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Abstract: Non-invasive fetal electrocardiogram (fECG) extraction is still a challenging task due to the 

overbearing preponderance of the maternal ECG (mECG) and the presence of noise and interferences. Adaptive 

filtering techniques, particularly the Recursive Least Squares (RLS) algorithm, have been shown to work well 

for this issue. However, RLS performance largely depends on a few of its parameters (filter order, forgetting 

factor, and regularization term), typically tuned empirically, thus limiting robustness and generalizability. In this 

work, we introduce an automatic parameter optimization process based on the Particle Swarm Optimization 

(PSO) algorithm. The proposed method was validated using simulated signals generated on MATLAB, 

including abdominal recordings (aECG), maternal thoracic signals (mECG), and a reference fECG for 

comparison. Quantitative outcomes, using Mean Squared Error (MSE) and Signal-to-Noise Ratio (SNR) 

metrics, indicate that PSO-based optimization improves the quality of the resultant fECG compared to the 

optimal empirical settings, eliminating residual maternal interference. These findings show the potential of PSO 

for robust fECG extraction and its potential feasibility for real clinical data in the future.  
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Introduction 

 

Prenatal monitoring increasingly relies on non-invasive methods of estimation of fetal health and development 

(Behar, 2016; Sameni, 2007). Among them, fetal electrocardiogram (fECG) analysis represents an essential 

component, since it provides valuable information concerning the cardiac activity and aids in the earliest 

possible diagnosis of rhythmical or structural pathologies. However, extracting fECG from abdominal 

electrodes remains an arduous task owing to the overwhelming dominance of maternal ECG (mECG), noise, 

and physiological interferences (Vennila, 2014; Clifford, 2006; Sweeney, 2012). 

 

Among the suggested methods, adaptive filters are proving to be an effective solution, with the Recursive Least 

Squares (RLS) algorithm being particularly attractive because of its high convergence speed and resilience to 

non-stationary signals (Haykin, 1991; Widrow, 1985). Nevertheless, RLS performance is based on several key 
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parameters (filter order, forgetting factor, regularization term), whose tuning is usually performed empirically, 

hence decreasing the method's performance and viability (Ciochina, 2009). To address this issue, metaheuristic 

optimization techniques provide a viable alternative since they automatically perform the parameter selection 

and explore the space in a better way. Particle Swarm Optimization (PSO), inspired by the collective behavior of 

bird flocks or schools of fish, is particularly well suited to this task (Eberhart, 2000; Ekanem, 2025; Kennedy, 

2002; Poli, 2007; Mendes, 2004; Talbi, 2009). 

 

Here, we propose the application of PSO to automatically optimize the RLS filter parameters for fECG 

extraction from MATLAB-generated simulated signals. The objective is to compare the performance obtained 

through automatic optimization to that achieved by using empirical parameter values based on quantitative 

metrics such as the MSE and SNR to determine the added value of PSO in the process. The rest of this paper is 

organized in the following manner: Section 2 presents the proposed methodology, starting with the 

fundamentals of the RLS filter and its PSO optimization. Section 3 describes simulations and results generated 

on test signals. Finally, Section 4 concludes the paper and offers outlooks for future work. 

 

 

Methodology 
 

RLS Adaptive Filter 

 

Figure 1 depicts the representation of fECG extraction using RLS adaptive filter. 

 

 
Figure 1. General representation of fetal ECG extraction using adaptive filter. 

 

The process is founded on the use of the maternal thoracic ECG (mECG), denoted by x(n), as the reference 

signal (filter input) and the abdominal ECG (aECG), denoted by d(n), as the desired output. The goal of the 

filter is to estimate the maternal component contained in the abdominal signal and then subtract it to arrive at the 

fetal component (D, 2022) (Andreotti, 2014) (Niknazar, 2013). Among various adaptive filtering algorithms, the 

Recursive Least Squares (RLS) algorithm is well known for its fast convergence, and it can adapt to change in 

the signal (Ciochina, 2009) (Kahankova, 2017). Mathematically, for a vectorized input at instant n: 

 

 ( ) ( 1) ... ( 1)
T

(n) x n x n x n M− − +x =                                                                      (1) 

 

For the filter coefficients vector at instant n:  

 

 0 1 1( ) ( ) ... ( )
T

M(n) w n w n w n−w =                                                                             (2) 

 

Where M is the filter order. 

