneuvering behavior of the PSO-generated trajectory, which
requires stronger control inputs to counteract OU wind perturbations. In this representative run, the PSO solution
reaches a total energy consumption of approximately 35.6 Wh and completes the mission in about 125 s, making
it comparatively more expensive in both energy and time.

In contrast, Figure 2b (NSGA-II Knee) exhibits a more stable power profile with fewer and smaller peaks. The
smoother trajectory geometry produced by multi-objective optimization reduces unnecessary accelerations and
sharp turns, lowering total energy consumption to 26.82 Wh and shortening the mission duration to 93 s in the
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illustrated run. This behavior is consistent with the aggregated statistics in Table 3, where the NSGA-II Knee
solution demonstrates substantially improved energy efficiency and a shorter median mission time relative to
PSO. Taken together, the two plots highlight that PSO tends to induce higher energy fluctuations due to aggressive
corrective maneuvers, whereas the NSGA-II Knee solution produces a more balanced and energy-efficient flight
profile under stochastic wind dynamics.
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Figure 3. PSO convergence curve for the OU_P150 scenario.

Figure 3 illustrates the convergence behavior of the PSO algorithm with respect to the single-objective function
E,+0.3T,. A sharp improvement is observed within the first few iterations, where the objective value drops from
approximately 1.28 to around 1.10. After roughly the 8th—10th iteration, the curve begins to stabilize, indicating
that the swarm is converging toward a local optimum. By the final iteration, the objective value decreases to about
0.96, corresponding to an overall improvement of roughly 25% relative to the initial state. This pattern confirms
that PSO performs rapid early-stage exploitation followed by a controlled convergence phase with limited
oscillations, which is typical of well-tuned PSO configurations.
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Figure 4. NSGA-II convergence curves showing average first-front energy and mission time across generations.

Figure 4 presents the generational evolution of the first Pareto front, tracking the average total energy and mission
time of non-dominated solutions across successive generations. Both metrics exhibit rapid improvement during
the initial generations, followed by stabilization after approximately the 15th generation, converging near 27 Wh
for energy and 94 s for mission time. This convergence pattern shows that NSGA-II effectively approaches a
stable Pareto-optimal region in the energy—time objective space. The smooth trajectories of the curves indicate
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robust convergence behavior and a well-balanced exploration—exploitation trade-off, avoiding both stagnation and
excessive randomness.

Pareto Front — Energy vs Time (OU_P150/NSGA-II)
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Figure 5. NSGA-II Pareto-optimal solutions in the Energy—Time objective space for the OU_P150 scenario

Figure 5 presents the Pareto front obtained by NSGA-II in the energy—time objective space. Each point represents
a non-dominated solution reflecting a different trade-off between total energy consumption and mission duration.
The highlighted Knee point (E=26.8 Wh,T=93 s) corresponds to the solution closest to the ideal point after min—
max normalization, representing the most balanced compromise between the two objectives.

Compared with the Baseline (%) and PSO (A) reference points, the Knee solution dominates both methods by
achieving lower energy consumption and shorter mission time. In the representative OU_P150/PSO run shown in
the figure, PSO requires approximately 35.6 Wh and 125 s to complete the mission, whereas the NSGA-II Knee
solution completes the same task with significantly reduced energy and time. This analysis confirms that the Knee
point provides a practical and well-balanced operating condition for UAV swarm mission planning under OU
wind perturbations.
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Figure 6. UAV swarm trajectories in the OU_P150 scenario.
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Figure 6 shows the flight trajectories of the eight UAVs in the OU P150 scenario, where each colored line
represents the time-evolving path of an individual vehicle. The trajectories clearly reflect the influence of OU
stochastic wind, producing small deviations and local fluctuations around nominal routes. Despite these
perturbations, the swarm maintains safe spatial separation, preventing inter-UAV collisions while ensuring that
all target points (@) are visited as assigned. The spatial organization of the paths indicates that the underlying
coordination strategy distributes tasks effectively among UAVs, avoiding excessive path overlap and preserving
coverage quality across the mission area.

Cross-Scenario Observations

Across all wind and payload configurations, the Baseline method consistently yields the shortest mission times
but with relatively higher energy usage and less structured coverage. PSO reduces energy consumption compared
to the Baseline in most scenarios but increases mission duration due to its more exploratory, single-objective
search behavior.

Under Constant and OU wind conditions, total energy consumption increases with payload mass, as additional
lift is required to counteract both gravitational and wind-induced forces. Among all evaluated conditions, the OU
+ 150 g configuration provides the most representative operational setting by combining realistic wind
disturbances with moderate payload, while still maintaining mission stability.

In the OU_P150 scenario, the NSGA-II Knee solution not only reduces energy consumption by approximately
7% relative to the PSO median (28.98 Wh — 26.82 Wh), but also shortens the median mission time from 106 s
to 93 s (=12% reduction). This leads to a higher overall task efficiency while preserving full mission success and
safety. These results demonstrate that swarm intelligence—based optimization, particularly when formulated as a
multi-objective problem, can substantially improve the energy—time balance in UAV swarm mission planning.

Conclusion

This study evaluated swarm intelligence—based optimization methods for improving the energy—time performance
of UAV swarms operating under varying wind and payload conditions. Leveraging a Python-based simulation
environment with a physics-informed energy model, two optimization paradigms—single-objective PSO and
multi-objective NSGA-II—were systematically compared against a greedy baseline.

The results demonstrated that both algorithms significantly improved energy efficiency relative to the baseline
strategy. Among all test conditions, the OU + 150 g scenario emerged as the most realistic operational case,
reflecting the combined effects of stochastic wind fluctuations and moderate payload loading. In this
configuration, the NSGA-II Knee solution achieved approximately 13% lower total energy consumption than the
baseline while incurring only a 7% increase in mission duration. This confirms the practical utility of Pareto-based
optimization in providing flexible and operationally meaningful trade-offs between energy efficiency and task
duration.

While PSO exhibited rapid convergence and occasionally produced competitive energy values, its single-objective
formulation led to higher variability across repeated runs and a greater tendency toward premature convergence.
Conversely, NSGA-II maintained population diversity and generated more stable, balanced solutions-particularly
under turbulent wind dynamics—highlighting its suitability for multi-objective UAV mission planning.

Overall, the findings indicate that:
= multi-objective optimization considerably enhances the energy—time balance in UAV swarm missions;
= knee-point selection offers a practical compromise, supporting mission planners in choosing balanced
operating points; and
= stochastic wind modeling is essential for realistically assessing UAV behavior under environmental
disturbances.

This study is limited by its use of a 2D kinematic flight model, a fixed swarm size, and the application of NSGA -

I only to the representative OU + 150 g scenario due to computational considerations. Future research will address
these limitations by:
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= Extending the simulation to full 3D flight dynamics, incorporating altitude control and vertical wind
components;

= Modeling intra-swarm energy-sharing and cooperative power management;

= Exploring hybrid evolutionary—reinforcement learning frameworks for adaptive multi-agent coordination;

= Incorporating advanced multi-objective optimizers such as NSGA-III, MOEA/D, or SPEA2 for higher-
dimensional trade spaces; and

= Developing real-time adaptive optimization pipelines using live flight telemetry for deployment in real-
world UAYV operations.
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