 

The RLS algorithm updates the coefficient vector by minimizing the squared error:  

 ( ) ( ) ( )e n d n y n= −                                                                                                    (3) 

( ) ( ) ( 1) ( )Te n d n n n= − −w x                                                                                      (4) 
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Table 1 summarizes the RLS algorithm: 

 

Table 1. Summary of the RLS algorithm. 

Parameters: 

 

M= filter order.  

λ= forgetting factor. 

δ= positive constant. 

Initialization: 
1( ) M0 =w 0  

1( )0  −=Q I  

Computing:   For: n=0,1,2,…,N-1 
1

1

( 1) ( )
( )

1 ( ) ( 1) ( )T

n n
n

n n n





−

−

−
=

+ −

Q x
k

x Q x
 

( ) ( ) ( ) ( )Te n d n n n-1= −x w  

( ) ( ) ( ) ( )n = n-1 + n e nw w k   

1 1( ) ( 1) ( ) ( ) ( 1)Tn n n n n − −= − − −Q Q k x Q  

 

Where: 

• λ is the forgetting factor (0<λ≤1), 

• Q(n) is the inverse correlation matrix (initialized with δI), 

• δ is a regularization parameter. 

 

It is important to select properly λ, M, and δ, as they a direct impact on the convergence rate, the numerical 

stability, and the quality of the extracted fECG. This calls for an optimization algorithm to adjust these 

parameters. 

 

 

Optimization Using PSO 

 

The Particle Swarm Optimization (PSO) algorithm is a metaheuristic technique inspired by the social behavior 

of flocking birds and schooling fish. Each candidate solution, called a particle, explores the RLS filter parameter 

space by flying according to its own experience and the experience of neighboring particles (Ekanem, 2025; 

Poli, 2007). In our study, the RLS filter parameters define the search vector: 

 

• λ (forgetting factor), 

• M (filter order), 

• δ (regularization factor). 

 

Each particle evaluates the quality of its position using a cost function based on the Mean Squared Error (MSE) 

between the extracted fetal signal and the reference signal. The optimization process thus aims to minimize this 

MSE. 

 

The interest of PSO is twofold: 

1. To automate the selection of RLS parameters, which are often empirically determined. 

2. To improve the robustness and accuracy of fECG extraction by allowing adaptation to variations in real 

signals. 

 

 

PSO Algorithm for RLS Parameter Optimization 

 

1. Initialization 

• Randomly generate a set of particles with parameters (λ, M, δ). 

• Initialize velocities and define the search boundaries. 

2. Evaluation 

• For each particle, apply the RLS with its parameters. 

• Compute the cost function: 

( ),extracted realJ MSE fECG fECG=  

3. Update of Best Solutions 
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• Update the personal best position (pBest). 

• Update the global best position (gBest). 

4. Update of Velocities and Positions 

 ( ) ( )1 1 2 2.i i i i i iv wv c r pBest x c r gBest x + − + −  

i i ix x v +  

5. Iteration 

• Repeat steps 2 to 4 until the maximum number of iterations is reached or convergence is 

achieved. 

6. Output 

The optimal parameters (λ*, M*, δ*) are provided by gBest. 

 

 

Results and Discussion 
 

The proposed method is tested on these generated synthetic signals. First, three distinct signals were generated 

in MATLAB: 

• an abdominal signal simulating the mixture of maternal ECG and fetal ECG, 

• a thoracic signal representing only the maternal ECG, 

• a reference fetal signal used to evaluate the extraction quality. 

 

These signals constitute the testing environment employed for the evaluation of the method. Figure 2 illustrates 

an example of the synthetic signals used in our simulations.   
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Figure 2. Signals used in the simulation. (a) abdominal signal, (b) thoracic signal, (c) reference fECG signal. 

 

The performance of the RLS filter was first evaluated using empirically chosen parameters, and then with 

parameters optimized by PSO. The comparison was carried out using the Mean Squared Error (MSE) between 

the extracted fetal signal and the reference fetal signal, as well as the Signal-to-Noise Ratio (SNR), calculated as 

follows: 

 

( ) ( )( )
2

1

1 N

n

MSE fECG n fECG n
N =

= −


                                                                    (5) 
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With fECG denoting the reference fetal signal and fECG


 the extracted fetal signal. 

 

Table 2 summarizes the results obtained using empirical selections of the RLS filter parameters (12 empirical 

combinations from c1 to c12) and the result obtained with optimal parameters achieved through the PSO 

method. 

  

Table 2. Comparison between 12 empirical configurations and PSO-based optimization. 

Parameters selection M λ δ MSE SNR 

Empiric c1 16 0,9997 0,1 0.001855 18.48 

Empiric c2 16 0,9997 0,5 0.001455 18.83 

Empiric c3 16 0,9997 0,7 0.001457 18.81 

Empiric c4 16 0,9999 0,1 0.000426 20.12 

Empiric c5 16 0,9999 0,5 0.000424 20.06 

Empiric c6 16 0,9999 0,7 0.000423 20.04 

Empiric c7 32 0,9997 0,1 33.29 -20.13 

Empiric c8 32 0,9997 0,5 0.001301 19.09 

Empiric c9 32 0,9997 0,7 0.001314 19.07 

Empiric c10 32 0,9999 0,1 0.000416 20.21 

Empiric c11 32 0,9999 0,5 0.000413 20.21 

Empiric c12 32 0,9999 0,7 0.000413 20.20 

Optimized PSO 32 1 1 0.000255 20.42 

 

The obtained results show that PSO-based optimization significantly improves the quality of the extracted signal 

by reducing the residual maternal component and enhancing the visibility of the fetal peaks.Figure 3 depicts the 

convergence curve of PSO compared to those of the empirical combinations c1, c6, and c11, which provide the 

best MSE/SNR trade-offs, as well as combination c7, which exhibits filter divergence. 
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Figure 3. Convergence curve of PSO compared with empirical configurations. 
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Figure 4 illustration of the real fECG signal and the extracted signals obtained using the best empirical 

configuration and the PSO-based configuration. 
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Figure 4. Real fECG and extracted signals obtained with both methods 

 

The findings identify the constraint of an empirical choice of RLS filter parameters against a systematic one 

with the use of the PSO algorithm. Among the 12 hand-trial configurations, the best one is configuration C11, 

which provides an acceptable trade-off between MSE and SNR. Still, its performance cannot compete with that 

obtained by PSO, which can automatically identify a set of parameters with a significant MSE reduction and 

improvement in SNR. The curve of convergence also demonstrates the ability of PSO in achieving an optimal 

solution in a robust and effective manner, while empirical parameters depict more dispersed and sometimes 

weaker plots. Whereas PSO optimization did the best overall, it must be noted that empirical configuration C11 

also produced results very close. This similarity may be explained by the fact that several parameter 

combinations were manually tested before arriving at C11, thereby narrowing the gap with the optimized 

solution. These findings confirm the relevance of integrating a metaheuristic optimization method such as PSO 

for tuning adaptive filter parameters in the context of fECG extraction. 

 

 

Conclusion  
 

In this work, we investigated the extraction of the fetal electrocardiogram (fECG) using an adaptive Recursive 

Least Squares (RLS) filter. After evaluating several empirical configurations, we introduced an automatic 

parameter optimization of the filter based on the Particle Swarm Optimization (PSO) algorithm. The results 

demonstrated that PSO improves the extraction quality by reducing the mean squared error (MSE) and 

increasing the signal-to-noise ratio (SNR), compared to manual parameter tuning, while providing a systematic 

parameterization procedure. 

 

As future perspectives, it would be of great interest to apply this approach to real signals from clinical databases 

in order to confirm its robustness under practical conditions. In addition, other metaheuristic optimization 

methods (such as Genetic Algorithms or Ant Colony Optimization) could be explored and compared with PSO. 

Finally, the integration of clinically relevant criteria, beyond MSE and SNR, would represent a step forward 

toward more comprehensive medical validation. 
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